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Abstract. The zero-divisor graph of a commutative ring with unity (say R) is a graph whose
vertices are the nonzero zero-divisors of this ring, where two distinct vertices are adjacent
when their product is zero. This graph is denoted by I'(R). In this paper, we study the
structure of the zero-divisor graph I'(Z» (x)) where p is an odd prime number, Z» is the
set of integers modulo p", and Zy(x) = {a+bx: a,b € Zyn and x> = 0}. We find the
Independence number of I'(Z» (x)).
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1. Introduction

Throughout this paper, all rings are commutative with identity. For a ring R, let R(x) =
R[X]/(X?), where x = X and X is an indeterminant over R. Clearly, R(x) = {a+ bx|x*> =
0,x & R}. For aring R, let Z(R) be the set of zero-divisors of R and let Z*(R) = Z(R) \ {0}.
Zero-divisor graph was first introduced by Beck [7], where Beck was mainly interested in
graph coloring. In his work, for a ring R, Z(R) was taken to be the vertex set and distinct
vertices x and y are adjacent if xy = 0. In a subsequent work, Anderson and Livingston [5]
modified the definition. In their definition, the vertex set is taken to be Z*(R) and distinct
vertices x and y are adjacent if xy = 0. The zero-divisor graph of R, T'(Z*(R)), is usually
written T'(R). The definition of zero-divisor graph given by Anderson and Livingston is
the one that has been used in the recent literature. In this paper we will also use their
definition. Much work has been done on zero-divisor graphs, and the reader is advised to
consult [2, 5, 6, 10] for more details. Some researchers generalized the idea to commutative
semigroups, see [8, 9]. Others worked on the noncommutative case, where they studied a
directed graph related to the zero-divisors of noncommutative rings. For more information
see [12, 13, 15]. Recently, some researchers worked on graphs whose vertex set is the set of
all non-zero and non-unit elements, see [3, 4].

An independent set in a graph I' is a subset I of the vertex set of I" such that no two
vertices of I are adjacent, i.e., the induced subgraph on [ is discrete. The independence
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number of I', denoted by Indep(T), is defined as the maximum of the set of cardinalities
of independent sets of vertices of I'. In this paper, we study the structure of the graph
I'(Zy»(x)), where p is an odd prime number, Z,» is the set of integers modulo p". We find
the independence number of I'(Z,» (x)).

2. The structure of I'(Z» (x))

The goal of this section is to describe the adjacency rules among vertices of I'(Z,» (x)). Part
of this was given in [1], [11] and [14]. The following lemma characterizes the zero-divisors
of R(x). The proof of this lemma is easy and direct, thus it will be omitted here.

Lemma 2.1. Let R be a commutative ring. Then a+ bx is a zero-divisor in R(x) if and only
if a is a zero-divisor in R.

According to Lemma 2.1, one can characterize the zero-divisors of Z,»(x) by finding
the zero-divisors of Z,. But the zero-divisors of Z,» are the set of all integers in Z,»
that are divisible by p. Hence the set of the zero-divisors of Z,(x) is {a+bx : a,b €
Zpn and ged(a, p) > 1}. We want to discuss how the vertices of I'(Z,» (x)) are adjacent. To
do that we divide the set of vertices of I'(Z»(x)) into three types. The first type consists of
the n—1sets: S, ,2,...,8 .1 where S, = {sp' : ged(s, p"~') = 1}. The use of Euler’s phi-
function gives the sizes of the S,,’s and one will get |S ;| = p"~' — p" "+ for | <i<n—1.
Note that S 0 is the set of units in Z», i.e. the set of elements in Z,» that are not divisible
by p. The second type consists of n sets: E0,E,1,...,E,.-1 where E,; = {bx:b € S,}.
We have |E | = [S,i| = p"~"— p"(*D for 1 <i<n—1 and |Ejo| = p"—p"'. The
third type consists of n(n — 1) sets and these sets are: S, ,j, i € {1,2,...,n—1} and j €
{0,1,...,n—1} where S, ,; = {sp'+1p/x: ged(s, p") = 1 and ged(z, p"~/) = 1}. Again
the use of Euler’s phi-function gives the sizes of the S, ,;’s and one will get |Spi7pj‘ =
(pri—p DY (prd — Uty for 1 <i<n—1and0< j<n—1.

We state how the elements of these types are adjacent. Each element of S, is adjacent to
all the elements of Sp,-/ if i+’ > n. Also, each element of Spi is adjacent to all the elements
7 if
i+i'>nandi+ j >n. For the E pi’S, each element of £ i is adjacent to all the elements

of Epi/ if i+i > n. Again, each element of § i is adjacent to all the elements of Sp,-/

of E i for any i and hence U;’:_OI E,; forms a complete subgraph of I'(Z,(x)). Again,
each element of Epi is adjacent to all the elements of Sp,-/ o if i+i > n. Observe that no
conditions are required on j'.

Finally, we want to discuss how the elements of the third type are adjacent to each other.
To do that, consider the two sets S piopi and S Pk Observe that a necessary condition in
order that some elements in the set S,; ,; are adjacent to some elements in the set S x , is
that i + k > n. Now consider the following subcases where i +k > n.

