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Abstract. In the present paper, some new results on the existence and uniqueness of al-
most periodic solution (ω-periodic solution) are obtained for a delayed population model.
The method is based on combining matrix’s spectral theory with the generalized Banach
fixed point theory, which is different from the method employed in the literature. Due to
employing the matrix’s spectral theory, the existence and stability conditions are given in
terms of spectral radius of explicit matrices. The obtained sufficient conditions are much
different from the conditions given by the algebraic inequalities. Our new results generalize
the previous results in the literature.
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1. Introduction

1.1. History

Kirlinger [6] proposed a single species Logarithmic model which takes the form of

(1.1) Ṅ(t) = N(t)[a−b lnN(t)− c lnN(t− τ)].

Then Li [7] studied the non-autonomous case of system (1.1). Based on the coincidence
degree theory, sufficient conditions are obtained for the existence of positive periodic so-
lutions. Liu [9] generalized system (1.1) to a periodic Logarithmic population model with
multispecies:

(1.2) Ṅi(t) = Ni(t)
[
ri(t)−

n

∑
j=1

ai j(t) lnNi(t)−
n

∑
j=1

bi j(t) lnN(t− τi j(t))
]
, i = 1,2, ...,n.

By using coincidence degree theory and constructing Lyapunov functional, he obtained
some sufficient conditions which guarantee the existence, uniqueness and stability of the
positive periodic solution of the system (1.2).
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On the other hand, ecosystem in the real world is continuously distributed by unpre-
dictable forces which can result in changes in the biological parameters such as survival
rates. Of practical interest in ecology is the question of whether or not an ecosystem can
withstand those unpredictable disturbances which persist for a finite period of time. In the
language of control variables, we call the disturbance functions as control variables. It has
been proved that some species can be permanent while the other will go to extinction under
certain conditions in the multi-species population systems. In order to search for certain
schemes (such as harvesting procedure) to ensure these systems coexist, some feedback
control variables were introduced to these systems. (For more details on the feedback con-
trols, one could refer to [5, 11]). Motivated by [1, 3, 11], Wang and Shi [10] considered a
multispecies Logarithmic population model with feedback controls as follows.

(1.3)



Ṅi(t) = Ni(t)
[
ri(t)−

n

∑
j=1

ai j(t) lnN j(t)−
n

∑
j=1

bi j(t) lnN j(t− τi j(t))

−
n

∑
j=1

ci j(t)
∫ t

−∞

Ki j(t− s) lnN j(s)ds−di(t)ui(t)− ei(t)ui(t−σi(t))
]
,

u̇i(t) =−αi(t)ui(t)+βi(t) lnNi(t)+ γi(t) lnNi(t−δi(t)), i = 1,2, ...,n,

where ui, i = 1,2, ...,n denote indirect feedback control variables. Some criteria were estab-
lished for the existence and stability of the ω-periodic solution of system (1.3).

1.2. Motivations

Most of works mentioned above considered population systems under the effects of a peri-
odically varying environment by assuming the parameters with periodic coefficients. How-
ever, if the various constituent components of the temporally nonuniform environment is
with incommensurable (nonintegral multiples) periods, then one has to consider the envi-
ronment to be almost periodic since there is no a priori reason to expect the existence of
periodic solutions. If we consider the effects of the environmental factors, the assumption
of almost periodicity is more realistic, more important and more general. Therefore, the aim
of this paper is to obtain some new and interesting sufficient conditions for the existence and
uniqueness of almost periodic solution of system (1.3).

