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Abstract. The zero-divisor graph of a commutative ring with unity (say R) is a graph whose
vertices are the nonzero zero-divisors of this ring, where two distinct vertices are adjacent
when their product is zero. This graph is denoted by Γ(R). In this paper, we study the
structure of the zero-divisor graph Γ(Zpn (x)) where p is an odd prime number, Zpn is the
set of integers modulo pn, and Zpn (x) = {a + bx : a,b ∈ Zpn and x2 = 0}. We find the
Independence number of Γ(Zpn (x)).
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1. Introduction

Throughout this paper, all rings are commutative with identity. For a ring R, let R(x) =
R[X ]/(X2), where x = X and X is an indeterminant over R. Clearly, R(x) = {a + bx |x2 =
0, x 6∈ R}. For a ring R, let Z(R) be the set of zero-divisors of R and let Z∗(R) = Z(R)\{0}.
Zero-divisor graph was first introduced by Beck [7], where Beck was mainly interested in
graph coloring. In his work, for a ring R, Z(R) was taken to be the vertex set and distinct
vertices x and y are adjacent if xy = 0. In a subsequent work, Anderson and Livingston [5]
modified the definition. In their definition, the vertex set is taken to be Z∗(R) and distinct
vertices x and y are adjacent if xy = 0. The zero-divisor graph of R, Γ(Z∗(R)), is usually
written Γ(R). The definition of zero-divisor graph given by Anderson and Livingston is
the one that has been used in the recent literature. In this paper we will also use their
definition. Much work has been done on zero-divisor graphs, and the reader is advised to
consult [2, 5, 6, 10] for more details. Some researchers generalized the idea to commutative
semigroups, see [8, 9]. Others worked on the noncommutative case, where they studied a
directed graph related to the zero-divisors of noncommutative rings. For more information
see [12, 13, 15]. Recently, some researchers worked on graphs whose vertex set is the set of
all non-zero and non-unit elements, see [3, 4].

An independent set in a graph Γ is a subset I of the vertex set of Γ such that no two
vertices of I are adjacent, i.e., the induced subgraph on I is discrete. The independence
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number of Γ, denoted by Indep(Γ), is defined as the maximum of the set of cardinalities
of independent sets of vertices of Γ. In this paper, we study the structure of the graph
Γ(Zpn(x)), where p is an odd prime number, Zpn is the set of integers modulo pn. We find
the independence number of Γ(Zpn(x)).

2. The structure of Γ(Zpn(x))

The goal of this section is to describe the adjacency rules among vertices of Γ(Zpn(x)). Part
of this was given in [1], [11] and [14]. The following lemma characterizes the zero-divisors
of R(x). The proof of this lemma is easy and direct, thus it will be omitted here.

Lemma 2.1. Let R be a commutative ring. Then a+bx is a zero-divisor in R(x) if and only
if a is a zero-divisor in R.

According to Lemma 2.1, one can characterize the zero-divisors of Zpn(x) by finding
the zero-divisors of Zpn . But the zero-divisors of Zpn are the set of all integers in Zpn

that are divisible by p. Hence the set of the zero-divisors of Zpn(x) is {a + bx : a,b ∈
Zpn and gcd(a, p) > 1}. We want to discuss how the vertices of Γ(Zpn(x)) are adjacent. To
do that we divide the set of vertices of Γ(Zpn(x)) into three types. The first type consists of
the n−1 sets: Sp,Sp2 , . . . ,Spn−1 where Spi = {spi : gcd(s, pn−i) = 1}. The use of Euler’s phi-
function gives the sizes of the Spi ’s and one will get |Spi |= pn−i− pn−(i+1) for 1≤ i≤ n−1.
Note that Sp0 is the set of units in Zpn , i.e. the set of elements in Zpn that are not divisible
by p. The second type consists of n sets: Ep0 ,Ep1 , . . . ,Epn−1 where Epi = {bx : b ∈ Spi}.
We have |Epi | = |Spi | = pn−i − pn−(i+1) for 1 ≤ i ≤ n− 1 and |Ep0 | = pn − pn−1. The
third type consists of n(n− 1) sets and these sets are: Spi,p j , i ∈ {1,2, . . . ,n− 1} and j ∈
{0,1, . . . ,n−1} where Spi,p j = {spi + t p jx : gcd(s, pn−i) = 1 and gcd(t, pn− j) = 1}. Again
the use of Euler’s phi-function gives the sizes of the Spi,p j ’s and one will get |Spi,p j | =
(pn−i− pn−(i+1))(pn− j− pn−( j+1)) for 1≤ i≤ n−1 and 0≤ j ≤ n−1.

We state how the elements of these types are adjacent. Each element of Spi is adjacent to
all the elements of Spi′ if i+ i′ ≥ n. Also, each element of Spi is adjacent to all the elements
of Epi′ if i + i′ ≥ n. Again, each element of Spi is adjacent to all the elements of Spi′ ,p j′ if
i + i′ ≥ n and i + j′ ≥ n. For the Epi ’s, each element of Epi is adjacent to all the elements
of Epi′ for any i′ and hence

⋃n−1
i=0 Epi forms a complete subgraph of Γ(Zpn(x)). Again,

each element of Epi is adjacent to all the elements of Spi′ ,p j′ if i + i′ ≥ n. Observe that no
conditions are required on j′.

Finally, we want to discuss how the elements of the third type are adjacent to each other.
To do that, consider the two sets Spi,p j and Spk,pm . Observe that a necessary condition in
order that some elements in the set Spi,p j are adjacent to some elements in the set Spk,pm is
that i+ k ≥ n. Now consider the following subcases where i+ k ≥ n.

(1) If i+m≥ n and k + j ≥ n, then it is clear that each element of Spi,p j is adjacent to
all the elements of Spk,pm .

(2) Suppose that i + m ≥ n and k + j < n and take y1 ∈ Spi,p j and y2 ∈ Spk,pm , say
y1 = a1 pi + b1 p jx and y2 = a2 pk + b2 pmx where gcd(a1, pn−i) = gcd(b1, pn− j) =
gcd(a2, pn−k) = gcd(b2, pn−m) = 1. We have y1 · y2 = a1a2 pi+k + a1b2 pi+mx +
a2b1 pk+ jx = a2b1 pk+ jx 6= 0 ( mod pn). Hence no element of Spi,p j is adjacent
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to any element of Spk,pm . Similarly, if i + m < n and k + j ≥ n, then no element of
Spi,p j is adjacent to any element of Spk,pm .