(1) If i+m >nand k+ j > n, then it is clear that each element of S, ,;
all the elements of S -

(2) Suppose that i+m > n and k+ j < n and take y; € Sp,'.p_,- and y; € Ska)m, say
y1 = aip' +bip/x and y, = ap p* + by p"x where ged(ay, p"~) = ged(by, p"i) =
ged(ap, p" %) = ged(by, p"™) = 1. We have y; -y, = ajaxp'™* + aybryp'x +
arby p*Tix = ayb1 p*Tx # 0 ( mod p"). Hence no element of S, ; is adjacent

is adjacent to
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to any element of S« .. Similarly, if i+-m < n and k+ j > n, then no element of

Spi pi s adjacent to any element of S .

(3) Suppose thati+m <nand k+ j <n withi+m ;é k+ j. We assume that i+m<
k+j. Take y; €S, pj and y2 € S ym, say y1 =aip i +byp/xandy, —azp k4+byp™x
where gcd(al,p"_i) = ged(by, p"7) = ged(ap, p"*) = ged(by, p ") = 1. We
have yi - y2 = a1axp"™™* + a1bap x4+ arby p*Hix = pTM(ay1by + apby pF T )x
( mod p"). If p't™(ajby 4 azby p*+i—i=") = 0 (mod p"), then p"~ (™) divides
(a1by + azby p¥771=™) and hence p divides a;b,. So we get p divides a; or p di-
vides by. But this is impossible because ged(ap, p"~') = ged(by, p*") = 1. Thus
y1-y2 # 0 (mod p™). Hence no element of Spi pi 18 adjacent to any element of S Pk p-
Similarly, if i+m < n and k+ j < n with i +m > k+ j, then no element of Sp pil
adjacent to any element of S .

(4) Suppose thati+m < nand k+ j < n with i+m = k4 j. In this case, we show that

some elements of S, ,; are adjacent to some elements of S« . To explain that,

take y| € Spi_’pj and y, € Sp pm> SAY Y1 =aip +b1p’x and y, = app +b2p’”x where
ged(ay, p"t) = ged(by, p" ) = gcd(ag7 k) = ged(by, p" ™) = 1. We have y; -
y2 =aiap ™ +a1by " x+ azby pix = p (a1 by + azby )x (mod p). If arby +
ab; =0 (mod p"*~ =m) " then y1 is adjacent to y, and otherwise y; and y; are not
adjacent. For instance, ifa; =a, =1, b; = p”‘i_m +1,and by = p"_i_m — 1, then
ay by +arb; =0 (mod p”_i‘m) and hence y; and y; are adjacent. On the other hand,
ifay =a, =by =by =1, then a1by +ab; =1 (mod p"”"’”) and hence y; and y;
are not adjacent.

Now, we look more closely in the last subcase. For S, ,; and S ,n, suppose that
i+k>nandi+m=k+j<n We decompose S, ,; into p"~ ki) — pr=(k+i)=1 my.
tually disjoint subsets. These subsets are X, = {rp’ + p/(sp" %~/ +7f)x, where 1 <r <
piwith ged(r, p" ) =1,0<s<p—1}and 1 <r < p"*+)) with ged(r, p"~*+)) = 1.
Observe that the set {r: 1 <r < p"~" and ged(r, p"~") = 1} with multiplication is the group
(U(p™),-) and the set {r: 1 < < p"*+/) and ged(r, p"~ 7)) = 1} with multiplication
is the group (U (p"~**7)),.). The bar on rf means that we are taking 7 modulo p"~*+J),
Observe that when ¢ runs over all the elements of U(p"**/)) and r € U(p" ') then 77
runs over all the elements of U(p"~*+/)). Hence Spipi = Usey -ty Xi and the size
of each Xt is p*(p"~t — p"~'=1). Let X be the set {X, : 7 € U(p"~**/))}. Then we have
1X| = pr— ki) — pr=(k+i)=1,

Slmllarly, k= Uyeg(piem)) Yo where Y, = {#/ pE 4 p™ (s' p" ="+ r't)x s o € U (p" )
and 0 <s' < p' — 1} and |Y;| = pi(p"* — p"*~1). Let ¥ be the set {¥, : 1 € U(p"~ (™)},
Then we have |Y| = p"~—(+m) — pn—(itm)—1,

Since i+m = k+ j, we get |X| = |Y|. We want to see when the elements of X; are
adjacent to the elements of ¥, where 7,7/ € U(p"~**J)). Suppose that y € X; and y’ € ¥;/,
say y = rp' —&-p-i(sp”’('f*k) +70)x and y = ¥ pk 4 p"(s'p" U 477 )x. We get y-y =
rr ptR 4 (rs' pt A P sp™ et p M 4 P rip* ). Since i+k > noand i+m = k+ j, we
gety-y = (rr't +r'r1) p* iy = (F4up™ DYV + (7 + o p= D)) p*rix = (rrd +
r'rt)pix (mod p") = rr' (i +1') pk”x (mod p”) where u and ' are nonnegative integers.
Since r € U(p" ) and ¥’ € U(p"*), we get y-y' =0 (mod p") if and only if p"~k*+J) divides
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t+1'. Hence, y and y' are adjacent if and only if p"~**/) divides r +¢. So, each element
of X, is adjacent to all the elements of ¥, if and only if p"~**/) divides  +#'. Thus each
element of X; is adjacent to all the elements of ¥ . _,, where? € U (pr— ki),

Let us see how the elements of S« ,v are adjacent to each other when u > |(n+1)/2|
and u+v <n—1. Asabove, Sy pv = U,y pn-turn) We with Wy = {rp" + p¥(sp" ™" +
7i)x, where r € U(p"™™), 0 < s < p*—1} and |W;| = p'(p"™* — p"~1). As explained
above, each element of W; is adjacent to all the elements of W,/ if and only if p"~“*") divides
t+1'. Thus each element of W, is adjacent to all the elements of Wi and no element

of W, is adjacent to any element of Sy v =W (), Where t € U (p"~(+v)). Hence the
n(utv)_,» Where t € U(p" ), is isomorphic to
)1 So, the

induced subgraph on each pair W;, Wp

the complete bipartite graph K pp—u=1y pu (e pp—u=1y e = K, 1y =1 (51
induced subgraph on Sy v is isomorphic to (p"~(“*+V) — pr=(“+V)=1) /3 disjoint copies of

K1yt (p—1)pr-1- We summarize this in the following lemma.