1.3. Differences from previous work

There are three differences between the present paper and previous work.
i) This paper considers the existence and uniqueness of almost periodic solution,

while [10] reported the periodic solution. Note that periodic function is a special
case of almost periodic function.

ii) The approaches employed in this paper are based on combining matrix’s spectral
theory with the generalized Banach fixed point theory, while the method used in
[10] is essentially based on the contraction mapping principle.

iii) Due to employing the matrix’s spectral theory, the existence and stability conditions
are given in terms of spectral radius of explicit matrices, which are much different
from the conditions given by the algebraic inequalities. In fact, to guarantee the
existence of ω-periodic solution, the authors in [10] make an essential assumption
as follows.
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Theorem 1.1. If there exists positive real numbers hi, i = 1,2, . . . ,n such that

aii(t) > h−1
i

n

∑
j=1, j 6=i

h jai j(t)+h−1
i

n

∑
j=1

h j[bi j(t)+ ci j(t)]+Ti(t)+∆i(t), i = 1,2, . . . ,n,

then (1.3) has a unique ω-periodic solution, where Ti(t) = di(t)(Φ1)(t), ∆i(t) = ei(t)(Φi1)
(t−σi(t)), and Φi is defined by

(Φi lnNi)(t) =
∫ t+ω

t

[
βi(s) lnNi(s)+ γi(s) lnNi(s−δi(s))

] exp{
∫ s

t αi(ξ )dξ}
(exp{

∫
ω

0 αi(ξ )dξ}−1)
ds.

Different from Theorem 1.1 in [10], to guarantee the existence of almost periodic solu-
tion (ω-periodic solution), the essential assumption in this paper is that ρ(K ) < 1 (K ) is
defined in Theorem 2.1.

1.4. Notations and standard assumptions

We use x = (x1, . . . ,xn)T ∈ Rn to denote a column vector, D = (di j)n×n is an n×n matrix,
DT denotes the transpose of D , and En is the identity matrix of size n. A matrix or vector
D > 0 means that all entries of D are greater than zero, likewise for D ≥ 0. For matrices or
vectors D and E, D > E (D ≥ E) means that D −E > 0 (D −E ≥ 0). We also denote the
spectral radius of the matrix D by ρ(D).

If v = (v1,v2, . . . ,vn)T ∈ Rn, then we have a choice of vector norms in Rn, for instance
‖v‖1, ‖v‖2 and ‖v‖∞ are the commonly used norms, where

‖v‖1 =
n

∑
j=1
|vi|, ‖v‖2 =

{ n

∑
j=1
|vi|2

} 1
2
, ‖v‖∞ = max

1≤i≤n
|vi|.

We recall the following norms of matrices induced by respective vector norms. For instance
if A = (ai j)n×n, the norm of the matrix ‖A ‖ induced by a vector norm ‖ · ‖ is defined by

‖A ‖= sup
v∈Rn,v6=0

‖A v‖
‖v‖

= sup
‖v‖=1

‖A v‖= sup
‖v‖≤1

‖A v‖.

In particular one can show that ‖A ‖1 = max
1≤ j≤n

n
∑

i=1
|ai j|(column norm), ‖A ‖2 = [λmax(A T

A )]1/2 = [max . eigenvalue ofA T A )]1/2, ‖A ‖∞ = max
1≤i≤n

n
∑
j=1
|ai j| (row norm).

If f (t) is almost periodic, then

m( f ) = lim
T→+∞

1
T

∫ T

0
f (t)dt.

Throughout this paper, we assume that
(H1) ri(t),ai j(t),bi j(t),ci j(t),αi(t),βi(t),γi(t),di(t),ei(t), i, j = 1,2, ...,n are continuous,

real-valued nonnegative almost periodic functions on R such that
(H2) Assume that the kernels Ki j(·), i, j = 1,2, ...,n are nonnegative continuous functions

defined on [0,∞) satisfying
∫ +∞

0 Ki j(s)ds = 1.
(H3) τi j(t), σi(t) and δi(t) are nonnegative, continuously differentiable and almost peri-

odic functions on t ∈ R. Moreover, τ̇i j(t), σ̇i(t) and δ̇i(t) are all uniformly contin-
uous on R with inf

t∈R
{1− τ̇i j(t)}> 0, inf

t∈R
{1− σ̇i(t)}> 0 and inf

t∈R
{1− δ̇i(t)}> 0.
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System (1.3) is supplemented with the initial value conditions:

Ni(s) = ϕNi(s)≥ 0, s ∈ (−∞,0], ϕNi(0) > 0, sup
s∈(−∞,0]

ϕNi(s) < +∞,

ui(s) = ϕui(s)≥ 0, s ∈ [−σ ,0], σ = max
t∈R

σi(t), ϕui(0) > 0, i = 1,2, ...,n,

where ϕNi(s) and ϕui(s) denote the real-valued continuous functions defined on (−∞,0] and
[−σi,0], respectively. It is not difficult to see that there exists a positive solution z(t) =
(N1(t),N2(t), ...,Nn(t),u1(t),u2(t), ...,un(t)) of system (1.3) satisfying the initial value con-
dition.

2. Existence and uniqueness

This section is to obtain some new and interesting sufficient conditions for the existence and
uniqueness of almost periodic solution (ω-periodic solution) for system (1.3). For conve-
nience, we introduce some definitions and lemmas which will be used in the following.

Definition 2.1. Let f (t) : R→ Rn be continuous in t. f (t) is said to be almost periodic
on R, if for any ε > 0, the set T ( f ,ε) = {δ : | f (t + δ )− f (t)| < ε , ∀ t ∈ R} is relatively
dense, i.e., for ∀ ε > 0, it is possible to find a real number l = l(ε) > 0, for any interval with
length l(ε), there exists a number δ = δ (ε) in this interval such that | f (t +δ )− f (t)|< ε ,
for ∀ t ∈ R, (see [4, 8]).

Definition 2.2. Let z ∈ Rn and Q(t) be a n×n continuous matrix defined on R. The linear
system

(2.1)
dz
dt

= Q(t)z(t)

is said to admit an exponential dichotomy on R if there exists constants k, λ > 0, projection
P and the fundamental matrix Z(t) of (2.1) satisfying

‖Z(t)PZ−1(s)‖ ≤ ke−λ (t−s), for t ≥ s, ‖Z(t)(I−P)Z−1(s)‖ ≤ ke−λ (s−t), for t ≤ s.

Lemma 2.1. If the linear system (2.1) admits an exponential dichotomy, then almost peri-
odic system

(2.2)
dz
dt

= Q(t)z+g(t)

has a unique almost periodic solution z(t), and

z(t) =
∫ t

−∞

Z(t)PZ−1(s)g(s)ds−
∫ +∞

t
Z(t)(I−P)Z−1(s)g(s)ds, (see [2, 8]).

Lemma 2.2. Let ai(t) be an almost periodic function on R and m(ai) > 0. Then the system

dz
dt

= diag(−a1(t),−a2(t), . . . ,−an(t))z(t)

admits an exponential dichotomy, (see [2, 8]).
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Remark 2.1. In this case, the projector P = En. En is the identity matrix of the size n.
Therefore, in this case, system (2.2) has a unique almost periodic solution z(t) which can be
represented as

z(t) =
∫ t

−∞

Z(t)Z−1(s)g(s)ds

=
(∫ t

−∞

exp
(
−
∫ t

s
a1(u)du

)
g1(s)ds, ...,

∫ t

−∞

exp
(
−
∫ t

s
an(u)du

)
gn(s)ds

)T

.

Lemma 2.3. Let m be a positive integer and B be an Banach space. If the mapping T m :
B→ B is a contraction mapping, then T : B→ B has exactly one fixed point in B, where
T m = T (T m−1).

In view of (H1), m(αi) > 0. By Remark 2.1, the following preliminary result follows
immediately.