(3) Suppose that i + m < n and k + j < n with i + m 6= k + j. We assume that i + m <
k+ j. Take y1 ∈ Spi,p j and y2 ∈ Spk,pm , say y1 = a1 pi +b1 p jx and y2 = a2 pk +b2 pmx
where gcd(a1, pn−i) = gcd(b1, pn− j) = gcd(a2, pn−k) = gcd(b2, pn−m) = 1. We
have y1 · y2 = a1a2 pi+k + a1b2 pi+mx + a2b1 pk+ jx = pi+m(a1b2 + a2b1 pk+ j−i−m)x
( mod pn). If pi+m(a1b2 + a2b1 pk+ j−i−m) = 0 (mod pn), then pn−(i+m) divides
(a1b2 + a2b1 pk+ j−i−m) and hence p divides a1b2. So we get p divides a1 or p di-
vides b2. But this is impossible because gcd(a1, pn−i) = gcd(b2, pn−m) = 1. Thus
y1 ·y2 6= 0 (mod pn). Hence no element of Spi,p j is adjacent to any element of Spk,pm .
Similarly, if i+m < n and k + j < n with i+m > k + j, then no element of Spi,p j is
adjacent to any element of Spk,pm .

(4) Suppose that i+m < n and k + j < n with i+m = k + j. In this case, we show that
some elements of Spi,p j are adjacent to some elements of Spk,pm . To explain that,
take y1 ∈ Spi,p j and y2 ∈ Spk,pm , say y1 = a1 pi +b1 p jx and y2 = a2 pk +b2 pmx where
gcd(a1, pn−i) = gcd(b1, pn− j) = gcd(a2, pn−k) = gcd(b2, pn−m) = 1. We have y1 ·
y2 = a1a2 pi+k +a1b2 pi+mx+a2b1 pk+ jx = pi+m(a1b2 +a2b1)x (mod pn). If a1b2 +
a2b1 = 0 (mod pn−i−m), then y1 is adjacent to y2 and otherwise y1 and y2 are not
adjacent. For instance, if a1 = a2 = 1, b1 = pn−i−m +1, and b2 = pn−i−m−1, then
a1b2 +a2b1 = 0 (mod pn−i−m) and hence y1 and y2 are adjacent. On the other hand,
if a1 = a2 = b1 = b2 = 1, then a1b2 +a2b1 = 1 (mod pn−i−m) and hence y1 and y2
are not adjacent.

Now, we look more closely in the last subcase. For Spi,p j and Spk,pm , suppose that
i + k ≥ n and i + m = k + j < n. We decompose Spi,p j into pn−(k+ j) − pn−(k+ j)−1 mu-
tually disjoint subsets. These subsets are Xt = {rpi + p j(spn−k− j + rt)x, where 1 ≤ r ≤
pn−i with gcd(r, pn−i) = 1, 0≤ s≤ pk−1} and 1≤ t ≤ pn−(k+ j) with gcd(t, pn−(k+ j)) = 1.
Observe that the set {r : 1≤ r≤ pn−i and gcd(r, pn−i) = 1} with multiplication is the group
(U(pn−i), ·) and the set {t : 1≤ t ≤ pn−(k+ j) and gcd(t, pn−(k+ j)) = 1} with multiplication
is the group (U(pn−(k+ j)), ·). The bar on rt means that we are taking rt modulo pn−(k+ j).
Observe that when t runs over all the elements of U(pn−(k+ j)) and r ∈ U(pn−i) then rt
runs over all the elements of U(pn−(k+ j)). Hence Spi,p j =

⋃
t∈U(pn−(k+ j)) Xt and the size

of each Xt is pk(pn−i− pn−i−1). Let X be the set {Xt : t ∈ U(pn−(k+ j))}. Then we have
|X |= pn−(k+ j)− pn−(k+ j)−1.

Similarly, Spk,pm =
⋃

t∈U(pn−(i+m))Yt where Yt = {r′pk + pm(s′pn−i−m +r′t)x : r′ ∈U(pn−k)

and 0≤ s′ ≤ pi−1} and |Yt |= pi(pn−k− pn−k−1). Let Y be the set {Yt : t ∈U(pn−(i+m))}.
Then we have |Y |= pn−(i+m)− pn−(i+m)−1.

Since i + m = k + j, we get |X | = |Y |. We want to see when the elements of Xt are
adjacent to the elements of Yt ′ where t, t ′ ∈U(pn−(k+ j)). Suppose that y ∈ Xt and y′ ∈ Yt ′ ,
say y = rpi + p j(spn−( j+k) + rt)x and y′ = r′pk + pm(s′pn−( j+k) + r′t ′)x. We get y · y′ =
rr′pi+k + (rs′pn + r′spn + rr′t ′pi+m + r′rt pk+ j)x. Since i + k ≥ n and i + m = k + j, we
get y · y′ = (rr′t ′+ r′rt)pk+ jx = ((r + upn−(k+ j))r′t ′+(r′+ u′pn−(k+ j))rt)pk+ jx = (rr′t ′+
r′rt)pk+ jx (mod pn) = rr′(t + t ′)pk+ jx (mod pn), where u and u′ are nonnegative integers.
Since r ∈U(pn−i) and r′ ∈U(pn−k), we get y ·y′= 0 (mod pn) if and only if pn−(k+ j) divides
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t + t ′. Hence, y and y′ are adjacent if and only if pn−(k+ j) divides t + t ′. So, each element
of Xt is adjacent to all the elements of Yt ′ if and only if pn−(k+ j) divides t + t ′. Thus each
element of Xt is adjacent to all the elements of Ypn−(k+ j)−t , where t ∈U(pn−(k+ j)).

Let us see how the elements of Spu,pv are adjacent to each other when u ≥ b(n + 1)/2c
and u + v ≤ n− 1. As above, Spu,pv =

⋃
t∈U(pn−(u+v))Wt with Wt = {rpu + pv(spn−u−v +

rt)x, where r ∈ U(pn−u), 0 ≤ s ≤ pu− 1} and |Wt | = pi(pn−u− pn−v−1). As explained
above, each element of Wt is adjacent to all the elements of Wt ′ if and only if pn−(u+v) divides
t + t ′. Thus each element of Wt is adjacent to all the elements of Wpn−(u+v)−t and no element
of Wt is adjacent to any element of Spu,pv −Wpn−(u+v)−t where t ∈U(pn−(u+v)). Hence the
induced subgraph on each pair Wt , Wpn−(u+v)−t , where t ∈ U(pn−(u+v)), is isomorphic to
the complete bipartite graph K(pn−u−pn−u−1)pu,(pn−u−pn−u−1)pu = K(p−1)pn−1,(p−1)pn−1 . So, the
induced subgraph on Spu,pv is isomorphic to (pn−(u+v)− pn−(u+v)−1)/2 disjoint copies of
K(p−1)pn−1,(p−1)pn−1 . We summarize this in the following lemma.