Lemma 2.2. For S, ,; and Spk pm> suppose that i+k > n and i+m = k+ j <n. Consider

(X, :t € U(p" %N} and {Y, : 1 € U(p"~ ")}, where X, and Y, are defined above. Then
every element of X; is adjacent to all the elements of Y, if and only if p"_(k+j ) divides 1, +1].
Moreover, suppose that 2u > n and u+v <n—1 hold in Syu ,v. Then the induced subgraph
on Spu pv is isomorphic to ( P wtv) _ pn=tv=1) 2 disjoint copies of the complete bipartite

8raph Kp,_y)pn1 (p—1)pr-1-

The previous work gives an algorithm to construct the zero divisor graph I'(Z,» (x)). The
following example explains how to construct the zero divisor graph I'(Zg7 (x)).

Example 2.1. Consider the zero divisor graph I'(Zs7(x)). For 1 <i < 6, each element y
of Ss is adjacent to all the elements of U?:77iUt6:77i(S5j UEs; USsjs) —{y}. Also, for
0 < i < 6, each element of Es is adjacent to all the elements of U?=7_,~55./ U U?:o Es; U
U?:Li U,6:0 Ssj 5. Now, we want to determine the adjacency between the elements of the
Ssi 5;’s. To do that take the pair Ssi 57, Ssc sm Where 1 < i,k <6and 0 < j,m < 6. We have
three cases to consider. Assuming i+k >17,

Case 1) i+m >7and j+k > 7. In this case, each element of Ss; 5; is adjacent to all the
elements of Sk sm. /

Case 2) i+m>1, j+k<Tori+m<7, j+k>17. In this case, no element OfSSi)Sj is
adjacent to any element of Ssx 5.

Case 3) i +m and j+ k are both less than 7. Here there are two subcases. (i) i +m
is not equal to j+ k. In this subcase, no element of Ssi 5; is adjacent to any element of
Ssk sm. (il) i+m = j+ k. In this subcase, we use Lemma 2.2 to determine the adjacency
between the elements of Ssi 5; and Ss 5w. For instance, take Ss3 52 and Ssa 53. According to
Lemma 2.2 we divide the set Ss3 5 into 57-0+3) _57-(+3)-1 — 5 _ | = 4 subsets. These
subsets are X; = {r5° +5%(s5' +7f)x: r € U(5*) and 0 < s < 5* — 1}, where t € U(5) and
1X;| = 5*(5* = 53). Also, we divide Ss 53 into 57-(+3) — 57-G+3=1 = 5] = 4 subsets.
These subsets are Y, = {/5* + 5%(s'5' + 7t )x : ¥ € U(5%) and 0 < s’ < 5% — 1}, where
' € U(5) and |Yy| = 53(5% —5%). We use Lemma 2.2 to get, that each element of X; is
adjacent to all the elements of ¥s_,, where t € U(5) = {1,2,3,4}. For instance, each element
of X is adjacent to all the elements of ¥4 and no element of X; is adjacent to any element
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of the sets Y;, Y5, or Y3. Now, let us see how the elements of 554,51 are adjacent to each
other. According to Lemma 2.2, we divide the elements of the set Sss 51 into 52-5=20
subsets. These subsets are W; = {r5* +5(s5* +rf)x: r € U(5%), 0 <5 < 5% — 1} where
t € U(5%). Using Lemma 2.2, every element of W; is adjacent to all the elements of Wsa_,
where t € U(5%). And no element of W, is adjacent to any element of Ss4 51 —Ws2_,. Hence,
the induced subgraph on each pair W;, W52 _, is a complete bipartite graph that is isomorphic
to K54(53_52>’54(53_52).
This way we are able to construct the zero divisor graph I'(Z7 (x)).

3. The independence number of I'(Z (x))

This section is devoted to compute the independence number of the zero divisor graph
I'(Zy(x)). In finding the independence number, we will study the structure of I'(Z,»(x))
thoroughly. Suppose that [ is an independent set with maximum cardinality in I'(Z» (x)).
We present a series of lemmas that determine the elements of the set /.

In the following lemma, we show that / contains exactly one element of the set [ J~, E,7

Lemma 3.1. Suppose that I is an independent set with maximum cardinality in T'(Z»(x)).

Then I contains exactly one element of the set | J!~ 'E i- Moreover, I can be chosen so that
this element sits in E .