Lemma 2.4.
(
N1(t), . . . ,Nn(t),u1(t), . . . ,un(t)

)T is an almost periodic solution of system
(1.3) if and only if it is an almost periodic solution of

(2.3)



Ṅi(t) = Ni(t)
[
ri(t)−

n

∑
j=1

ai j(t) lnN j(t)−
n

∑
j=1

bi j(t) lnN j(t− τi j(t))

−
n

∑
j=1

ci j(t)
∫ t

−∞

Ki j(t− s) lnN j(s)ds−di(t)ui(t)− ei(t)ui(t−σi(t))
]
,

ui(t) =
∫ t

−∞

exp
(
−
∫ t

s
αi(ξ )dξ

)[
βi(s) lnNi(s)+ γi(s) lnNi(s−δi(s))

]
ds,

:= (Φi lnNi)(t), i = 1,2, ...,n.

Remark 2.2. By Lemma 2.4, the existence problem of almost periodic solutions of (1.3) is
equivalent to the existence problem of almost periodic solutions of the following system

Ṅi(t) = Ni(t)
[
ri(t)−

n

∑
j=1

ai j(t) lnN j(t)−
n

∑
j=1

bi j(t) lnN j(t− τi j(t))

−
n

∑
j=1

ci j(t)
∫ t

−∞

Ki j(t− s) lnN j(s)ds

−di(t)(Φi lnNi)(t)− ei(t)(Φi lnNi)(t−σi(t))
]
, i = 1,2, ...,n.

(2.4)

In what follows, we use the following notations:

Ti(t) = (Φi1)(t), ∆i(t) = (Φi1)(t−σi(t)).

Now we are in a position to state our main results on the existence and uniqueness of almost
periodic solution for system (1.3).

Theorem 2.1. In addition to (H1)–(H3), if we further suppose that
(H4) ρ(K ) < 1, where K = (Γi j)n×n, Γii and Γi j(i 6= j) are defined by

Γii =
∫ t

−∞

exp
(
−
∫ t

s
aii(ξ )dξ

)
ϑii(s)ds, i = 1,2, ...,n,

Γi j =
∫ t

−∞

exp
(
−
∫ t

s
aii(ξ )dξ

)
ϑi j(s)ds, i 6= j, i, j = 1,2, . . . ,n,
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ϑii(s) = bii(s)+ cii(s)+Ti(s)+∆i(s), i = 1,2, . . . ,n,

ϑi j(s) = ai j(s)+bi j(s)+ ci j(s), i 6= j i, j = 1,2, . . . ,n.

Then system (1.3) has a unique positive almost periodic solution.

Proof. Making the change of variables

(2.5) Ni(t) = exp{xi(t)}, i = 1,2, . . . ,n.

Then system (2.4) can be written as

ẋi(t) =−aii(t)xi(t)−
n

∑
j=1, j 6=i

ai j(t)x j(t)−
n

∑
j=1

bi j(t)x j(t− τi j(t))

−
n

∑
j=1

ci j(t)
∫ t

−∞

Ki j(t− s)x j(s)ds

−di(t)(Φixi)(t)− ei(t)(Φixi)(t−σi(t))+ ri(t), i = 1,2, ...,n.

(2.6)

One would see that if system (2.6) has an almost periodic solution
(
x∗1(t),x

∗
2(t), . . . ,x

∗
n(t)
)T

then
(
N∗1 (t),N∗2 (t), . . . ,N∗n (t)

)T =
(
ex∗1(t),ex∗2(t), . . . ,ex∗n(t))T is an almost periodic solution of

(2.4). By Lemma 2.4,
(
ex∗1(t),ex∗2(t), . . . ,ex∗n(t),u∗1(t),u

∗
2(t), . . . ,u

∗
n(t)
)T is an almost periodic

solution of (1.3), where u∗i (t) =
∫ t
−∞

exp
(
−
∫ t

s αi(ξ )dξ
)[

βi(s)x∗i (s)+ γi(s)x∗i (s−δi(s))
]
ds.

Therefore, to prove Theorem 2.1, it suffices to show that system (2.6) has a unique almost
periodic solution. To this end, we define

B =
{

φ(t) =
(
φ1(t),φ2(t), . . . ,φn(t)

)T
∣∣∣φ(t) is a continuous almost periodic function

}
.

