On Some Decompositions of r-Disjunctive Languages

${ }^{1}$ Di Zhang, ${ }^{2}$ Yuqi Guo and ${ }^{3}$ K. P. Shum
${ }^{1,2}$ School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China
${ }^{3}$ Institute of Mathematics, Yunnan University, Kunming, 650091, China
${ }^{1}$ zhdi88@gmail.com, ${ }^{2}$ yqguo259@swu.edu.cn, ${ }^{3}$ kpshum@ynu.edu.cn

Abstract

Some kinds of decompositions of r-disjunctive languages on an arbitrary alphabet will be investigated. We will show that an f -disjunctive (t -disjunctive) language can be divided into two parts and either one part of them is an f -disjunctive (t -disjunctive) language or both parts are r-disjunctive but not f-disjunctive (t-disjunctive) languages. Finally, a relevant result of H. J. Shyr and S. S. Yu concerning the disjunctive languages will be improved.

2010 Mathematics Subject Classification: 20M35
Keywords and phrases: Disjunctive languages, f-disjunctive languages, t-disjunctive languages, r-disjunctive languages, r-regular languages.

1. Introduction and preliminaries

Let X be a nonempty finite set called alphabet in which the elements are called letters. Let X^{*} be the free monoid generated by an alphabet X. Then, the elements and subsets of X^{*} are called the words and languages over X. The identity of the free monoid X^{*} is called an empty word and is denoted by 1 . Let $X^{+}=X^{*} \backslash\{1\}$ be the free semigroup generated by X. The length of a word w over X is the number of letters occurring in w and is denoted by $\lg (w)$. We denote the cardinality of a language L over X by $|L|$. For any two languages A, B over X, the concatenation $A B$ of A and B is the language $\{x y \mid x \in A, y \in B\}$ over X. For a given language L over X, the relation P_{L} on X^{*} defined by

$$
x \equiv y\left(P_{L}\right) \Leftrightarrow{ }^{\prime \prime}\left(\forall u, v \in X^{*}\right) u x v \in L \Leftrightarrow u y v \in L^{\prime \prime}
$$

is a congruence on free monoid X^{*} and is known as the principal congruence determined by L. The quotient monoid X^{*} / P_{L} is called the syntactic monoid of L and is denoted by $\operatorname{Syn}(L)$. For any word u over X, we often use $[u]_{L}$ to denote the P_{L}-class of X^{*} containing u. As usual, the set of all positive (nonnegative) integers is denoted by $\mathbb{N}\left(\mathbb{N}^{0}\right)$.

We call a language L over X disjunctive [9] if P_{L} is the equality relation on X^{*}. Let \mathscr{D} be the class of all disjunctive languages over X. A language L over X is called regular $[5,10]$ if the index of P_{L} (i.e., the number of P_{L}-classes of X^{*}) is finite. Let \mathscr{R} be the class of all regular languages over X. Then we call a language L over X a midst-language [12] if L is

[^0]neither regular nor disjunctive. Let \mathscr{M} be the class of all midst-languages over X. Then, we have the following proposition.

Proposition 1.1. [11] Let X be an alphabet with $|X|=1$. Then $\mathscr{M}=\emptyset$, that is, over X, a language is disjunctive if and only if it is not regular.

But when $|X| \geq 2$, the case is completely different from $|X|=1[6]$. In this case, $\mathscr{M} \neq \emptyset$, that is, $\{\mathscr{R} \cup \mathscr{D}\} \subsetneq 2^{X^{*}}$.

We call a language L over X dense if $X^{*} w X^{*} \bigcap L \neq \emptyset$ for any $w \in X^{*}$; otherwise, the language L is said to be thin. According to Reis and Shyr [10], a language L is dense if and only if L contains a disjunctive language. Denote the class of all dense languages over X by \mathscr{D}^{d}.

The generalized disjunctive languages have been considered by a number of authors in the literature, such as, Guo, Reis and Thierrin [1] in 1988 called a language L over X relatively f-disjunctive (relatively disjunctive), that is, $r f$-disjunctive for short (r-disjunctive for short), if there exists a dense language D over X such that for all $u \in X^{*},\left|[u]_{L} \cap D\right|<\infty$ $\left(\left|[u]_{L} \cap D\right| \leq 1\right)$. It has been shown in [1] that L is rf-disjunctive if and only if L is r disjunctive, if and only if either X^{*} has no dense P_{L}-classes or has infinitely many dense P_{L}-classes. Let \mathscr{D}_{r} be the class of all r-disjunctive languages over X. Then, the concept of relatively regular language was first introduced by Liu, Shum and Guo in 2008 (see [6]). They called a language L over X relatively regular, that is, r-regular for short, if $\operatorname{Syn}(L)$ has a finite ideal. Let \mathscr{R}_{r} be the class of all r-regular languages over X.

This paper is based on the following background.
(I) Obviously, when $|X|=1, \mathscr{D}_{r}=\mathscr{D}, \mathscr{R}_{r}=\mathscr{R}$. In [6], the authors proved the following fact which forms a generalization of Proposition 1.1 to any alphabet X from $|X|=1$.

Proposition 1.2. [6] Let X be an alphabet. Then a language over X is r-disjunctive if and only if it is not r-regular.

Leading up to [1], [6], some special cases of r-disjunctive languages have been defined. In particular, a language L over an alphabet X was first called by Guo, Shyr and Thierrin [2] f-disjunctive if each P_{L}-class of X^{*} is finite, and later, Mu [8] called a language L over $X t$ disjunctive if each P_{L}-class of X^{*} is thin. Denote the class of all f -disjunctive (t-disjunctive) languages over X by $\mathscr{D}_{f}\left(\mathscr{D}_{t}\right)$.

The following proposition is useful in this paper.

Proposition 1.3. [1,7]

(1) If $|X|=1$, then

$$
\mathscr{D}=\mathscr{D}_{f}=\mathscr{D}_{t}=\mathscr{D}_{r} .
$$

(2) If $|X| \geq 2$, then

$$
\mathscr{D} \subsetneq \mathscr{D}_{f} \subsetneq \mathscr{D}_{t} \subsetneq \mathscr{D}_{r} \subsetneq \mathscr{D}^{d} .
$$

Some more characterizations of r -disjunctive languages can be found in $[1,2,6,8,9,11]$.
(II) The following result is a known result on some decompositions of disjunctive languages.