Proof. Suppose that [ is an independent set with maximum cardinality in I'(Z,»(x)). Since
U'-LE ; is a complete subgraph of ['(Zy (x)), the set I contains at most one element of

i=0 =p!
Uz OIE i~ Suppose [ contains an element w in U?z_ll E, and suppose wo € Epo. The element
wo is not adjacent to any element in V(I'(Zy (x))) — Ui E,i = UjZ|' S PO UL

J=0"pt p/
Hence Iy = (IU{wo}) — {w} is an independent set with maximum cardinality. If the set /
contains no elements of [JZ; E,,i, then / must contain an element of E 0. This is because /
has a maximum cardinality and none of the elements of E o are adjacent to any element of

U S UUL, U;?;é Spi pi- So either I contains an element of E o or we can replace / by a

1ndependent set with maximum cardinality that contains an element of £ . 1
In the following, we always assume that / is taken as in Lemma 3.1. In the following

two lemmas, we show that / contains no elements of the set U;:fn ) S, U ln 12+

+1°p!
n—1 S .
j=|n/2]+1%ptpl-

Lemma 3.2. Suppose that I is an independent set with maximum cardinality in T'(Zpn (x)),
where n > 3. Then I can not contain any element of the set U S i

n/2J+1 P
Proof. Since U]~ /2 1115y is a complete subgraph of I'(Z,»(x)), then I contains at most
one element of |J!, n/2j+lsp Suppose that xo € S, N1, where ip > |n/2] + 1. Since
all the elements of (/= - lOSp VU, Uiz - io Sp i YUZ - i, E,i are adjacent to xo, then
10 (Ui S YU i Uiy Spipt WU, i Epi) = 0. Let lo = (T1US i) — {xo}-
Note that the induced graph on the vertices S -, in F(Z (x)) is the null graph Also the
elements of S i, are not adjacent to any element of I —{xo} because 1N (U}, iSpi Y
n—1 n—1

Sy pi YU, Ep) = (. Hence Iy is an independent set. But |I| = |I| —

i=n—iy A j=n—iy

1+ pio — pio=1 > |I|. So, I contains no elements of |J}~ ln/2l+1SP 1
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Lemma 3.3. Suppose that I is an independent set with maximum cardinality in T'(Z (x)),

where n > 3. Then I contains no elements of the set U?;Lln/zﬁl ?;En/2j+l Spi pi-
Proof. The proof is similar to that of the last lemma and so we skip this proof. 1

g,

In the following lemma, we show that UL n-l is a subset of /.

Lemma 3.4. Suppose that I is an independent set with maximum cardinality in T'(Zy (x)),

where n > 3. Then U n D2l g S, is a subset of I.

Proof. The induced graph on the vertices U}i"fl)/ 2 i in D(Zpn (x)) is the null graph and
the adjacency set of these vertices is a subset of the vertices U?;Lln /2041 SyU UL Ln 2041

n—1
Jj= [n/2j+1 PP

ofU” n/2)+1 S, WU |.”/2 +IU"_ n/2)+1 Sy i WU Ln/2 +1E Hence an independent set
n 1)/2JS I

j UUl Ln 2]+ E,;. Using Lemmas 3. 1 3.2 and 3.3, I contains no elements

with maximum cardinality contains all the elements of U
In the followmg lemma, we show that UL n-1)/2] U” 0Spipi 1s @ subset of [ and 1N
(U n/2] +1Uj i—[(n—1)/2] P P’) =0

Lemma 3.5. Suppose that I is an independent set with maximum cardinality in T'(Z» (x)),

where n > 3. Thenlﬂ(U nj2)+1 :‘7 =y pp,) QandULn b/2] Uiz ISI, pilsa
subset of 1.

Proof. Take S, p, with i < |(n—1)/2]. Using Lemma 3.2 and Lemma 3.4, there are no
elements in U S N1 adjacent to S, ;. For § P withi+k>n,i+m, k+j > n, we
getk > |n/2| + 1 and m > |n/2] + 1. Hence, using Lemma 3.3, none of the elements of
Spk pm are in I, where i+k > n, i+m, k+ j > n. So, in this case the elements of S, ; are
adjacent to some elements that are outside /.

Using Lemma 2.2, every element of S ;i ; is adjacent to some of the elements of S ,u-i ,n-2i+
provided that n —2i+ j < n—1. In case n —2i+ j > n, the induced subgraph on Sp pi
is a set of null vertices whose elements are adjacent to some elements that are outside
I and hence S, ,; is a subset of I. For the case where n —2i+ j < n—1, every ele-
ment of S, ; is adjacent to some of the elements of Spn—i’pnf2i+j, Spn—i+17pn—2i+j+],
Spn-its pritjes Where n—i+s=n—1,n—2i+j+s<n—1l,orn—i+s<n—1,n—
2i+j+s=n—1. Hence, if n—2i+ j <n—1, then every element of S, ,; is adjacent
to some elements of A = {J;_oSn-itr yn-2i+j+r. Note that if (n —i) + (n—2i+ j) > n, then
the induced subgraph on A is complete Since the induced graph on the vertices S,
in T'(Zyn(x)) is the null graph, we get /NA =0 and S, ,; C 1. Also, if j > i, then
(n—i)+(n—2i+j) > nbecause i < |(n—1)/2]. Hence the induced subgraph on A is
complete. Since S, ,; is a set of null vertices, we get /NA =0 and S, ,; € I. So, we can
assume that j < i and (n—i)4+(n—2i+j) <n—1. Our goal is to show that /NA = 0.
Assume on the contrary that /NA # 0. For 0 <r <i— j— 1, Lemma 2.2 gives Syipi =
Ureu (pi-i-r) X/ Where X/ = {a,p'+pl(b,p I "+af)x: a, cU(p" "), 0< b, < p"iH7 —
1}, and S i+ " 2 = Upey(pi-in Y Where Y = {a,p"~ B ph A (B I
aif)x: a,eU(p™"),0<b,<p'—1}. For0<r<i—j—1,define T" = {t' : INY] # 0},
T = maximum{|7T"]: 0<r<i—j—1}, ro = maximum{r: |T"|=T and 0 < r<i—j—1},
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and T = {p"/7"0 —¢' : ¢ € T™0}. Since |Y}| = (p"" — p""~!)p', then I contains at
most TY! 1" (pi~" — p'~"~")p’ elements of U'_) 'S
subgraph on J;_;_ ;S n-itr