Obviously, B is a Banach space with the norm ‖φ‖= max
1≤i≤n

sup
t∈R
|xi(t)|.

For any φ(t) =
(
φ1(t),φ2(t), . . . ,φn(t)

)T ∈ B, we consider the following almost periodic
system

ẋi(t) =−aii(t)xi(t)−
n

∑
j=1, j 6=i

ai j(t)φ j(t)−
n

∑
j=1

bi j(t)φ j(t− τi j(t))

−
n

∑
j=1

ci j(t)
∫ t

−∞

Ki j(t− s)φ j(s)ds

−di(t)(Φiφi)(t)− ei(t)(Φiφi)(t−σi(t))+ ri(t), i = 1,2, ...,n.

(2.7)

In view of (H1), m(aii) > 0. By Lemma 2.2, the linear part of system (2.7)

(2.8) ẋi(t) =−aii(t)xi(t), i = 1,2, . . . ,n

possesses an exponential dichotomy. Therefore, from Remark 2.1, system (2.7) has a unique
almost periodic solution xφ (t), which can be represented as

(2.9) xφ (t) =
(
xφ

1 (t),xφ

2 (t), . . . ,xφ
n (t)

)T =



∫ t

−∞

exp
(
−
∫ t

s
a11(ξ )dξ

)
gφ

1 (s)ds∫ t

−∞

exp
(
−
∫ t

s
a22(ξ )dξ

)
gφ

2 (s)ds

. . . ,∫ t

−∞

exp
(
−
∫ t

s
ann(ξ )dξ

)
gφ

n (s)ds


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where

gφ

i (s) =−
n

∑
j=1, j 6=i

ai j(s)φ j(s)−
n

∑
j=1

bi j(s)φ j(s− τi j(s))

−
n

∑
j=1

ci j(s)
∫ s

−∞

Ki j(s−ν)φ j(ν)dν

−di(s)(Φiφi)(s)− ei(s)(Φiφi)(s−σi(s))+ ri(s), i = 1,2, ...,n.

(2.10)

Now define a mapping T : B→ B by setting

T φ(t) = Zφ (t), for any φ ∈ B.

For any φ , ψ ∈ B, it follows from (2.9) that
(2.11)∣∣(T (φ)−T (ψ))

∣∣
=
(∣∣(T (φ(t))−T (ψ(t))

)
1

∣∣, ∣∣(T (φ(t))−T (ψ(t))
)

2

∣∣, . . . , ∣∣(T (φ(t))−T (ψ(t))
)

n

∣∣)T

≤



∫ t

−∞

exp
(
−
∫ t

s
a11(ξ )dξ

)∣∣gφ

1 (s)−gψ

1 (s)
∣∣ds∫ t

−∞

exp
(
−
∫ t

s
a22(ξ )dξ

)∣∣gφ

2 (s)−gψ

2 (s)
∣∣ds

. . . ,∫ t

−∞

exp
(
−
∫ t

s
ann(ξ )dξ

)∣∣gφ
n (s)−gψ

n (s)
∣∣ds


On the other hand, it follows from (2.10) that∣∣gφ

i (s)−gψ

i (s)
∣∣

≤
n

∑
j=1, j 6=i

ai j(s)
∣∣φ j(s)−ψ j(s)

∣∣+ n

∑
j=1

bi j(s)
∣∣φ j(s− τi j(s))−ψ j(s− τi j(s))

∣∣
+

n

∑
j=1

ci j(s)
∫ s

−∞

Ki j(s−ν)
∣∣φ j(ν)−ψ j(ν)

∣∣dν

+di(s)
∣∣(Φiφi)(s)− (Φiψi)(s)

∣∣+ ei(s)
∣∣(Φiφi)(s−σi(s))− (Φiψi)(s−σi(s))