Proposition 1.4. [10] Let L be a disjunctive language over X, $L=L_{1} \cup L_{2}$ (i.e., $L=L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}=\emptyset$). Then, the following statements hold.
(1) $\left\{L_{1}, L_{2}\right\} \cap \mathscr{D} \neq \emptyset$, or
(2) $\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}^{d} \backslash \mathscr{D}$.

In the case (2) of Proposition 1.4, each one of L_{1} and L_{2} is not r-regular language, for if not, then another one of them must be disjunctive by [6]. This fact clearly contradicts to $L_{1}, L_{2} \notin \mathscr{D}$. Hence, Proposition 1.4 can be modified to the following form.

Proposition 1.4'. Let L be a disjunctive language over $X, L=L_{1} \cup L_{2}$. Then, the following statements hold.
(1) $\left\{L_{1}, L_{2}\right\} \cap \mathscr{D} \neq \emptyset$, or
(2)' $\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}_{r} \backslash \mathscr{D}$.
(III) Proposition 1.4^{\prime} actually says that the disjoint union decompositions of disjunctive languages have two cases. Any disjunctive language has the decomposition of the case (1) in Proposition 1.4. As to the decomposition in the case (2) of Proposition 1.4, not every disjunctive language has this decomposition, for instance, discrete disjunctive language, that is, the disjunctive language L with $\left|L \cap X^{n}\right| \leq 1$ for any $n \in \mathbb{N}$ [10]. But Shyr and Yu have shown in [12] that there exists such a disjunctive language L over X with $|X| \geq 3$ so that $L=L_{1} \dot{\cup} L_{2},\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}^{d} \backslash \mathscr{D}$, to be more precise, we have

$$
\begin{equation*}
\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}_{f} \backslash \mathscr{D} . \tag{1.1}
\end{equation*}
$$

In this paper, we will further discuss in Section 4 about the existence case mentioned by Shyr and Yu in [12]; we will also discuss the decompositions of languages in $\mathscr{D}_{f}, \mathscr{D}_{t}$ and \mathscr{D}_{r} like Proposition 1.4^{\prime} in Section 2; and in Section 3, we will show that the languages in $\mathscr{D}_{f}, \mathscr{D}_{t}$ have similar decompositions just as the case (2)' in Proposition 1.4^{\prime} with (1.1).

Making contact with the above background of this paper, we have started to apply some results of this paper to our following work to describe the disjunctive degree in some sense of languages, this shows one spot of the potential value of this paper.

For terminologies and notations not mentioned in this paper, the reader is referred to [4, 5, 10].

In the remaining part of the paper, we always assume that $|X| \geq 2$.

2. Some decompositions of r-disjunctive languages(I)

In the following theorem, we consider the decompositions of languages in $\mathscr{D}_{f}, \mathscr{D}_{t}$ and \mathscr{D}_{r} which are similar to Proposition 1.4 ${ }^{\prime}$.

Theorem 2.1. Let $L \in \mathscr{D}_{f}\left(\mathscr{D}_{t}, \mathscr{D}_{r}\right), L=L_{1} \dot{U}_{2}$. Then the following statements hold:
(1) $\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}_{f}\left(\mathscr{D}_{t}, \mathscr{D}_{r}\right) \neq \emptyset$, or
(2) $\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}_{r} \backslash \mathscr{D}_{f}\left(\mathscr{D}_{r} \backslash \mathscr{D}_{t}, \mathscr{D}_{r} \backslash \mathscr{D}_{r}\right)$.

Remark 2.1. If we divide a language $L \in \mathscr{D}_{r}$ into L_{1} and L_{2}, then L_{1}, L_{2} must satisfy Theorem 2.1(1). Otherwise, both of L_{1}, L_{2} are not in \mathscr{D}_{r}, by Proposition 1.2, they are in \mathscr{R}_{r}. Hence, L is in \mathscr{R}_{r} because by [6], \mathscr{R}_{r} is closed under the operation of union, this is clearly a contradiction. Here, we write $\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}_{r} \backslash \mathscr{D}_{r}$ to seek a unity of expression with the \mathscr{D}_{f} and \mathscr{D}_{t} languages.

In proving the above theorem, we need the following proposition.

Proposition 2.1.

(1) If $L \in \mathscr{D}_{t}\left(\mathscr{D}_{f}, \mathscr{D}_{r}\right), R \subseteq L$ and $R \in \mathscr{R}_{r}$, then $L \backslash R \in \mathscr{D}_{t}\left(\mathscr{D}_{f}, \mathscr{D}_{r}\right)$.
(2) If $L \in \mathscr{D}_{t}\left(\mathscr{D}_{f}, \mathscr{D}_{r}\right), R \in \mathscr{R}_{r}$ and $L \cap R=\emptyset$, then $L \cup R \in \mathscr{D}_{t}\left(\mathscr{D}_{f}, \mathscr{D}_{r}\right)$.

Proof. By [6], Proposition 2.1 holds for $L \in \mathscr{D}_{f}$ and $L \in \mathscr{D}_{r}$. Here we just discuss about $L \in \mathscr{D}_{t}$.
(1) Suppose that $L \in \mathscr{D}_{t}$. Then for any dense language $\left\{x_{1}, x_{2}, \ldots, x_{m}, \ldots\right\}$, there exist $x_{i}, x_{j}, i \neq j$ such that

$$
x_{i} \not \equiv x_{j}\left(P_{L}\right)
$$

Since $R \in \mathscr{R}_{r}$, by Lemma 3.3 of [6], there exist a $w \in X^{*}$, and an $n \in \mathbb{N}$ such that $\left(w X^{*} w\right)^{(n)}$ is contained in a P_{R}-class, and whence

$$
\left(w x_{1} w\right)^{n} \equiv\left(w x_{2} w\right)^{n} \equiv \cdots \equiv\left(w x_{m} w\right)^{n} \equiv \cdots\left(P_{R}\right)
$$

Notice that $\left\{\left(w x_{i} w\right)^{n} \mid i=1,2, \ldots\right\}$ is dense and $\left(w x_{i} w\right)^{n} \neq\left(w x_{j} w\right)^{n}$, since $x_{i} \neq x_{j}$ when $i \neq j$. Then by the definition of t -disjunctive languages, there exist $\left(w x_{i} w\right)^{n}$ and $\left(w x_{j} w\right)^{n}$, $i \neq j$ such that

$$
\left(w x_{i} w\right)^{n} \not \equiv\left(w x_{j} w\right)^{n}\left(P_{L}\right) .
$$