i ity and since the induced

=it is complete, then I contains at most one element of
Ur—i j S pn—itr pn—2i+j+r- Hence I contains at most T Y, ¢ NPT =P 4 elements
of A. Take Iy = (I —A) UU, 77 X/°. Note that, the induced subgraph on U, 77 X;"
a set of null vertices and the elements of |, 77 X/ are either adjacent to some elements
that are outside / or to some elements of A. Hence Iy is an independent set. Since [

contains at least one element from each Yro where t' € T and this element is adjacent

to all the elements of X" i ,» then INU, 776 X/° = 0. So, |[Io] > |I| = (TY :jofl(p’;r -

PP+ DA TIX! =1 - ( (P =D ((p™/=Dp) /(P (p—1)) +1)+T(p"" =
pn—i—l)pn—i+r0 > |I| _ (T(pi *pl 1)p1+1) JrT(pn—i 7pn—i—1)pn—i+r0 > |I| The last greater
than follows because i < |(n—1)/2] < n—i. This contradicts the fact that  is an inde-
pendent set with maximum cardinality. Hence /N A = 0. As above by taking S,;

p =

Syln-12) pis 0 < j<n—1, we get 1N (Ul n/2]41 j=i—[(n—1)/2j Sp",pf) 0 and U ” /2]
7 éSﬂ N crL I
We summarize what we have about an independent set / with maximum cardinality in
['(Zy (x)), where n > 3. Using Lemmas 3.1 to 3.5 to get UL" D /ZJS UUL" /2] U” !

Spipi U{wo} € 1 and 1N (UL WzJHSp VUL WzJHU Ln—1)/2) Spipi YU o (Ey

{wo})) —(Z) where wp is an element of E 0. Now, |U (n— 1)/ZJS UUL" 1/2J Uiz 0SpipiU

{wo}| = [(n— 1/2J( n—i —p i 1)+Z[n 1)/2] Z?,l( n—i —p i— 1)(pn ]_pn j— 1)+1:
p¥i-Lin= 1/2J I(pl=1/2] _ 1) 4 1. We state this in the following corollary.

0 is

Corollary 3.1. Suppose that I is an independent set with maximum cardinality in T'(Zy (x)),

where n > 3. Then I contains exactly 172"_“”_1)/%_1 (p[("_l)m 1)+1 elementsfrom the
[n 1)/2] (n—1)/2] 1 _

set Ui S, UL U320 Spi.0 WU ) 1 Sp VU g i1 US|y 2y Spiopi Y

Ui o‘Ep

(n—1)/2) -1

Spi pi are in I when n is an odd integer and which elements ofS 2 WU, /2041 U/ On 1)/2]-1

P
Spi p,UU] OS /2], ,aremlwhennlsanevenmteger Observe that | J;~ Lln/2J+1U (n=1)/2] -1

To determine / completely we have to determine which elements of !, ! n/2)+1 U

Syipi = UL(" /2= IU“" N/2l-i-1¢ in2l+isiej e First, we consider the case where n =

4n1 +3 with n; is a positive integer. So, for any i with 0 < i < L(n -1 /2J —1=(4n +
n 1)/2]—i

—1)/2] — 1 =2n;, we want to determine which elements of U SPL% | 14it)

o
U?"‘O'H i-lg I ) Are in I. First, take i = 0, so we want to determine which el-

2n 2n; S

ements of U] 0S om 42+ ) Are in /. Observe that U] 1O p2m 2 pj 18 @ complete sub-

graph of U =0 S P2 and hence I can contain at most one element from it. We want
to see which elements of U?IZO S a2 ) are in I. To do that, we divide S 2120 0,
piv oo Symy2eny L0 X) = {r()pz"l+2 +p (sop2”1+1 +r0t0)
ro € U(pz’”‘H) and 0<s50<p?™M*2—1} wherety € U(p2”1+1), = ={r p* 34 pl(s;p?™m

S P2 Ly s ,S 2y +2+)
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+rf)x: r €U(p?™) and 0 < s1 < p?M+2 -1} wheret; € U(p*™), X,i = {r;p?m+2Hi4
pl(s;p™ 478 )x: 1 eU(p*™M 1) and 0 <57 < p*M*+2 — 1} wheret; € U(p* 1),
X,n1 = {ry, p?T2m 4 pii (5, pPItom 4 tn]) t gy €U(pPMHI-mYand 0<s,, <
pz"“L2 1} where t,,, € U(p*™ 17" respectively.