Lemma 2.2. For Spi,p j and Spk,pm , suppose that i+ k ≥ n and i+m = k + j < n. Consider
{Xt : t ∈U(pn−(k+ j))} and {Yt : t ∈U(pn−(i+m))}, where Xt and Yt are defined above. Then
every element of Xt is adjacent to all the elements of Yt ′ if and only if pn−(k+ j) divides t1 + t ′1.
Moreover, suppose that 2u≥ n and u+v≤ n−1 hold in Spu,pv . Then the induced subgraph
on Spu,pv is isomorphic to (pn−(u+v)− pn−(u+v)−1)/2 disjoint copies of the complete bipartite
graph K(p−1)pn−1,(p−1)pn−1 .

The previous work gives an algorithm to construct the zero divisor graph Γ(Zpn(x)). The
following example explains how to construct the zero divisor graph Γ(Z57(x)).

Example 2.1. Consider the zero divisor graph Γ(Z57(x)). For 1 ≤ i ≤ 6, each element y
of S5i is adjacent to all the elements of

⋃6
j=7−i

⋃6
t=7−i(S5 j ∪E5 j ∪ S5 j ,5t )−{y}. Also, for

0 ≤ i ≤ 6, each element of E5i is adjacent to all the elements of
⋃6

j=7−i S5 j ∪
⋃6

j=0 E5 j ∪⋃6
j=7−i

⋃6
t=0 S5 j ,5t . Now, we want to determine the adjacency between the elements of the

S5i,5 j ’s. To do that take the pair S5i,5 j , S5k,5m where 1≤ i,k ≤ 6 and 0≤ j,m≤ 6. We have
three cases to consider. Assuming i+ k ≥ 7,

Case 1) i+m≥ 7 and j + k ≥ 7. In this case, each element of S5i,5 j is adjacent to all the
elements of S5k,5m .

Case 2) i+m≥ 7, j + k < 7 or i+m < 7, j + k ≥ 7. In this case, no element of S5i,5 j is
adjacent to any element of S5k,5m .

Case 3) i + m and j + k are both less than 7. Here there are two subcases. (i) i + m
is not equal to j + k. In this subcase, no element of S5i,5 j is adjacent to any element of
S5k,5m . (ii) i + m = j + k. In this subcase, we use Lemma 2.2 to determine the adjacency
between the elements of S5i,5 j and S5k,5m . For instance, take S53,52 and S54,53 . According to
Lemma 2.2 we divide the set S53,52 into 57−(3+3)− 57−(3+3)−1 = 5− 1 = 4 subsets. These
subsets are Xt = {r53 +52(s51 + rt)x : r ∈U(54) and 0≤ s≤ 54−1}, where t ∈U(5) and
|Xt | = 54(54− 53). Also, we divide S54,53 into 57−(3+3)− 57−(3+3)−1 = 5− 1 = 4 subsets.
These subsets are Yt ′ = {r′54 + 53(s′51 + r′t ′)x : r′ ∈ U(53) and 0 ≤ s′ ≤ 53− 1}, where
t ′ ∈ U(5) and |Yt ′ | = 53(53− 52). We use Lemma 2.2 to get, that each element of Xt is
adjacent to all the elements of Y5−t , where t ∈U(5) = {1,2,3,4}. For instance, each element
of X1 is adjacent to all the elements of Y4 and no element of X1 is adjacent to any element



The Independence Number of Γ(Zpn (x)) 349

of the sets Y1, Y2, or Y3. Now, let us see how the elements of S54,51 are adjacent to each
other. According to Lemma 2.2, we divide the elements of the set S54,51 into 52− 5 = 20
subsets. These subsets are Wt = {r54 + 5(s52 + rt)x : r ∈U(53), 0 ≤ s ≤ 54− 1} where
t ∈U(52). Using Lemma 2.2, every element of Wt is adjacent to all the elements of W52−t
where t ∈U(52). And no element of Wt is adjacent to any element of S54,51−W52−t . Hence,
the induced subgraph on each pair Wt , W52−t is a complete bipartite graph that is isomorphic
to K54(53−52),54(53−52).

This way we are able to construct the zero divisor graph Γ(Z57(x)).

3. The independence number of Γ(Zpn(x))

This section is devoted to compute the independence number of the zero divisor graph
Γ(Zpn(x)). In finding the independence number, we will study the structure of Γ(Zpn(x))
thoroughly. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)).
We present a series of lemmas that determine the elements of the set I.

In the following lemma, we show that I contains exactly one element of the set
⋃n−1

i=0 Epi .

Lemma 3.1. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)).
Then I contains exactly one element of the set

⋃n−1
i=0 Epi . Moreover, I can be chosen so that

this element sits in Ep0 .

Proof. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)). Since⋃n−1
i=0 Epi is a complete subgraph of Γ(Zpn(x)), the set I contains at most one element of⋃n−1
i=0 Epi . Suppose I contains an element w in

⋃n−1
i=1 Epi and suppose w0 ∈ Ep0 . The element

w0 is not adjacent to any element in V (Γ(Zpn(x)))−
⋃n−1

i=0 Epi =
⋃n−1

i=1 Spi∪
⋃n−1

i=1
⋃n−1

j=0 Spi ,p j
.

Hence I0 = (I ∪{w0})−{w} is an independent set with maximum cardinality. If the set I
contains no elements of

⋃n−1
i=1 Epi , then I must contain an element of Ep0 . This is because I

has a maximum cardinality and none of the elements of Ep0 are adjacent to any element of⋃n−1
i=1 Spi ∪

⋃n−1
i=1

⋃n−1
j=0 Spi,p j . So either I contains an element of Ep0 or we can replace I by a

independent set with maximum cardinality that contains an element of Ep0 .
In the following, we always assume that I is taken as in Lemma 3.1. In the following

two lemmas, we show that I contains no elements of the set
⋃n−1

i=bn/2c+1 Spi ∪
⋃n−1

i=bn/2c+1⋃n−1
j=bn/2c+1 Spi,p j .

Lemma 3.2. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n≥ 3. Then I can not contain any element of the set

⋃n−1
i=bn/2c+1 Spi .

Proof. Since
⋃n−1

i=bn/2c+1 Spi is a complete subgraph of Γ(Zpn(x)), then I contains at most

one element of
⋃n−1

i=bn/2c+1 Spi . Suppose that x0 ∈ Spi0 ∩ I, where i0 ≥ bn/2c+ 1. Since

all the elements of
⋃n−1

i=n−i0 Spi ∪
⋃n−1

i=n−i0

⋃n−1
j=n−i0 Spi,p j ∪

⋃n−1
i=n−i0 Epi are adjacent to x0, then

I ∩
(⋃n−1

i=n−i0 Spi ∪
⋃n−1

i=n−i0

⋃n−1
j=n−i0 Spi,p j ∪

⋃n−1
i=n−i0 Epi

)
= /0. Let I0 = (I ∪ Spn−i0 )−{x0}.