∣∣
≤

n

∑
j=1, j 6=i

ai j(s)sup
t∈R

∣∣φ j(s)−ψ j(s)
∣∣+ n

∑
j=1

bi j(s)sup
t∈R

∣∣φ j(t)−ψ(t)
∣∣

+
n

∑
j=1

ci j(s)
∫ s

−∞

Ki j(s−ν)sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣dν

+
∫ s

−∞

exp
(
−
∫ s

τ

αi(ξ )dξ

)
×
[

βi(τ)sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣+ γi(τ)sup

t∈R

∣∣φ j(t)−ψ j(t)
∣∣]dτ

+
∫ s−δi(s)

−∞

exp
(
−
∫ s−δi(s)

τ

αi(ξ )dξ

)
×
[

βi(τ)sup
t∈R

∣∣φi(t)−ψi(t)
∣∣+ γi(τ)sup

t∈R

∣∣φi(t)−ψi(t)
∣∣]dτ

=

[
n

∑
j=1, j 6=i

ai j(s)+
n

∑
j=1

bi j(s)+
n

∑
j=1

ci j(s)
∫

∞

0
Ki j(u)du

]
sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣

+(Φi1)(s)sup
t∈R

∣∣φi(t)−ψi(t)
∣∣+(Φi1)(s−δi(s))sup

t∈R

∣∣φi(t)−ψi(t)
∣∣
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=

[
n

∑
j=1, j 6=i

ai j(s)+
n

∑
j=1

bi j(s)+
n

∑
j=1

ci j(s)+Ti(s)+∆i(s)

]
sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣

=
[
bii(s)+ cii(s)+Ti(s)+∆i(s)

]
sup
t∈R

∣∣φi(t)−ψi(t)
∣∣

+
n

∑
j=1, j 6=i

[
ai j(s)+bi j(s)+ ci j(s)

]
sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣

= ϑii(s)sup
t∈R

∣∣φi(t)−ψi(t)
∣∣+ n

∑
j=1, j 6=i

ϑi j(s) · sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣,

where ϑii(s), i = 1,2, . . . ,n and ϑi j(s)(i 6= j), i, j = 1,2, . . . ,n are defined in Theorem 2.1.
Thus, the above inequality implies,∫ t

−∞

exp
(
−
∫ t

s
aii(ξ )dξ

)∣∣gφ

i (s)−gψ

i (s)
∣∣ds

≤
∫ t

−∞

exp
(
−
∫ t

s
aii(ξ )dξ

)
ϑii(s)ds · sup

t∈R

∣∣φi(t)−ψi(t)
∣∣

+
n

∑
j=1, j 6=i

∫ t

−∞

exp
(
−
∫ t

s
aii(ξ )dξ

)
ϑi j(s)ds · sup

t∈R

∣∣φ j(t)−ψ j(t)
∣∣

= Γii sup
t∈R

∣∣φi(t)−ψi(t)
∣∣+ n

∑
j=1, j 6=i

Γi j sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣,

(2.12)

where Γii, i = 1,2, . . . ,n and Γi j (i 6= j), i, j = 1,2, . . . ,n are defined in Theorem 2.1. There-
fore, it follows from (2.11) and (2.12) that
(2.13)(∣∣(T (φ(t))−T (ψ(t))

)
1

∣∣, ∣∣(T (φ(t))−T (ψ(t))
)

2

∣∣, . . . , ∣∣(T (φ(t))−T (ψ(t))
)

n

∣∣)T

≤



Γ11 sup
t∈R

∣∣φ1(t)−ψ1(t)
∣∣+ n

∑
j=1, j 6=1

Γ1 j sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣

Γ22 sup
t∈R

∣∣φ2(t)−ψ2(t)
∣∣+ n

∑
j=1, j 6=2

Γ2 j sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣

. . .