The bar on r;t; means that we are taking r;z; mod p Observe that when ¢;
runs over all the elements of U(p?"*17/) and r; € U(p*17/), then 7;7; runs over all

the elements of U(p**'=/). So, for any j with 0 < j < ny, we have S 21

2n+1—j

. 'pj -
Utjeu(pz,llﬂ,j)X/ i.e. S, 4245 ,; has been divided into |U(p?+1=7)| subsets and these

subsets are X,‘j. where t; € U(p?"177). We want to see how the elements of these subsets
are adjacent. Suppose that y; € Xlﬁ and y, € X{_';,, where 0 < j, j' <ny,t; € U(p**17/), and
sp € U(p*+1=7). As we have explained for Lemma 2.2, we get y; and y, are adjacent if
and only if p?PmHi=i= " divides 1 J +5;1. So, each element of X; /s adjacent to all the elements
of X{ _ if and only if p> 1=/ 7" divides tj+sy. Note that the exponent 2n; + 1 — —jis

posmve and this is because j and j’ are less than or equal to ;. By taking j = j’, we get each
element ofX,i. is adjacent to every element of Xff if and only if #; +s; = 0 (mod p>M 172/,
Note that both #; and s; are elements of U (p 41 7). Hence, if [ € U(p?"*172/), then each

element of X; Jis adjacent to every element of X/ o +1-2; Where 0 < ¢ < pl—1.

( 2n1+l 2j_ l)+Cp

So, if I € U(p?+1-2i), then every element of J?_, o X is adjacent to every ele-

I+bp 2n1+1-2j
P 1y j -
ment of (J,_, X(p2"1+1—2i—1)+cp2"1+'—2-/' Whereas, no element of Ub Xl+b oy 11-2; 18 adja-
J—1 <, Y
cent to any element of S on 42+, — Ui X(Jpz,,ﬁ] 2y pepiri 2 So, if 1 € U (p¥+1-2)),
p’ Iy
then the induced subgraph on each pair Ub 0 przn -2 U pzm HA2 g ppm 12

is isomorphic to the complete bipartite graph K( 2011 =y 2 2 p (2= 2 =) 242

=K +2( ) So, the induced subgraph on S A2 is isomorphic to the dis-

p=1).p" 2 (p—1)" ‘ ‘
joint union of |U (p?M+1727)| /2 = (p?m+1=2] — p?Mm=2]) /2 copies of the complete bipartite
graph K A2 (p 1), pt 2 (p— 1) Recall that I is an independent set with maximum cardi-
nality of I'(Z (x)). So, for 0 < j < ny, I can contain at most p*"1+2(p — 1)(p?" 172/ —

p*™ %) /2 elements of S ;215 ;. Thus, I can contain at most ;Lo p*1 2 (p—1) (p* 172/

=) 2= p R (p—1)? /ZZ o (1/P2) = p™*2(p—1)(p?+2 = 1)/ (2(p+1)) el-
ements of | J! =0 S D2 i

We summarize this in the following lemma.

Lemma 3.6. If0 < j < ny, then the induced subgraph on S A2 is isomorphic to the
disjoint union of (p* 172 — p?=2J)/2 copies of the complete bipartite graph
Kp4nl+2(p71)$p4n1+2(p71). For n1 +1 < j < 2ny, the induced subgraph on sznl+z+j7p,— is
complete. Moreover, I contains at most p*"*2(p —1)(p*+2 —1)/(2(p+ 1)) elements
OfUI;IZOSFZnIJrZJrj’pj.

If 0 < j < ny, then define X/ = {X/ 11 € {1,2,...,(p—1)/2} mod p}, Y/ = {X/ : 1 €
p+1)/2,(p+3)/2,...,p—1ymod p}, Xo = UL, X/, and Yy = |J'.,Y/. We have the
j=0 j=0
following lemma about X and ¥j.
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Lemma 3.7. Xy and Yy form a partition of U;f‘:() S 2+ i Moreover, the induced sub-
graph on each one of Xo and Yy is a set of null vertices and | Xo| = |Yo| = | U;u:o S o2t pil/2
=p" 2 (p—D(p™" 2 = 1)/Q2(p+1)).

Proof. The proof follows immediately from the definition of Xy, ¥y and the le ’s. 1

We want to show that I contains exactly p*1+2(p—1)(p*1+2 —1)/(2(p+1)) elements

of U?"IOS 2y +24) Suppose that C = U;” OS 2;11+2+1' i and Bis a subset of I'(Z» (x)) with
1

Bm( i= n/2 +1U] i—|(n—1)/2] P P/UUt [n/2]+1 P UU? 1 E ) =0, BNC =0, and any

element of B is adjacent to some element of C. Our goal is to show that I does not contain

any elements of B. It is straight forward to check that B does not contain any elements

[n 1)/2] 1 (n—1)/2]
of Ui~ U;’ 05 pk meU Sy UE 0 andU] 1S
Hence B is a subset of UZ"1 2"‘ s am2+ivj , — C. So, itis straightforward to check that

the induced subgraph on B is complete and any element of B is adjacent to all the elements
of § poni+2en - We state this in the following lemma.

P2 i is a subset of C.

Lemma 3.8. For the set B that is defined above, the induced subgraph on B is complete and
any element of B is adjacent to all the elements of S ARSI

In the following lemma, we show that / does not contain any element of B.

Lemma 3.9. Suppose that I is an independent set with maximum cardinality in T'(Z» (x)),
where n = 4ny + 3 and ny is a positive integer. Then INB = 0.