Note that the induced graph on the vertices Spn−i0 in Γ(Zpn(x)) is the null graph. Also, the
elements of Spn−i0 are not adjacent to any element of I−{x0} because I ∩

(⋃n−1
i=n−i0 Spi ∪⋃n−1

i=n−i0

⋃n−1
j=n−i0 Spi,p j ∪

⋃n−1
i=n−i0 Epi

)
= /0. Hence I0 is an independent set. But |I0| = |I|−

1+ pi0 − pi0−1 > |I|. So, I contains no elements of
⋃n−1

i=bn/2c+1 Spi .
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Lemma 3.3. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n≥ 3. Then I contains no elements of the set

⋃n−1
i=bn/2c+1

⋃n−1
j=bn/2c+1 Spi,p j .

Proof. The proof is similar to that of the last lemma and so we skip this proof.

In the following lemma, we show that
⋃b(n−1)/2c

i=1 Spi is a subset of I.

Lemma 3.4. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n≥ 3. Then

⋃b(n−1)/2c
i=1 Spi is a subset of I.

Proof. The induced graph on the vertices
⋃b(n−1)/2c

i=1 Spi in Γ(Zpn(x)) is the null graph and
the adjacency set of these vertices is a subset of the vertices

⋃n−1
i=bn/2c+1 Spi ∪

⋃n−1
i=bn/2c+1⋃n−1

j=bn/2c+1 Spi,p j ∪
⋃n−1

i=bn/2c+1 Epi . Using Lemmas 3.1, 3.2 and 3.3, I contains no elements

of
⋃n−1

i=bn/2c+1 Spi ∪
⋃n−1

i=bn/2c+1
⋃n−1

j=bn/2c+1 Spi,p j ∪
⋃n−1

i=bn/2c+1 Epi . Hence an independent set

with maximum cardinality contains all the elements of
⋃b(n−1)/2c

i=1 Spi .

In the following lemma, we show that
⋃b(n−1)/2c

i=1
⋃n−1

j=0 Spi,p j is a subset of I and I ∩(⋃n−1
i=bn/2c+1

⋃n−1
j=i−b(n−1)/2c Spi,p j

)
= /0

Lemma 3.5. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n≥ 3. Then I∩

(⋃n−1
i=bn/2c+1

⋃n−1
j=i−b(n−1)/2c Spi,p j

)
= /0 and

⋃b(n−1)/2c
i=1

⋃n−1
j=0 Spi,p j is a

subset of I.

Proof. Take Spi,p j with i ≤ b(n− 1)/2c. Using Lemma 3.2 and Lemma 3.4, there are no
elements in

⋃n−1
i=1 Spi ∩ I adjacent to Spi,p j . For Spk,pm with i + k ≥ n, i + m, k + j ≥ n, we

get k ≥ bn/2c+ 1 and m ≥ bn/2c+ 1. Hence, using Lemma 3.3, none of the elements of
Spk,pm are in I, where i + k ≥ n, i + m, k + j ≥ n. So, in this case the elements of Spi,p j are
adjacent to some elements that are outside I.

Using Lemma 2.2, every element of Spi,p j is adjacent to some of the elements of Spn−i,pn−2i+ j

provided that n− 2i + j ≤ n− 1. In case n− 2i + j ≥ n, the induced subgraph on Spi,p j

is a set of null vertices whose elements are adjacent to some elements that are outside
I and hence Spi,p j is a subset of I. For the case where n− 2i + j ≤ n− 1, every ele-
ment of Spi,p j is adjacent to some of the elements of Spn−i,pn−2i+ j , Spn−i+1,pn−2i+ j+1 , . . .,
Spn−i+s,pn−2i+ j+s where n− i + s = n− 1, n− 2i + j + s ≤ n− 1, or n− i + s ≤ n− 1, n−
2i + j + s = n− 1. Hence, if n− 2i + j ≤ n− 1, then every element of Spi,p j is adjacent
to some elements of A =

⋃s
r=0 Spn−i+r ,pn−2i+ j+r . Note that if (n− i)+ (n−2i + j) ≥ n, then

the induced subgraph on A is complete. Since the induced graph on the vertices Spi,p j

in Γ(Zpn(x)) is the null graph, we get I ∩ A = /0 and Spi,p j ⊆ I. Also, if j ≥ i, then
(n− i) + (n− 2i + j) ≥ n because i ≤ b(n− 1)/2c. Hence the induced subgraph on A is
complete. Since Spi,p j is a set of null vertices, we get I ∩A = /0 and Spi,p j ⊆ I. So, we can
assume that j < i and (n− i) + (n− 2i + j) ≤ n− 1. Our goal is to show that I ∩A = /0.
Assume on the contrary that I ∩A 6= /0. For 0 ≤ r ≤ i− j− 1, Lemma 2.2 gives Spi,p j =⋃

t∈U(pi− j−r) X r
t where X r

t = {ar pi + p j(br pi− j−r +art)x : ar ∈U(pn−i), 0≤ br ≤ pn−i+r−
1}, and Spn−i+r ,pn−2i+ j+r =

⋃
t ′∈U(pi− j−r)Y r

t ′ where Y r
t ′ = {a′r pn−i+r + pn−2i+ j+r(b′r pi− j−r +

a′rt ′)x : a′r ∈U(pi−r), 0≤ b′r ≤ pi−1}. For 0≤ r ≤ i− j−1, define T r = {t ′ : I∩Y r
t ′ 6= /0},

T = maximum{|T r| : 0≤ r≤ i− j−1}, r0 = maximum{r : |T r|= T and 0≤ r≤ i− j−1},
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and T r0 = {pi− j−r0 − t ′ : t ′ ∈ T r0}. Since |Y r
t ′ | = (pi−r − pi−r−1)pi, then I contains at

most T ∑
i− j−1
r=0 (pi−r− pi−r−1)pi elements of

⋃i− j−1
r=0 Spn−i+r ,pn−2i+ j+r and since the induced

subgraph on
⋃s

r=i− j Spn−i+r ,pn−2i+ j+r is complete, then I contains at most one element of⋃s
r=i− j Spn−i+r ,pn−2i+ j+r . Hence I contains at most T ∑

i− j−1
r=0 (pi−r− pi−r−1)pi + 1 elements

of A. Take I0 = (I − A)∪
⋃

t∈T r0 X r0
t . Note that, the induced subgraph on

⋃
t∈T r0 X r0

t is
a set of null vertices and the elements of

⋃
t∈T r0 X r0

t are either adjacent to some elements
that are outside I or to some elements of A. Hence I0 is an independent set. Since I
contains at least one element from each Y r0

t ′ where t ′ ∈ T r0 and this element is adjacent
to all the elements of X r0

pi− j−r0−t ′
, then I∩

⋃
t∈T r0 X r0

t = /0. So, |I0| ≥ |I|− (T ∑
i− j−1
r=0 (pi−r−

pi−r−1)pi +1)+T |X r
t |= |I|−

(
T (pi− pi−1)pi((pi− j−1)p)/(pi− j(p−1)) +1

)
+T (pn−i−

pn−i−1)pn−i+r0 > |I|−(T (pi− pi−1)pi+1)+T (pn−i− pn−i−1)pn−i+r0 > |I|. The last greater
than follows because i ≤ b(n− 1)/2c < n− i. This contradicts the fact that I is an inde-
pendent set with maximum cardinality. Hence I ∩ A = /0. As above by taking Spi,p j =

Spb(n−1)/2c,p j , 0≤ j ≤ n−1, we get I∩
(⋃n−1

i=bn/2c+1
⋃n−1

j=i−b(n−1)/2c Spi,p j
)

= /0 and
⋃b(n−1)/2c

i=1⋃n−1
j=0 Spi,p j ⊆ I.