That is, for some $u, v \in X^{*}$, we have

$$
u\left(w x_{i} w\right)^{n} v \in L, u\left(w x_{j} w\right)^{n} v \notin L
$$

or vice versa. We now suppose that the former case hold, so $u\left(w x_{j} w\right)^{n} v \notin R$. Then this result leads to $u\left(w x_{i} w\right)^{n} v \notin R$ since $\left(w x_{i} w\right)^{n} \equiv\left(w x_{j} w\right)^{n}\left(P_{R}\right)$. Thus $u\left(w x_{i} w\right)^{n} v \in L \backslash R$, but $u\left(w x_{j} w\right)^{n} v \notin L \backslash R$. This shows that

$$
\left(w x_{i} w\right)^{n} \not \equiv\left(w x_{j} w\right)^{n}\left(P_{L \backslash R}\right),
$$

and hence

$$
x_{i} \not \equiv x_{j}\left(P_{L \backslash R}\right)
$$

Thus, $L \backslash R \in \mathscr{D}_{t}$.
(2) This part follows directly from (1) because for any language L over $X, P_{L}=P_{\bar{L}}$, where \bar{L} is the complement of L.
Corollary 2.1. If $L \in \mathscr{D}_{r} \backslash \mathscr{D}_{t}$ and $R \subseteq L$ and $R \in \mathscr{R}_{r}$, then $L \backslash R \in \mathscr{D}_{r} \backslash \mathscr{D}_{t}$.
We now return to prove Theorem 2.1.
Proof of Theorem 2.1. We only prove that $L \in \mathscr{D}_{f}\left(\mathscr{D}_{t}\right)$. Assume that neither L_{1} nor L_{2} is f -disjunctive(t -disjunctive) language and suppose that L_{2} is not an r -disjunctive language. Then L_{2} is an r-regular language. Now, we see that L_{1} is f -disjunctive(t -disjunctive)language by Proposition 2.1. This result contradicts to our assumption. Hence, L_{2} is an r-disjunctive language. Similarly, L_{1} is also an r-disjunctive language.

Any f-disjunctive (t-disjunctive, r-disjunctive) language has the decomposition of the case (1) in Theorem 2.1 by Proposition 2.1. For the languages in \mathscr{D}_{f} and \mathscr{D}_{t}, we naturally ask the question: Does the decomposition of the languages that satisfying Theorem 2.1(2) exist? More precisely, we ask whether the decomposition which is similar to (1.1) exists or not? We will give an affirmative answer to the above questions in section 3. In order to simplify our description, we let $\mathscr{D}_{1}=\mathscr{D}, \mathscr{D}_{2}=\mathscr{D}_{f} \backslash \mathscr{D}_{2} \mathscr{D}_{3}=\mathscr{D}_{t} \backslash \mathscr{D}_{f}, \mathscr{D}_{4}=\mathscr{D}_{r} \backslash \mathscr{D}_{t}$. Hence, \mathscr{D}_{r} is a disjoint union of $\mathscr{D}_{1}, \mathscr{D}_{2}, \mathscr{D}_{3}$ and \mathscr{D}_{4}.

3. Some decompositions of r-disjunctive languages(II)—Decomposition from \mathscr{D}_{i} to \mathscr{D}_{i+1}, $i=2,3$

First of all, we give the following preparations.
Let L be a nonempty language over an alphabet X. We call L contained in X^{+}a code if for any $x_{i}, y_{j} \in L, i=1,2, \ldots, m, j=1,2, \ldots, n, x_{1} x_{2} \cdots x_{m}=y_{1} y_{2} \cdots y_{n}$ implies that $m=n$ and $x_{i}=y_{i}, i=1,2, \ldots, n$. We call L a prefix language (suffix language) if for any $x \in L, x y \notin L$ for all $y \in X^{+}\left(y x \notin L\right.$, for all $\left.y \in X^{+}\right)$. It is immediate to see that each prefix(suffix) language contained in X^{+}is a code. Hence, we also call a prefix (suffix) language contained in X^{+}a prefix (suffix) code. Obviously, a singleton-set of X^{+}is a prefix code and is a suffix code as well.

For prefix codes and suffix codes, we have the following lemma.
Lemma 3.1. [2] Let L be a language over X and $P(S)$ a prefix(suffix) code over X. Then for any $u, v \in X^{*}, u \not \equiv v\left(P_{L}\right)$ implies $u \not \equiv v\left(P_{P L}\left(P_{L S}\right)\right)$, i. e. $P_{P L}\left(P_{L S}\right) \subseteq P_{L}$.

Corollary 3.1. If L is a t-disjunctive language over X and $P(S)$ is a prefix(suffix) code over X, then $P L(L S)$ is t-disjunctive.

Similar consequence for disjunctive languages and f-disjunctive languages can be found in [10] and [2] respectively.

Proposition 3.1. Let L be a language over X. If L is not f-disjunctive, then for any finite language F of X^{*}, the language $F L$ and $L F$ are not f-disjunctive.

Proof. We just consider the language $F L$, the conclusion for $L F$ can be dually obtained. Suppose that $F \neq \emptyset$ and $F \neq\{1\}$ (the conclusion is trivial when $F=\emptyset$ and $F=\{1\}$).

Let $m=\max \{\lg (x) \mid x \in F\} \in \mathbb{N}$. Suppose that L is not an f -disjunctive language. Then there exist an infinite language $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ such that

$$
x_{1} \equiv x_{2} \equiv \cdots \equiv x_{n} \equiv \cdots\left(P_{L}\right)
$$

Since P_{L} is a congruence,

$$
w^{m} x_{1} \equiv w^{m} x_{2} \equiv \cdots \equiv w^{m} x_{n} \equiv \cdots\left(P_{L}\right)
$$

for any $w \in X^{+}$. We now show that

$$
w^{m} x_{1} \equiv w^{m} x_{2} \equiv \cdots \equiv w^{m} x_{n} \equiv \cdots\left(P_{F L}\right) .
$$

Suppose that there exist $w^{m} x_{i}, w^{m} x_{j} \in\left\{w^{m} x_{1}, w^{m} x_{2}, \ldots, w^{m} x_{n}, \ldots\right\}$ such that $w^{m} x_{i} \not \equiv w^{m} x_{j}\left(P_{F L}\right)$. Then, there exist $u, v \in X^{*}$ such that $u w^{m} x_{i} v \in F L$ and $u w^{m} x_{j} v \notin F L$ or vice verse. Without loss of generality, we may let $u w^{m} x_{i} v \in F L$ and $u w^{m} x_{j} v \notin F L$.