Proof. Since B is complete, / can contain at most one element of B. Suppose thaty € /N B.
Since any element of B is adjacent to all the elements of S 242+, then I contains

no elements of S o +24n; n. So, using Lemma 3.6, I can contain at most [p*+2(p—
D(p™M*T2-1)/2(p+1))] - |S oy +24n; i |+ 1 elements from the set U;“:O S 245 i UB.
Define Iy = (I — U;U:o S 24 i UB) U Xo, where X is defined in Lemma 3.7. Using
Lemma 3.7 and Lemma 3.8, we get the induced subgraph on [ is a set of null vertices. So,
Iy is an independent set with |Iy| > |I|. This contradicts the fact that / is an independent set
with maximum cardinality. Hence I does not contain any element of B. 1

Lemma 3.10. Suppose that I is an independent set with maximum cardinality in T'(Z,» (x)),
where n =4ny +3 and ny is a positive integer. Then I contains exactly Z;“:o |Sp2n1+2+j7p_/‘ |/2=

PIR(p = 1) = 1)/ (2(p-+ 1)) elements of U S 21

Proof. The result is an immediate consequence of Lemmas 3.6, 3.7, and Lemma 3.9. 1

N

Note that, / might contain the elements of Xy from U?"'OS 20y 42+ where Xj is de-

2n1

P
fined in Lemma 3.7. For i = 0, we determined how many elements / contains from U

N P2 e This was done in Lemma 3.10. Similar to the case where i = 0, one can

show that I contains exactly Z |S 2y +2+14) /2 elements from U S pon+2+i+ g, and
one element from Sp2n1+z+1+n1 r Observe that the induced subgraph on S A
is complete and hence I contains exactly one element of it. Continuing this way for i =

2,3,...,2n; and we get that I contains exactly ZZ”‘ ijnl 0/2] |S oy +24it) /2 + 1 el-

2y 2
ements from ;" Uiy ‘s am+2+i+j ;- This will determine the independence number of
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I'(Zy (x)), where n = 4n; + 3 and n; is a positive integer. We state this in the following
theorem.

Theorem 3.1. Suppose that n = 4ny + 3 where ny is a positive integer. Then the indepen-
dence number of T(Zy (x)) is equal to (1— p)p*" 3 /(2(14p))[((n1 +1)/p+n1) — (1 —
P p /(L= p)l+p (P = 1)+ + 1.

Proof. If I is an independent set with maximum cardinality in I'(Z» (x)), then I contains
Yo ZL 2m=i)/2 1/2|8 jn; 42414 | +m1 elements from U 2”' ‘s omaiti ;- We have

2n1 l

2n; L

2ny 172 . . . )
Z Z |S 2,11+2+,Hpj|: Z p6n1+2(pflfj+1_pftfj)(p*hLl_p*J)
j= i=0 j=0
oy [ 24 2j
p6n1+2(p 1)2 Z <1) (1>
i=0 j=0 p p

(1 _p)p6n1+4

1
2
n+1 ni n 1 i
2 ) T\ st ) T Z =
p p i—o \P

I+p
(1—p)p4"1+3 {(m-l—l > (1_p2n1+1)p}
I1+p 1—p
Using Corollary 3.1, I contains p®1+4(p?m+!l — 1) 41 elements from ['(Z(x)) — Uizib
20 S iaiiis . Now, the result follows immediately. 1
UJ,() P i pi Y

We give the following example to explain Theorem 3.1.

Example 3.1. Consider the zero divisor graph I'(Zs7(x)). Partition the sets Ss4 50 and Sss 51
into X? = {ro5* + (505> +7rof)x : ro € U(5*) and 0 < 59 < 5* — 1} where 1 € U(5%) and
X} ={r5 +5'(s;5* +nt)x:r € U(52) and 0 < 51 < 5% — 1} where ¢/ € U(5%). Let
X0={x?:1€{1,2} mod 5} and X' = {X} : ' € {1,2} mod 5}. Also, we partition the sets
Sss 50 and Ss6 51 into Y0 = {ro5° + (s05° —|—r0t)x ro €U(5%) and 0 <59 <5°—1} wheret €
(52) and Y} = {r5°45"(s;5" +rit')x:r € U(Sl) and 0 <s; <5°—1} wheret/ € U(5").
Take YO = {Y0 t€{1,2} mod 5} and Y' = {¥} : ' € {1,2} mod 5}. Lastly, we partition
Sse 5o into Z0 = {ro5® + (505! +70f)x : rg € U(5') and 0 < 59 < 56 — 1} where 1 € U(5")
and take Z0 = {Z : 1 € {1,2} mod 5}. If I = U}, %S, i UUL, S, UXOUX' UYOU
Z0U{5%+5(5+ 1)x} U{wo}, where 5° + 5(5+ 1)x is an element of Y' and wy € E 0, then
I is an independent set with maximum cardinality in I'(Zs7(x)). Hence the independence
number of T'(Zs7 (x)) is equal to |[7| = 5'9(53 — 1) +56(5 — 1)2(5* +5+2) /2 +2.
Similarly, one can find the independence number of I'(Z (x)) where n = 4n; + 1 and n;
is a positive integer. We state the following.
Theorem 3.2. Suppose that n = 4ny + 1 where ny is a positive integer. Then the inde-
pendence number of T'(Zy(x)) is equal to ):2'” 1ZL 2m=i=1)/2] |S oy +14it pil/2 4+ 11 +
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1)/2] 1)/2
U s, U 2 OIS, 0 (0 | = 0 (0= 1)/ 0o+ 1) (™" = 1o/ (=
1) - (nl+n1/P)}+n1+P6"1+1(P2"‘ D+1
We want to determine the independence number of I'(Z,»(x)) when n is an even inte-

ger. If I is an independence set with maximum cardinality in I'(Z,»(x)) and n is an even
integer, then the use of Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4, and Lemma 3.5
)/2 1)/2]

gives Ul 1 b/ JS UULn )2 Uiz é vipi U{wo} ClandIN (UL Ln/2J+1 S, VU OlEp

{wo}U Ui:WzJJrl Uj:if[(nfl)/Zj p’,pf) = 0, where wy is an element of E 0. To determine /
completely, we have to determine which elements of S /2] U U:l:_tll1 1 Ulj; %(nfl)/ 2]-1 S
UU?;(I) S,n/2) pi arein I. For 1 <k < |n/2] —1, the use of Lemma 2.2 gives that the in-
duced subgraph on S 1.2/ « is isomorphic to ( pro 2=k pn=ln/2]=k=1) /3 disjoint copies
of the complete bipartite graph K| (p—1)pr—1- Observe that, for 1 <k < |n/2] —1,no

p—1)p"~!
element of S .2/ 4 is adjacent to any of the elements of S /2] U U’?_ln/Z " U’._L("_l)/zj_l