We summarize what we have about an independent set I with maximum cardinality in
Γ(Zpn(x)), where n ≥ 3. Using Lemmas 3.1 to 3.5 to get

⋃b(n−1)/2c
i=1 Spi ∪

⋃b(n−1)/2c
i=1

⋃n−1
j=0

Spi,p j ∪ {w0} ⊆ I and I ∩
(⋃n−1

i=bn/2c+1 Spi ∪
⋃n−1

i=bn/2c+1
⋃n−1

j=i−b(n−1)/2c Spi,p j ∪
⋃n−1

i=0 (Epi −

{w0})
)

= /0, where w0 is an element of Ep0 . Now, |
⋃b(n−1)/2c

i=1 Spi ∪
⋃b(n−1)/2c

i=1
⋃n−1

j=0 Spi,p j ∪
{w0}|= ∑

b(n−1)/2c
i=1 (pn−i− pn−i−1)+∑

b(n−1)/2c
i=1 ∑

n−1
j=0(pn−i− pn−i−1)(pn− j− pn− j−1)+1 =

p2n−b(n−1)/2c−1(pb(n−1)/2c−1)+1. We state this in the following corollary.

Corollary 3.1. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n≥ 3. Then I contains exactly p2n−b(n−1)/2c−1(pb(n−1)/2c−1)+1 elements from the
set
⋃b(n−1)/2c

i=1 Spi∪
⋃b(n−1)/2c

i=1
⋃n−1

j=0 Spi,p j∪
⋃n−1

i=bn/2c+1 Spi∪
⋃n−1

i=bn/2c+1
⋃n−1

j=i−b(n−1)/2c Spi,p j∪⋃n−1
i=0 Epi .

To determine I completely we have to determine which elements of
⋃n−1

i=bn/2c+1
⋃i−b(n−1)/2c−1

j=0

Spi,p j are in I when n is an odd integer and which elements of Spbn/2c∪
⋃n−1

i=bn/2c+1
⋃i−b(n−1)/2c−1

j=0

Spi,p j∪
⋃n−1

j=0 Spbn/2c,p j are in I when n is an even integer. Observe that
⋃n−1

i=bn/2c+1
⋃i−b(n−1)/2c−1

j=0

Spi,p j =
⋃b(n−1)/2c−1

i=0
⋃b(n−1)/2c−i−1

j=0 Spbn/2c+1+i+ j ,p j . First, we consider the case where n =
4n1 + 3 with n1 is a positive integer. So, for any i with 0 ≤ i ≤ b(n− 1)/2c− 1 = b(4n1 +
3−1)/2c−1 = 2n1, we want to determine which elements of

⋃b(n−1)/2c−i−1
j=0 S

pb
n
2 c+1+i+ j ,p j =⋃2n1+1−i−1

j=0 Sp2n1+1+1+i+ j ,p j are in I. First, take i = 0, so we want to determine which el-

ements of
⋃2n1

j=0 Sp2n1+2+ j ,p j are in I. Observe that
⋃2n1

j=n1+1 Sp2n1+2+ j ,p j is a complete sub-

graph of
⋃2n1

j=0 Sp2n1+2+ j ,p j and hence I can contain at most one element from it. We want
to see which elements of

⋃n1
j=0 Sp2n1+2+ j ,p j are in I. To do that, we divide Sp2n1+2+0,p0 ,

Sp2n1+2+1,p1 , . . . , Sp2n1+2+ j ,p j , . . . , Sp2n1+2+n1 ,pn1 into X0
t0 = {r0 p2n1+2 + p0(s0 p2n1+1 +r0t0)x :

r0 ∈U(p2n1+1) and 0≤ s0≤ p2n1+2−1}where t0 ∈U(p2n1+1), X1
t1 = {r1 p2n1+3 + p1(s1 p2n1
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+r1t1)x : r1 ∈U(p2n1) and 0≤ s1≤ p2n1+2−1}where t1 ∈U(p2n1), . . .X j
t j = {r j p2n1+2+ j +

p j(s j p2n1+1− j +r jt j)x : r j ∈U(p2n1+1− j) and 0≤ s j ≤ p2n1+2−1}where t j ∈U(p2n1+1− j),
. . .Xn1

tn1
= {rn1 p2n1+2+n1 + pn1(sn1 p2n1+1−n1 + rn1tn1)x : rn1 ∈U(p2n1+1−n1) and 0 ≤ sn1 ≤

p2n1+2−1} where tn1 ∈U(p2n1+1−n1) respectively.
The bar on r jt j means that we are taking r jt j mod p2n1+1− j. Observe that when t j

runs over all the elements of U(p2n1+1− j) and r j ∈ U(p2n1+1− j), then r jt j runs over all
the elements of U(p2n1+1− j). So, for any j with 0 ≤ j ≤ n1, we have Sp2n1+2+ j ,p j =⋃

t j∈U(p2n1+1− j) X j
t i.e. Sp2n1+2+ j ,p j has been divided into |U(p2n1+1− j)| subsets and these

subsets are X j
t j where t j ∈U(p2n1+1− j). We want to see how the elements of these subsets

are adjacent. Suppose that y1 ∈ X j
t j and y2 ∈ X j′

s j′ , where 0≤ j, j′ ≤ n1, t j ∈U(p2n1+1− j), and

s j′ ∈U(p2n1+1− j′). As we have explained for Lemma 2.2, we get y1 and y2 are adjacent if
and only if p2n1+1− j− j′ divides t j +s j′ . So, each element of X j

t is adjacent to all the elements

of X j′
s j′ if and only if p2n1+1− j− j′ divides t j + s j′ . Note that the exponent 2n1 + 1− j− j′ is

positive and this is because j and j′ are less than or equal to n1. By taking j = j′, we get each
element of X j

t j is adjacent to every element of X j
s j if and only if t j + s j ≡ 0 (mod p2n1+1−2 j ).