Consider the following two cases:
(1) $u=u_{1} u_{2}$, for some $u_{1} \in X^{+}, u_{2} \in X^{*}$ such that $u_{1} \in F, u_{2} w^{m} x_{i} v \in L$. Clearly, $u_{2} w^{m} x_{j} v \notin L$. Hence, $x_{i} \not \equiv x_{j}\left(P_{L}\right)$, which is a contradiction.
(2) $u w^{k_{1}} w_{1} \in F, w_{2} w^{k_{2}} x_{i} v \in L$, where $w_{1} \in X^{+}, w_{2} \in X^{*}, w=w_{1} w_{2}, k_{1}, k_{2} \in \mathbb{N}^{0}$ and $k_{1}+k_{2}+1=m$. Again $w_{2} w^{k_{2}} x_{j} v \notin L$ and $x_{i} \not \equiv x_{j}\left(P_{L}\right)$, and so a contradiction.
This shows that the conclusion

$$
w^{m} x_{1} \equiv w^{m} x_{2} \equiv \cdots \equiv w^{m} x_{n} \equiv \cdots\left(P_{F L}\right)
$$

holds and hence $F L$ is not an f -disjunctive language.
The following proposition is a similar proposition for t -disjunctive languages.

Proposition 3.2. Let L be a language over X. If L is not a t-disjunctive language, then for any finite language F of X^{*}, the language $F L$ and $L F$ are not t-disjunctive.

Proof. The proof of this proposition is similar to the proof of Proposition 3.1.
Similar consequence of non-disjunctive languages can be found in [12].
In the following lemma, we will show that there are languages in \mathscr{D}_{2} which are unions of two disjoint languages in \mathscr{D}_{3}, see the following Proposition 3.3 and Proposition 3.4.

We now use w_{x} to denote the number of letters x occurring in the word w over X. Then, we establish the following lemma.
Lemma 3.2. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}, r \geq 2$,

$$
L_{x_{i}}=\left\{w \in X^{*} \mid w_{x_{1}}, w_{x_{2}}, \ldots, w_{x_{i-1}}, w_{x_{i+1}}, \ldots, w_{x_{r}} \in I\right\}
$$

where $I=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{n}, \ldots\right\}$. Then $L_{x_{i}} \in \mathscr{D}_{3}, i=1,2, \ldots, r$.
Proof. For any $i \in\{1,2, \ldots, r\}$, we assert that the $P_{L_{x_{i}}}$-classes are

$$
\begin{aligned}
& C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}=\left\{w \in X^{*} \mid w_{x_{1}}=j_{1}, w_{x_{2}}=j_{2}, \ldots, w_{x_{i-1}}=j_{i-1},\right. \\
&\left.w_{x_{i+1}}=j_{i+1}, \ldots, w_{x_{r}}=j_{r}\right\},
\end{aligned}
$$

$j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{r}=0,1,2, \ldots$. In fact, suppose $u, v \in X^{*}$, and

$$
u_{x_{s}}=p, v_{x_{s}}=q,
$$

for some letter x_{s} with $x_{s} \in X \backslash\left\{x_{i}\right\}$, where $p, q \in \mathbb{N}^{0}, p \neq q$. Since $p \neq q$, we may let $p-q=k, k \in \mathbb{N}$. Then for a sufficient large $m, m \in \mathbb{N}$, we can find $x_{s}^{n} \in X^{*}, n \in \mathbb{N}$ such that

$$
\left(x_{s}^{n} u\right)_{x_{s}}=n+p=2^{m}, 2^{m}-2^{m-1}>k .
$$

Hence, we have $\left(x_{s}^{n} v\right)_{x_{s}}=n+q=n+p-k=2^{m}-k$, and $2^{m-1}<2^{m}-k<2^{m}$.
Consider

$$
z=x_{t_{1}}^{n_{1}} x_{t_{2}}^{n_{2}} \cdots x_{t_{r-2}-2}^{n_{r-2}} x_{s}^{n} u
$$

and

$$
z^{\prime}=x_{t_{1}}^{n_{1}} x_{t_{2}}^{n_{2}} \cdots x_{t_{r-2}}^{n_{r-2}} x_{s}^{n} v
$$

where $t_{1}, t_{2}, \ldots, t_{r-2}$ is an arrangement of $\{1,2, \ldots, r\} \backslash\{s, i\}$, and $n_{1}, n_{2}, \ldots, n_{r-2} \in \mathbb{N}^{0}$. Choose $n_{1}, n_{2}, \ldots, n_{r-2}$ such that $z_{x_{t_{1}}}, \ldots, z_{x_{t_{r-2}}} \in I$, and by the above discussion, we have $z_{x_{s}}=2^{m}$ and $z_{x_{s}} \in I$, but $z_{x_{s}}^{\prime}=2^{m}-k, z_{x_{s}}^{\prime} \notin I$. By the construction of $L_{x_{i}}$, we have $z \in L_{x_{i}}$ and $z^{\prime} \notin L_{x_{i}}$, and hence we conclude that $u \not \equiv v\left(P_{L_{x_{i}}}\right)$. This result shows that each $P_{L_{x_{i}}}$-class is contained in some $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}, j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{r} \in \mathbb{N}^{0}$. On the other hand, for any $w, w^{\prime} \in C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}, C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}} \in\left\{C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}} \mid j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{r} \in\right.$ $\left.\mathbb{N}^{0}\right\}$, if $u, v \in X^{*}$ and $u w v \in L_{x_{i}}$, then by the construction of $L_{x_{i}}$, we have $(u w v)_{x_{s}}=u_{x_{s}}+$ $w_{x_{s}}+v_{x_{s}} \in I, s=1,2, \ldots, i-1, i+1, \ldots, r$. Since $w_{x_{s}}=w_{x_{s}}^{\prime}$ for $s=1,2, \ldots, i-1, i+1, \ldots, r$, we have $\left(u w^{\prime} v\right)_{x_{s}}=u_{x_{s}}+w_{x_{s}}^{\prime}+v_{x_{s}}=u_{x_{s}}+w_{x_{s}}+v_{x_{s}} \in I, s=1,2, \ldots, i-1, i+1, \ldots, r$. This implies that $u w^{\prime} v \in L_{x_{i}}$. Dually, for all $u, v \in X^{*}$, we can deduce that $u w v \in L_{x_{i}}$ from the fact $u w^{\prime} v \in L_{x_{i}}$. Hence, $w \equiv w^{\prime}\left(P_{L_{x_{i}}}\right)$. Thus the assertion holds.