Γnn sup
t∈R

∣∣φn(t)−ψn(t)
∣∣+ n

∑
j=1, j 6=n

Γn j sup
t∈R

∣∣φ j(t)−ψ j(t)
∣∣



=


Γ11 Γ12 . . . Γ1n
Γ21 Γ22 . . . Γ2n
. . . . . . . . . . . .
Γn1 Γn2 . . . Γnn


n×n


sup
t∈R

∣∣φ1(t)−ψ1(t)
∣∣

sup
t∈R

∣∣φ2(t)−ψ2(t)
∣∣

. . .
sup
t∈R

∣∣φn(t)−ψn(t)
∣∣


n×1

= K
(

sup
t∈R

∣∣φ1(t)−ψ1(t)
∣∣,sup

t∈R

∣∣φ2(t)−ψ2(t)
∣∣, . . . ,sup

t∈R

∣∣φn(t)−ψn(t)
∣∣)T

= K
(

sup
t∈R

∣∣(φ(t)−ψ(t)
)

1

∣∣,sup
t∈R

∣∣(φ(t)−ψ(t)
)

2

∣∣, . . . ,sup
t∈R

∣∣(φ(t)−ψ(t)
)

n

∣∣)T
.
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Note that (2.13) holds for all t ∈ R. Consequently, we have

(2.14)


sup
t∈R

∣∣(T (φ(t))−T (ψ(t))
)

1

∣∣
sup
t∈R

∣∣(T (φ(t))−T (ψ(t))
)

2

∣∣
. . .

sup
t∈R

∣∣(T (φ(t))−T (ψ(t))
)

n

∣∣

≤K


sup
t∈R

∣∣(φ(t)−ψ(t)
)

1

∣∣
sup
t∈R

∣∣(φ(t)−ψ(t)
)

2

∣∣
. . .

sup
t∈R

∣∣(φ(t)−ψ(t)
)

n

∣∣

 .

Let m be a positive integer. Then it follows from (2.14) that

(2.15)


sup
t∈R

∣∣(T m(φ(t))−T m(ψ(t))
)

1

∣∣
sup
t∈R

∣∣(T m(φ(t))−T m(ψ(t))
)

2

∣∣
. . .

sup
t∈R

∣∣(T m(φ(t))−T m(ψ(t))
)

n

∣∣



=



sup
t∈R

∣∣∣(T (T m−1(φ(t))
)
−T

(
T m−1(ψ(t))

))
1

∣∣∣
sup
t∈R

∣∣∣(T (T m−1(φ(t))
)
−T

(
T m−1(ψ(t))

))
2

∣∣∣
. . .

sup
t∈R

∣∣∣(T (T m−1(φ(t))
)
−T

(
T m−1(ψ(t))

))
n

∣∣∣



≤K


sup
t∈R

∣∣(T m−1(φ(t))−T m−1(ψ(t))
)

1

∣∣
sup
t∈R

∣∣(T m−1(φ(t))−T m−1(ψ(t))
)

2

∣∣
. . .

sup
t∈R

∣∣(T m−1(φ(t))−T m−1(ψ(t))
)

n

∣∣

≤ . . .

≤K m


sup
t∈R

∣∣(φ(t)−ψ(t)
)

1

∣∣
sup
t∈R

∣∣(φ(t)−ψ(t)
)

2

∣∣
. . .

sup
t∈R

∣∣(φ(t)−ψ(t)
)

n

∣∣

 .

since ρ(K ) < 1, we obtain
lim

m→+∞
K m = 0

which implies that there exists a positive integer Ñ and a positive constant r0 < 1 such that

(2.16) K Ñ = (hi j)n×n, and
n

∑
j=1

hi j ≤ r0, i = 1,2, . . . ,n.

In view of (2.15) and (2.16), we have∣∣(T Ñ(φ)−T Ñ(ψ))i
∣∣≤ n

∑
j=1

hi j sup
t∈R
|φ j(t)−ψ j(t)|

≤ max
1≤i≤n

sup
t∈R
|φi(t)−ψi(t)|

n

∑
j=1

hi j ≤ r0||φ −ψ||
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for all i = 1,2, . . . ,n. It follows that

||T Ñ(φ)−T Ñ(ψ)||= max
1≤i≤n

∣∣(T Ñ(φ)−T Ñ(ψ))i
∣∣≤ r‖u− v‖.