Note that both t j and s j are elements of U(p2n1+1− j). Hence, if l ∈U(p2n1+1−2 j), then each
element of X j

l is adjacent to every element of X j
(p2n1+1−2 j−l)+cp2n1+1−2 j where 0≤ c≤ p j−1.

So, if l ∈U(p2n1+1−2 j), then every element of
⋃p j−1

b=0 X j
l+bp2n1+1−2 j is adjacent to every ele-

ment of
⋃p j−1

c=0 X j
(p2n1+1−2 j−l)+cp2n1+1−2 j . Whereas, no element of

⋃p j−1
b=0 X j

l+bp2n1+1−2 j is adja-

cent to any element of Sp2n1+2+ j ,p j−
⋃p j−1

c=0 X j
(p2n1+1−2 j−l)+cp2n1+1−2 j . So, if l ∈U(p2n1+1−2 j),

then the induced subgraph on each pair
⋃p j−1

b=0 X j
l+bp2n1+1−2 j ,

⋃p j−1
c=0 X j

(p2n1+1−2 j−l)+cp2n1+1−2 j

is isomorphic to the complete bipartite graph K(p2n1+1− j−p2n1− j)p2n1+2 p j ,(p2n1+1− j−p2n1− j)p2n1+2 p j

= Kp4n1+2(p−1),p4n1+2(p−1). So, the induced subgraph on Sp2n1+2+ j ,p j is isomorphic to the dis-
joint union of |U(p2n1+1−2 j)|/2 = (p2n1+1−2 j− p2n1−2 j)/2 copies of the complete bipartite
graph Kp4n1+2(p−1),p4n1+2(p−1). Recall that I is an independent set with maximum cardi-
nality of Γ(Zpn(x)). So, for 0 ≤ j ≤ n1, I can contain at most p4n1+2(p− 1)(p2n1+1−2 j−
p2n1−2 j)/2 elements of Sp2n1+2+ j ,p j . Thus, I can contain at most ∑

n1
j=0 p4n1+2(p−1)(p2n1+1−2 j

−p2n1−2 j)/2 = p6n1+2 (p−1)2/2∑
n1
j=0

(
1/p2

) j = p4n1+2(p−1)(p2n1+2−1)/(2(p+1)) el-
ements of

⋃n1
j=0 Sp2n1+2+ j ,p j .

We summarize this in the following lemma.

Lemma 3.6. If 0 ≤ j ≤ n1, then the induced subgraph on Sp2n1+2+ j ,p j is isomorphic to the
disjoint union of (p2n1+1−2 j − p2n1−2 j)/2 copies of the complete bipartite graph
Kp4n1+2(p−1),p4n1+2(p−1). For n1 + 1 ≤ j ≤ 2n1, the induced subgraph on Sp2n1+2+ j ,p j is
complete. Moreover, I contains at most p4n1+2(p− 1)(p2n1+2 − 1)/(2(p + 1)) elements
of
⋃n1

j=0 Sp2n1+2+ j ,p j .

If 0 ≤ j ≤ n1, then define X j = {X j
t : t ∈ {1,2, . . . ,(p− 1)/2} mod p}, Y j = {X j

t : t ∈
{(p + 1)/2,(p + 3)/2, . . . , p− 1} mod p}, X0 =

⋃n1
j=0 X j, and Y0 =

⋃n1
j=0 Y j. We have the

following lemma about X0 and Y0.
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Lemma 3.7. X0 and Y0 form a partition of
⋃n1

j=0 Sp2n1+2+ j ,p j . Moreover, the induced sub-
graph on each one of X0 and Y0 is a set of null vertices and |X0|= |Y0|= |

⋃n1
j=0 Sp2n1+2+ j ,p j |/2

= p4n1+2(p−1)(p2n1+2−1)/(2(p+1)).

Proof. The proof follows immediately from the definition of X0, Y0 and the X j
t ’s.

We want to show that I contains exactly p4n1+2(p−1)(p2n1+2−1)/(2(p+1)) elements
of
⋃2n1

j=0 Sp2n1+2+ j ,p j . Suppose that C =
⋃n1

j=0 Sp2n1+2+ j ,p j and B is a subset of Γ(Zpn(x)) with
B∩ (

⋃n−1
i=bn/2c+1

⋃n−1
j=i−b(n−1)/2c Spi,p j ∪

⋃n−1
i=bn/2c+1 Spi ∪

⋃n−1
i=1 Epi) = /0, B∩C = /0, and any

element of B is adjacent to some element of C. Our goal is to show that I does not contain
any elements of B. It is straight forward to check that B does not contain any elements
of
⋃b(n−1)/2c

i=1
⋃n−1

j=0 Spk,pm ∪
⋃b(n−1)/2c

i=1 Spi ∪ Ep0 and
⋃2n1

j=n1+1 Sp2n1+2+ j ,p j is a subset of C.

Hence B is a subset of
⋃2n1

i=0
⋃2n1−i

j=0 Sp2n1+2+i+ j ,p j −C. So, it is straightforward to check that
the induced subgraph on B is complete and any element of B is adjacent to all the elements
of Sp2n1+2+n1 . We state this in the following lemma.

Lemma 3.8. For the set B that is defined above, the induced subgraph on B is complete and
any element of B is adjacent to all the elements of Sp2n1+2+n1 .

In the following lemma, we show that I does not contain any element of B.

Lemma 3.9. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n = 4n1 +3 and n1 is a positive integer. Then I∩B = /0.

Proof. Since B is complete, I can contain at most one element of B. Suppose that y ∈ I∩B.
Since any element of B is adjacent to all the elements of Sp2n1+2+n1 ,pn1 , then I contains
no elements of Sp2n1+2+n1 ,pn1 . So, using Lemma 3.6, I can contain at most [p4n1+2(p−
1)(p2n1+2−1)/(2(p+1))]−|Sp2n1+2+n1 ,pn1 |+1 elements from the set

⋃n1
j=0 Sp2n1+2+ j ,p j ∪B.

Define I0 = (I −
⋃n1

j=0 Sp2n1+2+ j ,p j ∪ B)∪ X0, where X0 is defined in Lemma 3.7. Using
Lemma 3.7 and Lemma 3.8, we get the induced subgraph on I0 is a set of null vertices. So,
I0 is an independent set with |I0|> |I|. This contradicts the fact that I is an independent set
with maximum cardinality. Hence I does not contain any element of B.

Lemma 3.10. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n = 4n1 +3 and n1 is a positive integer. Then I contains exactly ∑

n1
j=0 |Sp2n1+2+ j ,p j |/2 =

p4n1+2(p−1)(p2n1+2−1)/(2(p+1)) elements of
⋃2n1

j=0 Sp2n1+2+ j ,p j .