For each $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}} \in\left\{C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}} \mid j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{r} \in \mathbb{N}^{0}\right\}$, we observe that for every word w in $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}$, the $w_{x_{i}}$ is not restricted, and so $w_{x_{i}}$ can be any number in \mathbb{N}^{0}. Since \mathbb{N}^{0} is infinite, $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}$ is infinite. Moreover, by the definition of $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}$, for all $w \in C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}, w_{x_{1}}=j_{1}$, where j_{1} is a given number in \mathbb{N}^{0}, we have for any word $u \in X^{*}$ with $u_{x_{1}}$ greater than j_{1}, u is not a subword of any word
in $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}$. This shows that $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}$ is not dense. Thus $C_{j_{1} j_{2} \cdots j_{i-1} j_{i+1} \cdots j_{r}}$ is an infinite but not dense language. This shows that $L_{x_{i}} \in \mathscr{D}_{3}$.

Consider the following languages.
$L_{x_{r}}=\left\{w \in X^{*} \mid w_{x_{1}}, w_{x_{2}}, \ldots, w_{x_{r-1}} \in I\right\}$, where $I=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{n}, \ldots\right\}$,
$L_{x_{1}}=\left\{w \in X^{*} \mid w_{x_{2}}, \ldots, w_{x_{r-1}}, w_{x_{r}} \in I\right\}$, where $I=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{n}, \ldots\right\}$.
By Lemma 3.2, $L_{x_{r}}, L_{x_{1}} \in \mathscr{D}_{3}$. Let

$$
L_{1}=L_{x_{r}}\left\{x_{r}\right\}, \quad L_{2}=L_{x_{1}}\left\{x_{1}\right\} .
$$

Since $\left\{x_{r}\right\},\left\{x_{1}\right\}$ are suffix codes, by Corollary 3.1, $L_{1}, L_{2} \in \mathscr{D}_{t}$ and $L_{1}, L_{2} \notin \mathscr{D}_{f}$ by Proposition 3.1. Thus, we arrive at the following proposition.

Proposition 3.3. $L_{1}, L_{2} \in \mathscr{D}_{3}$ and $L_{1} \cap L_{2}=\emptyset$.
We also have the following proposition.
Proposition 3.4. Let $L=L_{1} \cup L_{2}$. Then $L \in \mathscr{D}_{2}$.
Proof. To proceed with the proof, we assert that if $u \equiv v\left(P_{L}\right)$ for $u, v \in X^{*}, u \neq v$, then $u_{x_{i}}=v_{x_{i}}$ for all $x_{i} \in X, i=1,2, \ldots, r$. In fact, if $u, v \in X^{*}, u_{x_{s}} \neq v_{x_{s}}, x_{s} \in X \backslash\left\{x_{r}\right\}$, then by the proof of Lemma 3.2, there exist $w_{1}, w_{2} \in X^{*}$ such that $w_{1} u w_{2} \in L_{x_{r}}, w_{1} v w_{2} \notin L_{x_{r}}$, and so $w_{1} u w_{2} x_{r} \in L_{1}, w_{1} v w_{2} x_{r} \notin L_{1}$, also by the construction of $L_{2}, w_{1} v w_{2} x_{r} \notin L_{2}$, we have $u \not \equiv$ $v\left(P_{L}\right)$. If $u, v \in X^{*}, u_{x_{r}} \neq v_{x_{r}}$, then by the proof of Lemma 3.2 again, there exist $w_{1}, w_{2} \in X^{*}$ such that $w_{1} u w_{2} \in L_{x_{1}}, w_{1} v w_{2} \notin L_{x_{1}}$, and so we have $w_{1} u w_{2} x_{1} \in L_{2}, w_{1} v w_{2} x_{1} \notin L_{2}$. Now, by the construction of $L_{1}, w_{1} v w_{2} x_{1} \notin L_{1}$, we see that $u \not \equiv v\left(P_{L}\right)$. This shows that each P_{L}-class is contained in some $C_{j_{1} j_{2} \cdots j_{r}}$ with $j_{1}, j_{2}, \ldots, j_{r} \in \mathbb{N}^{0}$, where $C_{j_{1} j_{2} \cdots j_{r}}=\left\{w \in X^{*} \mid w_{x_{1}}=\right.$ $\left.j_{1}, \ldots, w_{x_{i}}=j_{i}, \ldots, w_{x_{r}}=j_{r}\right\}$.

Moreover, for $C_{j_{1} j_{2} \cdots j_{r}} \in\left\{C_{j_{1} j_{2} \cdots j_{r}} \mid j_{1}, \ldots, j_{r} \in \mathbb{N}^{0}\right\}$ with $\left|C_{j_{1} j_{2} \cdots j_{r}}\right|=1$, by the above discussions, we have $C_{j_{1} j_{2} \cdots j_{r}}$ is a P_{L}-class. For $C_{j_{1} j_{2} \cdots j_{r}} \in\left\{C_{j_{1} j_{2} \cdots j_{r}} \mid j_{1}, \ldots, j_{r} \in \mathbb{N}^{0}\right\}$ with $\left|C_{j_{1} j_{2} \cdots j_{r}}\right| \geq 2$. Suppose that $u, v \in C_{j_{1} j_{2} \cdots j_{r}}$, u ends at letter x_{1}, and v does not end at letter x_{1}. Then we have the following two cases:
(1) v ends at letter x_{r},
(2) v does not end at letter x_{r}.

For case (1), in view of the proof in Lemma 3.2, we are able to find some word $w_{1} \in X^{*}$ such that

$$
\left(w_{1} u\right)_{x_{i}} \in I, i=2, \ldots, r, \quad\left(w_{1} u\right)_{x_{1}} \notin I .
$$

This shows that $w_{1} u \in L_{x_{1}}$, by the above assumption and the construction of $L_{2}, w_{1} u \in L_{2}$. On the other hand, by $u, v \in C_{j_{1} j_{2} \cdots j_{r}}$, we have

$$
\left(w_{1} v\right)_{x_{i}} \in I, i=2, \ldots, r, \quad\left(w_{1} v\right)_{x_{1}} \notin I .
$$

This shows that $w_{1} v \in L_{x_{1}}$ and $w_{1} v \notin L_{x_{r}}$. Since v does not end at x_{1}, we have $w_{1} v \notin L_{2}$, and by the construction of $L_{1}, w_{1} v \notin L_{1}$. Hence, we have $u \not \equiv v\left(P_{L}\right)$.