Spipi UUjst Szl i OF UL" /2] SpiUUl /2l U= oS i pi U{wo}. Hence, for 1 <k <
|n/2] -1, Icontams( /2 =k _ pn=ln/2l=k=1)(p — 1) p"~1 /2 elements Of 8,12 i SO,

Icontalns): (n—1) /ZJ( n— Ln/2j—k7pn—tn/2j—k—1)(p7 N 2=p(p— 1)(p\_(n—1)/2j _
1)/2 elements 0f Uk:l D2l g plns2) - We state this result in the following lemma.

Lemma 3.11. Suppose that I is an independent set with maximum cardinality in T'(Z» (x)),

where n is a positive even integer. Then I contains exactly p"~'(p —1)(pl"=1/21 _1)/2

elements ofU,&(:n]il)/2J Spp,/zj &

Now, we determine which elements of [ J}, Ln a1 U' Ln=1)/2)=1

ObservethatU" /2] HUl Ln=1)/2]= S,, 21U S

pipi USPWZJ PO arein /.

Utﬁnfl)/ZJ Ul(nfl)/ZJ*i

p[n/2j+i+j it
(n—1)/2]

0=
P
Similar to the case where n is odd, we determine the number of elements of U
UL” 172 szHH j pi thatare in I. We state that in the following lemma.

Lemma 3.12. Suppose that I is an independent set with maximum cardinality in T'(Zyn (x)).
If n = 4ny + 2, where n| is a positive integer, then I contains exactly ( )p 4”'”/(2(

I(=(m+1)/p—m) + (P = 1)p/(p— )] +ny elements of Uiy "> g2
Splnf2l it pi- If n = 4ny, where ny is a positive integer, then I contams exactly (p—1)

P2 Qp+1)(=m /p=m) + (P = 1)p/ (p—1)]+m elements of ULy ULy VA
Splnf2l4iti pi-

We state the independence number of I'(Z» (x)), where n is a positive even integer in the
following two theorems.

Theorem 3.3. Suppose that n = 4ny + 2 where ny is a positive integer. Then the inde-
pendence number of T'(Zy (x)) is equal to (p — 1)p*+2/(2(p+ 1)) [(—(n1 + 1) /p —m) +
(P = 1)p/(p— V)] +ny +p™1 3 (P> — 1)+ 14+ p™H (p? —1)(p—1)/2+ 1.

Proof. Suppose that I is an independent set with maximum cardinality in I'(Z»(x)). Us-
ing Lemma 3.11 and Lemma 3.12, I contains (p — 1)p*1*2/(2(p+1)) [(—(n1 +1)/p —
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m)+ (P —1)p/(p— 1)] +n1 + p*itl(p?™ —1)(p —1)/2 elements from U (n=1)/2]
UL" D2l-ig l/2lie] i UUk . D2l g S,n2) - Using Corollary 3.1, I contains exactly
n -1)/2 —1)/2)—i e
pom3(p?™ — 1)+ 1 elements from I'(Z, (x))—UL(" )/ JUH" J2l-ig Ln/2J+i+j YU
Spn/2) ke US /) - Observe that I contains exactly one element of Uk n/2 J pln/2) e US ina).
Hence the result follows immediately. 1

Theorem 3.4. Suppose that n = 4n; where n; is a positive integer. Then the independence
number of T(Zy (x)) is equal to (p—1)p*1 72/ (2(p+1))[(—n1 /p—n1) + (p* = 1)p/(p—
D] 4n +p(p™ =1+ 14 p* - (p™ 1 —1)(p—1)/2+1.

Proof. The proof is similar to that one of last theorem. 1

Our theorems do not cover the cases where n = 1,2,3. We cover these cases in the
following theorem.

Theorem 3.5. The independence number of I'(Zn(x)) where n=1,2,3 is 1, (P> —p)(p—
/241, (p*=p)p* +(p* —p*)(p—1)/2+ 1 respectively.

Proof. The independence number of I'(Z 1 (x)) is equal to 1 and this is because the graph
['(Z, (x)) is complete. The setI = {ap+ (bp+c)x:a€{1,2,...,p—1},b€{0,1,...,p—
1}andc € {1,...,(p—1)/2}} U{wo}, where wy € E 0, is an independent set with maxi-
mum cardinality in I'(Z 2 (x)) and hence the independence number of I'(Z (x)) is equal
to |I| = (p>—p)(p—1)/2+1. The set [ = U?Z()Spl,p-" us, u {ap* + (bp+c)x:a €
{1,2,...,p=1},6€{0,1,....p* =1} and c € {1,...,(p—1)/2} }U{wo}, where wo € E 0,
is an independent set with maximum cardinality in I'(Z;(x)). Hence the independence
number of ['(Z,,3(x)) is equal to |I| = (p* — p)p* + (p* = p*) (p—1)/2+ 1. |
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