Proof. The result is an immediate consequence of Lemmas 3.6, 3.7, and Lemma 3.9.

Note that, I might contain the elements of X0 from
⋃2n1

j=0 Sp2n1+2+ j ,p j , where X0 is de-

fined in Lemma 3.7. For i = 0, we determined how many elements I contains from
⋃2n1

j=0
Sp2n1+2+i+ j ,p j . This was done in Lemma 3.10. Similar to the case where i = 0, one can

show that I contains exactly ∑
n1−1
j=0 |Sp2n1+2+1+ j ,p j |/2 elements from

⋃n1−1
j=0 Sp2n1+2+1+ j ,p j and

one element from Sp2n1+2+1+n1 ,pn1 . Observe that the induced subgraph on Sp2n1+2+1+n1 ,pn1

is complete and hence I contains exactly one element of it. Continuing this way for i =
2,3, . . . ,2n1 and we get that I contains exactly ∑

2n1
i=0 ∑

b(2n1−i)/2c
j=0 |Sp2n1+2+i+ j ,p j |/2 + n1 el-

ements from
⋃2n1

i=0
⋃2n1−i

j=0 Sp2n1+2+i+ j ,p j . This will determine the independence number of
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Γ(Zpn(x)), where n = 4n1 + 3 and n1 is a positive integer. We state this in the following
theorem.

Theorem 3.1. Suppose that n = 4n1 + 3 where n1 is a positive integer. Then the indepen-
dence number of Γ(Zpn(x)) is equal to (1− p)p4n1+3/(2(1 + p))[((n1 + 1)/p + n1)− (1−
p2n1+1)p/(1− p)]+ p6n1+4(p2n1+1−1)+n1 +1.

Proof. If I is an independent set with maximum cardinality in Γ(Zpn(x)), then I contains

∑
2n1
i=0 ∑

b(2n1−i)/2c
j=0 1/2|Sp2n1+2+i+ j ,p j |+n1 elements from

⋃2n1
i=0
⋃2n1−i

j=0 Sp2n1+2+i+ j ,p j . We have

2n1

∑
i=0

b 2n1−i
2 c

∑
j=0

∣∣Sp2n1+2+i+ j ,p j

∣∣= 2n1

∑
i=0

b 2n1−i
2 c

∑
j=0

p6n1+2(p−i− j+1− p−i− j)(p− j+1− p− j)
= p6n1+2(p−1)2

2n1

∑
i=0

b 2n1−i
2 c

∑
j=0

(
1
p

)i( 1
p

)2 j

= p6n1+2(p−1)2
2n1

∑
i=0

(
1
p

)i
((

1
p2

)b 2n1−i
2 c+1

−1
)

(
1
p2 −1

)
=

(1− p)p6n1+4

1+ p

[(
n1 +1
p2n1+2

)
+
(

n1

p2n1+1

)
−

2n1

∑
i=0

(
1
p

)i
]

=
(1− p)p4n1+3

1+ p

[(
n1 +1

p
+n1

)
− (1− p2n1+1)p

1− p

]
Using Corollary 3.1, I contains p6n1+4(p2n1+1− 1) + 1 elements from Γ(Zpn(x))−

⋃2n1
i=0⋃2n1−i

j=0 Sp2n1+2+i+ j ,p j . Now, the result follows immediately.
We give the following example to explain Theorem 3.1.

Example 3.1. Consider the zero divisor graph Γ(Z57(x)). Partition the sets S54,50 and S55,51

into X0
t = {r054 + (s053 + r0t)x : r0 ∈ U(53) and 0 ≤ s0 ≤ 54− 1} where t ∈ U(53) and

X1
t ′ = {r155 + 51(s152 + r1t ′)x : r1 ∈ U(52) and 0 ≤ s1 ≤ 54 − 1} where t ′ ∈ U(52). Let

X0 = {X0
t : t ∈ {1,2} mod 5} and X1 = {X1

t ′ : t ′ ∈ {1,2} mod 5}. Also, we partition the sets
S55,50 and S56,51 into Y 0

t = {r055 +(s052 +r0t)x : r0 ∈U(52) and 0≤ s0 ≤ 55−1} where t ∈
U(52) and Y 1

t ′ = {r156 +51(s151 +r1t ′)x : r1 ∈U(51) and 0≤ s1≤ 55−1}where t ′ ∈U(51).
Take Y 0 = {Y 0

t : t ∈ {1,2} mod 5} and Y 1 = {Y 1
t ′ : t ′ ∈ {1,2} mod 5}. Lastly, we partition

S56,50 into Z0
t = {r056 +(s051 + r0t)x : r0 ∈U(51) and 0 ≤ s0 ≤ 56− 1} where t ∈U(51)

and take Z0 = {Z0
t : t ∈ {1,2} mod 5}. If I =

⋃3
i=1
⋃6

j=0 Spi,p j ∪
⋃3

i=1 Spi ∪X0 ∪X1 ∪Y 0 ∪
Z0∪{56 +5(5+1)x}∪{w0}, where 56 +5(5+1)x is an element of Y 1 and w0 ∈ Ep0 , then
I is an independent set with maximum cardinality in Γ(Z57(x)). Hence the independence
number of Γ(Z57(x)) is equal to |I|= 510(53−1)+56(5−1)2(52 +5+2)/2+2.

Similarly, one can find the independence number of Γ(Zpn(x)) where n = 4n1 +1 and n1
is a positive integer. We state the following.

Theorem 3.2. Suppose that n = 4n1 + 1 where n1 is a positive integer. Then the inde-
pendence number of Γ(Zpn(x)) is equal to ∑

2n1−1
i=0 ∑

b(2n1−i−1)/2c
j=0 |Sp2n1+1+i+ j ,p j |/2 + n1 +
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|
⋃b(n−1)/2c

i=1 Spi∪
⋃b(n−1)/2c

i=1
⋃n−1

j=0 Spi,p j∪{w0}|= p4n1+1(p−1)/(2(p+1))[(p2n1−1)p/(p−
1)− (n1 +n1/p)]+n1 + p6n1+1(p2n1 −1)+1.