For case (2), by using similar arguments as those in case (1), we can obtain $u \not \equiv v\left(P_{L}\right)$. Similarly, if $u, v \in C_{j_{1} j_{2} \cdots j_{r}}, u$ ends at x_{r}, and v does not end at x_{r}, then we also have $u \not \equiv$ $v\left(P_{L}\right)$. Thus, for $C_{j_{1} j_{2} \cdots j_{r}} \in\left\{C_{j_{1} j_{2} \cdots j_{r}} \mid j_{1}, \ldots, j_{r} \in \mathbb{N}^{0}\right\}$ with $\left|C_{j_{1} j_{2} \cdots j_{r}}\right| \geq 2, C_{j_{1} j_{2} \cdots j_{r}}$ can be divided into three parts:

$$
\begin{gathered}
C_{j_{1} j_{2} \cdots j_{r}}^{I}=\left\{w \in X^{*} \mid w_{x_{1}}=j_{1}, \ldots, w_{x_{i}}=j_{i}, \ldots, w_{x_{r}}=j_{r},\right. \\
\text { and w ends at } \left.x_{i}, i=2, \ldots, r-1\right\},
\end{gathered}
$$

$$
\begin{aligned}
C_{j_{1} j_{2} \cdots j_{r}}^{I I}= & \left\{w \in X^{*} \mid w_{x_{1}}=j_{1}, \ldots, w_{x_{i}}=j_{i}, \ldots, w_{x_{r}}=j_{r},\right. \\
& \text { and w ends at } \left.x_{1}\right\}, \\
C_{j_{1} j_{2} \cdots j_{r}}^{I I I}= & \left\{w \in X^{*} \mid w_{x_{1}}=j_{1}, \ldots, w_{x_{i}}=j_{i}, \ldots, w_{x_{r}}=j_{r},\right. \\
& \text { and w ends at } \left.x_{r}\right\},
\end{aligned}
$$

and if P_{L}-class is contained in $C_{j_{1} j_{2} \cdots j_{r}}$ with $\left|C_{j_{1} j_{2} \cdots j_{r}}\right| \geq 2, j_{1}, j_{2}, \ldots, j_{r} \in \mathbb{N}^{0}$, then it must be in some $C_{j_{1} j_{2} \cdots j_{r}}^{J}, J \in\{I, I I, I I I\}$. On the other hand, if u, v are any two words in $C_{j_{1} j_{2} \cdots j_{r}}^{I}$, $\left|C_{j_{1} j_{2} \cdots j_{r}}\right| \geq 2, j_{1}, \ldots, j_{r} \in \mathbb{N}^{0}$, that is, $u, v \in C_{j_{1} j_{2} \cdots j_{r}}$ and both of u and v end neither at x_{1} nor at x_{r}, then for any $w_{1}, w_{2} \in X^{*},\left(w_{1} u w_{2}\right)_{x_{i}}=\left(w_{1} v w_{2}\right)_{x_{i}}, i=1,2, \ldots, r$. So $w_{1} u w_{2} \in L_{x_{1}}$ if and only if $w_{1} v w_{2} \in L_{x_{1}}$, and $w_{1} u w_{2} \in L_{x_{r}}$ if and only if $w_{1} v w_{2} \in L_{x_{r}}$. If $w_{2}=1$, then by previous assumption, both of $w_{1} u w_{2}$ and $w_{1} v w_{2}$ belong neither to L_{1}, nor to L_{2}. If $w_{2} \neq 1$, then $w_{1} u w_{2} \in L_{1}$ if and only if $w_{1} v w_{2} \in L_{1}$, and $w_{1} u w_{2} \in L_{2}$ if and only if $w_{1} v w_{2} \in L_{2}$. This implies that $w_{1} u w_{2} \in L$ if and only if $w_{1} v w_{2} \in L$. Both of the two cases show that $u \equiv v\left(P_{L}\right)$. So $C_{j_{1} j_{2} \cdots j_{r}}^{I},\left|C_{j_{1} j_{2} \cdots j_{r}}\right| \geq 2, j_{1}, \ldots, j_{r} \in \mathbb{N}^{0}$, is a P_{L}-class. Similarly, we can show that $C_{j_{1} j_{2} \cdots j_{r}}^{I I}$ and $C_{j_{1} j_{2} \cdots j_{r}}^{I I I}$ are P_{L}-classes, $\left|C_{j_{1} j_{2} \cdots j_{r}}\right| \geq 2, j_{1}, \ldots, j_{r} \in \mathbb{N}^{0}$.

In view of the above facts, we deduce that for $C_{j_{1} j_{2} \cdots j_{r}} \in\left\{C_{j_{1} j_{2} \cdots j_{r}} \mid j_{1}, \ldots, j_{r} \in \mathbb{N}^{0}\right\}$ with $\left|C_{j_{1} j_{2} \ldots j_{r}}\right| \geq 2$, the P_{L}-classes are

$$
\begin{aligned}
C_{j_{1} j_{2} \cdots j_{r}}^{I}= & \left\{w \in X^{*} \mid w_{x_{1}}=j_{1}, \ldots, w_{x_{i}}=j_{i}, \ldots, w_{x_{r}}=j_{r},\right. \\
& \text { and w ends at } \left.x_{i}, i=2, \ldots, r-1\right\}, \\
C_{j_{1} j_{2} \cdots j_{r}}^{I I}= & \left\{w \in X^{*} \mid w_{x_{1}}=j_{1}, \ldots, w_{x_{i}}=j_{i}, \ldots, w_{x_{r}}=j_{r},\right. \\
& \text { and w ends at } \left.x_{1}\right\}, \\
C_{j_{1} j_{2} \cdots j_{r}}^{I I}= & \left\{w \in X^{*} \mid w_{x_{1}}=j_{1}, \ldots, w_{x_{i}}=j_{i}, \ldots, w_{x_{r}}=j_{r},\right. \\
& \text { and wends at } \left.x_{r}\right\} .
\end{aligned}
$$