This implies the mapping T Ñ : B→ B is a contraction mapping. By Lemma 2.3, T has
a unique fixed point x∗(t) in B. Thus, system (2.6) has a unique almost periodic solution
x∗(t)=

(
x∗1(t),x

∗
2(t), . . . ,x

∗
n(t)
)T , then

(
N∗1 (t),N∗2 (t), . . . ,N∗n (t)

)T =
(
ex∗1(t),ex∗2(t), . . . ,ex∗n(t))T

is the unique almost periodic solution of (2.4). Therefore, by Lemma 2.4,
(
ex∗1(t),ex∗2(t), . . . ,

ex∗n(t),u∗1(t),u
∗
2(t), . . . ,u

∗
n(t)
)T is the unique almost periodic solution of (1.3). The proof of

Theorem 2.1 is complete.
The next result is concerned with the existence and uniqueness of ω-periodic solution of

system (1.3). To this end, we assume that
(H5) ri(t),ai j(t),bi j(t),ci j(t),αi(t),βi(t),γi(t),di(t),ei(t), i, j = 1,2, ...,n are continuous,

real-valued, nonnegative ω-periodic functions on R such that
∫

ω

0 aii(t)dt > 0,
∫

ω

0 αi
(t)dt > 0.

Theorem 2.2. Suppose that (H2)–(H5) hold, system (1.3) has a unique positive ω-periodic
solution.

Sketch of Proof. By Lemma 2.4 and (2.6), we see that to prove Theorem 2.2, it suffices to
show that system (2.6) has a unique ω-periodic solution. To this end, we define

B̃ =
{

φ(t) =
(
φ1(t),φ2(t), . . . ,φn(t)

)T
∣∣∣φ(t) is a continuous and φi(t +ω) = φi(t)

}
.

Obviously, B̃ is a Banach space with the norm ‖φ‖= max
1≤i≤n

sup
t∈[0,ω]

|φi(t)|.

For any φ(t) =
(
φ1(t),φ2(t), . . . ,φn(t)

)T ∈ B̃, we consider the following ω-periodic sys-
tem

ẋi(t) =−aii(t)xi(t)−
n

∑
j=1, j 6=i

ai j(t)φ j(t)−
n

∑
j=1

bi j(t)φ j(t− τi j(t))

−
n

∑
j=1

ci j(t)
∫ t

−∞

Ki j(t− s)φ j(s)ds

−di(t)(Φiφi)(t)− ei(t)(Φiφi)(t−σi(t))+ ri(t), i = 1,2, ...,n.

(2.17)

In view of (H5), m(aii) > 0. By Lemma 2.2, the linear part of system (2.17)

(2.18) ẋi(t) =−aii(t)xi(t), i = 1,2, . . . ,n

possesses an exponential dichotomy. Therefore, from Remark 2.1, system (2.17) has a
unique ω-periodic solution xφ (t), which can be represented as

xφ (t) =
(
xφ

1 (t),xφ

2 (t), . . . ,xφ
n (t)

)T =



∫ t

−∞

exp
(
−
∫ t

s
a11(ξ )dξ

)
gφ

1 (s)ds∫ t

−∞

exp
(
−
∫ t

s
a22(ξ )dξ

)
gφ

2 (s)ds

. . . ,∫ t

−∞

exp
(
−
∫ t

s
ann(ξ )dξ

)
gφ

n (s)ds


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where gφ

i (s) is defined in (2.10). Define a mapping T : B̃→ B̃ by setting

T φ(t) = Zφ (t), for any φ ∈ B̃.

The rest of proof is similar to that of Theorem 2.1.
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