We want to determine the independence number of Γ(Zpn(x)) when n is an even inte-
ger. If I is an independence set with maximum cardinality in Γ(Zpn(x)) and n is an even
integer, then the use of Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4, and Lemma 3.5
gives

⋃b(n−1)/2c
i=1 Spi ∪

⋃b(n−1)/2c
i=1

⋃n−1
j=0 Spi,p j ∪{w0} ⊆ I and I∩

(⋃n−1
i=bn/2c+1 Spi ∪

⋃n−1
i=0 Epi−

{w0}∪
⋃n−1

i=bn/2c+1
⋃n−1

j=i−b(n−1)/2c Spi,p j
)
= /0, where w0 is an element of Ep0 . To determine I

completely, we have to determine which elements of Spbn/2c∪
⋃n−1

i=bn/2c+1
⋃i−b(n−1)/2c−1

j=0 Spi,p j

∪
⋃n−1

j=0 Spbn/2c,p j are in I. For 1 ≤ k ≤ bn/2c− 1, the use of Lemma 2.2 gives that the in-
duced subgraph on Spbn/2c,pk is isomorphic to (pn−bn/2c−k− pn−bn/2c−k−1)/2 disjoint copies
of the complete bipartite graph K(p−1)pn−1,(p−1)pn−1 . Observe that, for 1≤ k≤ bn/2c−1, no

element of Spbn/2c,pk is adjacent to any of the elements of Spbn/2c ∪
⋃n−1

i=bn/2c+1
⋃i−b(n−1)/2c−1

j=0

Spi,p j ∪
⋃

j 6=k Spbn/2c,p j or
⋃b(n−1)/2c

i=1 Spi ∪
⋃b(n−1)/2c

i=1
⋃n−1

j=0 Spi,p j ∪{w0}. Hence, for 1 ≤ k ≤
bn/2c−1, I contains (pn−bn/2c−k− pn−bn/2c−k−1)(p−1)pn−1/2 elements of Spbn/2c,pk . So,

I contains ∑
b(n−1)/2c
k=1 (pn−bn/2c−k− pn−bn/2c−k−1)(p−1)pn−1/2 = pn−1(p−1)(pb(n−1)/2c−

1)/2 elements of
⋃b(n−1)/2c

k=1 Spbn/2c,pk . We state this result in the following lemma.

Lemma 3.11. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)),
where n is a positive even integer. Then I contains exactly pn−1(p− 1)(pb(n−1)/2c− 1)/2
elements of

⋃b(n−1)/2c
k=1 Spbn/2c,pk .

Now, we determine which elements of
⋃n−1

i=bn/2c+1
⋃i−b(n−1)/2c−1

j=0 Spi,p j ∪Spbn/2c,p0 are in I.

Observe that
⋃n−1

i=bn/2c+1
⋃i−b(n−1)/2c−1

j=0 Spi,p j∪ Spbn/2c,p0 =
⋃b(n−1)/2c

i=0
⋃b(n−1)/2c−i

j=0 Spbn/2c+i+ j ,p j .

Similar to the case where n is odd, we determine the number of elements of
⋃b(n−1)/2c

i=0⋃bn−1/2c−i
j=0 Spbn/2c+i+ j ,p j that are in I. We state that in the following lemma.

Lemma 3.12. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)).
If n = 4n1 +2, where n1 is a positive integer, then I contains exactly (p−1)p4n1+2/(2(p+
1))[(−(n1 + 1)/p− n1) + (p2n1+1− 1)p/(p− 1)] + n1 elements of

⋃b(n−1)/2c
i=0

⋃b(n−1)/2c−i
j=0

Spbn/2c+i+ j ,p j . If n = 4n1, where n1 is a positive integer, then I contains exactly (p− 1)

p4n1+2/(2(p+1))[(−n1/p−n1)+(p2n1−1)p/(p−1)]+n1 elements of
⋃b(n−1)/2c

i=0
⋃b(n−1)/2c−i

j=0
Spbn/2c+i+ j ,p j .

We state the independence number of Γ(Zpn(x)), where n is a positive even integer in the
following two theorems.

Theorem 3.3. Suppose that n = 4n1 + 2 where n1 is a positive integer. Then the inde-
pendence number of Γ(Zpn(x)) is equal to (p−1)p4n1+2/(2(p+1))[(−(n1 +1)/p−n1)+
(p2n1+1−1)p/(p−1)]+n1 + p6n1+3(p2n1 −1)+1+ p4n1+1(p2n1 −1)(p−1)/2+1.

Proof. Suppose that I is an independent set with maximum cardinality in Γ(Zpn(x)). Us-
ing Lemma 3.11 and Lemma 3.12, I contains (p− 1)p4n1+2/(2(p + 1)) [(−(n1 + 1)/p−
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n1) + (p2n1+1− 1)p/(p− 1)] + n1 + p4n1+1(p2n1 − 1)(p− 1)/2 elements from
⋃b(n−1)/2c

i=0⋃b(n−1)/2c−i
j=0 Spbn/2c+i+ j ,p j ∪

⋃b(n−1)/2c
k=1 Spbn/2c,pk . Using Corollary 3.1, I contains exactly

p6n1+3(p2n1−1)+1 elements from Γ(Zpn(x))−
⋃b(n−1)/2c

i=0
⋃b(n−1)/2c−i

j=0 Spbn/2c+i+ j ,p j ∪
⋃n−1

k=1

Spbn/2c,pk ∪Spbn/2c . Observe that I contains exactly one element of
⋃n−1

k=bn/2c Spbn/2c,pk ∪Spbn/2c .
Hence the result follows immediately.

Theorem 3.4. Suppose that n = 4n1 where n1 is a positive integer. Then the independence
number of Γ(Zpn(x)) is equal to (p−1)p4n1+2/(2(p+1))[(−n1/p−n1)+(p2n1−1)p/(p−
1)]+n1 + p6n1(p2n1−1−1)+1+ p4n1−1(p2n1−1−1)(p−1)/2+1.

Proof. The proof is similar to that one of last theorem.
Our theorems do not cover the cases where n = 1,2,3. We cover these cases in the

following theorem.

Theorem 3.5. The independence number of Γ(Zpn(x)) where n = 1,2,3 is 1, (p2− p)(p−
1)/2+1, (p2− p)p3 +(p3− p2)(p−1)/2+1 respectively.

Proof. The independence number of Γ(Zp1(x)) is equal to 1 and this is because the graph
Γ(Zp1(x)) is complete. The set I = {ap+(bp+c)x : a ∈ {1,2, . . . , p−1},b ∈ {0,1, . . . , p−
1} and c ∈ {1, . . . ,(p− 1)/2}}∪{w0}, where w0 ∈ Ep0 , is an independent set with maxi-
mum cardinality in Γ(Zp2(x)) and hence the independence number of Γ(Zp2(x)) is equal
to |I| = (p2 − p)(p− 1)/2 + 1. The set I =

⋃2
j=0 Sp1,p j ∪ Sp1 ∪ {ap2 + (bp + c)x : a ∈

{1,2, . . . , p−1},b∈ {0,1, . . . , p2−1} and c∈ {1, . . . ,(p−1)/2}}∪{w0}, where w0 ∈ Ep0 ,
is an independent set with maximum cardinality in Γ(Zp3(x)). Hence the independence
number of Γ(Zp3(x)) is equal to |I|= (p2− p)p3 +(p3− p2)(p−1)/2+1.
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