Clearly,

$$
\left|C_{j_{1} j_{2} \cdots j_{r}}^{I}\right|+\left|C_{j_{1} j_{2} \cdots j_{r}}^{I I}\right|+\left|C_{j_{1} j_{2} \cdots j_{r}}^{I I I}\right|=\left|C_{j_{1} j_{2} \cdots j_{r}}\right|
$$

and

$$
\left|C_{j_{1} j_{2} \cdots j_{r}}\right| \leq r^{j_{1}+j_{2}+\cdots+j_{r}} .
$$

This shows that $L \in \mathscr{D}_{2}$.
We will construct a language of the form $L=L_{1} \cup L_{2}$, where L is in \mathscr{D}_{3} and L_{1}, L_{2} are two disjoint languages in \mathscr{D}_{4}. To this aim, we need some preparations. Recall that a nonempty language L over X is an infix language if for all $x, y, u \in X^{*}, u \in L$ and $x u y \in L$ together imply $x=y=1$. Clearly, each infix language contained in X^{+}is a code, we usually call this code an infix code.

For any $x \in X^{+}$with $|X| \geq 2$, we let

$$
\begin{aligned}
& P_{n t}(x)=\left\{w \in X^{+} \mid x=w u \text { for some } u \in X^{+}\right\}, \\
& S_{n t}(x)=\left\{w \in X^{+} \mid x=u w \text { for some } u \in X^{+}\right\},
\end{aligned}
$$

and

$$
I(x)=\left\{w \in X^{*} \mid x=u w v \text { for some } u, v \in X^{*}\right\}
$$

Remark 3.1. We denote the set of all non-trivial prefixes(suffixes) of word x by $P_{n t}(x)$ ($S_{n t}(x)$) and the set of all infixes of word x by $I(x)$.

Definition 3.1. [7,13] Let $L \subseteq X^{+}, L \neq \emptyset$. Then, we call L a solid code if L is an infix code and $P_{n t}(u) \cap S_{n t}(v)=\emptyset$ for every $u, v \in L$.

Corollary 3.2. [13] Any nonempty subset of a solid code is also a solid code.
Definition 3.2. [13] Let $L \subseteq X^{+}, L \neq \emptyset$ and $w \in X^{*}$. Then, we call the factorization

$$
\begin{equation*}
w=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1} \tag{3.1}
\end{equation*}
$$

an L-representation of w if $y_{i} \in L, I\left(x_{j}\right) \cap L=\emptyset$, for $i=1,2, \ldots, n, j=1,2, \ldots, n+1, n \in$ \mathbb{N}^{0}. And we call the case $n=0$ in (3.1), that is, $w=x_{1}$, the trivial L-representation of w. Obviously, w has the trivial L-representation if and only if $I(w) \cap L=\emptyset$, and at this time, w has only the trivial L-representation.

We call n in (3.1) an L-length of w, denote the set of L-lengths of w by $L_{L}(w)$ and call $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ in (3.1) an L-coefficient of w, and the set of L-coefficients of w is denoted by $C_{L}(w)$.
Proposition 3.5. [12, 13] Let L be a nonempty language in X^{+}. Then the following statements hold.
(1) Any word w over X has L-representation.
(2) Any word w over X has unique L-representation if and only if L is a solid code.

Obviously, if L is a solid code, then for any $w \in X^{*}$, the L-length of w and L-coefficient of w are unique, at this time, we denote them by $l_{L}(w)$ and $c_{L}(w)$ respectively.

In the following, we let $|X| \geq 2$, and $\{a, b\} \subseteq X$. Consider $\{b a\}$, by the definition of solid code, $\{b a\}$ is a solid code. Now, by Proposition 3.5, for any word $w \in X^{*}, w$ has unique $\{b a\}$-representation

$$
w=x_{1} y_{1} \cdots x_{n} y_{n} x_{n+1},
$$

where $y_{i}=b a, i=1,2, \ldots, n$, and $b a \notin I\left(x_{j}\right), j=1,2, \ldots, n+1$. Let $\bar{w}=x_{1} x_{2} \cdots x_{n} x_{n+1}$, where $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ is the $\{b a\}$-coefficient of w. Notice that $b a$ may be in $I(\bar{w})$, for example, if $w=b b a a$, then $\bar{w}=b a$. We use \bar{w}_{a} and \bar{w}_{b} to denote the numbers of the letter a and b occurring in word \bar{w} respectively. Clearly, for any word $w \in X^{*}, \bar{w}$ is unique, and hence \bar{w}_{a} and \bar{w}_{b} are unique.
Proposition 3.6. Let $L_{1}=\left\{w \in X^{*} \mid \bar{w}_{a}=\bar{w}_{b}\right\}$. Then $L_{1} \in \mathscr{D}_{4}$.
Proof. We assert that the $P_{L_{1}}$-classes are

$$
C_{i}=\left\{w \in X^{*} \mid \bar{w}_{a}=\bar{w}_{b}+i\right\}, \quad i=0, \pm 1, \pm 2, \ldots
$$

In fact, if u, v are any two words over X with $\bar{u}_{a}-\bar{u}_{b}=i, \bar{v}_{a}-\bar{v}_{b}=j, i \neq j$, without loss of generality, we may let $i \geq 0$, then, obviously, for $x=1, y=b^{i}$, we have

$$
x u y=u b^{i}, x v y=v b^{i},
$$

by the definition of $\overline{x u y}, \overline{x v y}$, we have

$$
\overline{x u y}=\bar{u} b^{i}, \overline{x v y}=\bar{v} b^{i} .
$$

And so

$$
\overline{x u y}_{a}=\bar{u}_{a}, \overline{x u y}_{b}=\bar{u}_{b}+i, \text { and } \overline{x u y}_{a}=\overline{x u y}_{b} \text { by assumption },
$$

$$
\overline{x v y}_{a}=\bar{v}_{a}, \overline{x v y}_{b}=\bar{v}_{b}+i \text {, and } \overline{x v y}_{a} \neq \overline{x v y}_{b} \text { by assumption. }
$$

By the construction of L_{1}, we have $x u y \in L_{1}, x v y \notin L_{1}$. Hence, $u \not \equiv v\left(P_{L_{1}}\right)$.
On the other hand, for every two words $u, v \in C_{i}, i=0, \pm 1, \pm 2, \ldots$, by the definition of C_{i}, we have

$$
\bar{u}_{a}-\bar{u}_{b}=\bar{v}_{a}-\bar{v}_{b}=i .
$$

Consider $w u$ and $w v, w \in X^{*}$. Then we divide our discussion into the following cases:
(1) Both of u, v begin with letter a. In this case, let $u=a u^{\prime}, v=a v^{\prime}$, where $u^{\prime}, v^{\prime} \in X^{*}$. If $w=w^{\prime} b, w^{\prime} \in X^{*}$, then $\overline{w u}=\overline{w^{\prime} b a u^{\prime}}$ and $\overline{w v}=\overline{w^{\prime} b a v^{\prime}}$, hence

$$
\begin{gathered}
\overline{w u}_{a}={\overline{w^{\prime}}}_{a}+{\overline{u^{\prime}}}_{a}={\overline{w^{\prime}}}_{a}+\bar{u}_{a}-1, \\
{\overline{w u^{\prime}}}_{b}={\overline{w^{\prime}}}_{b}+{\overline{u^{\prime}}}_{b}={\overline{w^{\prime}}}_{b}+\bar{u}_{b},
\end{gathered}
$$

and

$$
\begin{gathered}
\overline{w v}_{a}={\overline{w^{\prime}}}_{a}+{\overline{v^{\prime}}}_{a}={\overline{w^{\prime}}}_{a}+\bar{v}_{a}-1, \\
\overline{w v}_{b}={\overline{w^{\prime}}}_{b}+{\overline{v^{\prime}}}_{b}={\overline{w^{\prime}}}_{b}+\bar{v}_{b},
\end{gathered}
$$

so

$$
\begin{aligned}
& \overline{w u}_{a}-\overline{w u}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i-1, \\
& {\overline{w v^{2}}}_{a}-\overline{w v}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i-1 .
\end{aligned}
$$

If $w=w^{\prime} a, w^{\prime} \in X^{*}$, and $\bar{w}_{a}=\overline{w^{\prime}} a+1$, then $\overline{w u}=\overline{w^{\prime} a a u^{\prime}}$ and $\overline{w v}=\overline{w^{\prime} a a v^{\prime}}$, hence

$$
\begin{gathered}
\overline{w u}_{a}={\overline{w^{\prime}}}_{a}+\bar{u}_{a}+1, \\
\overline{w u}_{b}={\overline{w^{\prime}}}_{b}+\bar{u}_{b},
\end{gathered}
$$

and

$$
\begin{gathered}
\overline{w v}_{a}={\overline{w^{\prime}}}_{a}+\bar{v}_{a}+1, \\
\overline{w v}_{b}={\overline{w^{\prime}}}_{b}+\bar{v}_{b},
\end{gathered}
$$

so

$$
\begin{aligned}
& \overline{w u}_{a}-\overline{w u}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i+1, \\
& \overline{w v}_{a}-\overline{w v}_{b}={\overline{w^{\prime}}}_{a}^{\prime}-{\overline{w^{\prime}}}_{b}+i+1 .
\end{aligned}
$$

If $w=w^{\prime} x$, where $w^{\prime} \in X^{*}$ and $x \in(X \cup\{b a\}) \backslash\{a, b\}$, then $\overline{w u}=\overline{w^{\prime} x a u^{\prime}}$ and $\overline{w v}=\overline{w^{\prime} x a v^{\prime}}$, hence

$$
\begin{aligned}
& \overline{w u}_{a}={\overline{w^{\prime}}}_{a}+\bar{u}_{a}, \\
& \overline{w u}_{b}={\overline{w^{\prime}}}_{b}+\bar{u}_{b},
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{w v}_{a}={\overline{w^{\prime}}}_{a}+\bar{v}_{a}, \\
& \overline{w v}_{b}={\overline{w^{\prime}}}_{b}+\bar{v}_{b},
\end{aligned}
$$

so

$$
\begin{aligned}
& \overline{w u}_{a}-\overline{w u}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}} b+i,}^{\overline{w v}_{a}-\overline{w v}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i .} .
\end{aligned}
$$

Therefore, in every case, we have $\overline{w u}_{a}-\overline{w u}_{b}=\overline{w v}_{a}-\overline{w v}_{b}$, and hence $\overline{w u}_{a}=\overline{w u}_{b}$ if and only if $\overline{w v}_{a}=\overline{w v}_{b}$, for any $w \in X^{*}$.
(2) u begins with letter a and v does not begin with letter a or vice verse. Without loss of generality, suppose that $u=a u^{\prime}$, where $u^{\prime} \in X^{*}$. In this case, if $w=w^{\prime} b, w^{\prime} \in X^{*}$, then for $w u=w^{\prime} b a u^{\prime}$, we have $\overline{w u}_{a}-\overline{w u}_{b}=\bar{w}^{\prime}{ }_{a}-\bar{w}^{\prime}{ }_{b}+i-1$; for $w v=w^{\prime} b v$, we have $\overline{w v}_{a}-\overline{w v}_{b}=$
$\overline{w^{\prime}}{ }_{a}-{\overline{w^{\prime}}}_{b}+i-1$. If $w=w^{\prime} a, w^{\prime} \in X^{*}$ and $\bar{w}_{a}=\overline{w^{\prime}}{ }_{a}+1$, then for $w u=w^{\prime} a a u^{\prime}$, we have $\overline{w u}_{a}-\overline{w u}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i+1$; for $w v=w^{\prime} a v$, we have $\overline{w v}_{a}-\overline{w v}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i+1$. If $w=w^{\prime} x$, where $w^{\prime} \in X^{*}$ and $x \in(X \cup\{b a\}) \backslash\{a, b\}$, then for $w u=w^{\prime} x a u^{\prime}$, we have $\overline{w u}_{a}-\overline{w u}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i$; for $w v=w^{\prime} x v$, we have $\overline{w v}_{a}-\overline{w v}_{b}={\overline{w^{\prime}}}_{a}-{\overline{w^{\prime}}}_{b}+i$. Therefore, in every case, we also have $\overline{w u}_{a}-\overline{w u}_{b}=\overline{w v}_{a}-\overline{w v}_{b}$, and hence $\overline{w u}_{a}=\overline{w u}_{b}$ if and only if $\overline{w v}_{a}=\overline{w v}_{b}$, for any $w \in X^{*}$.
(3) u, v do not begin with letter a. Similar to case (1), we obtain that $\overline{w u}_{a}-\overline{w u}_{b}=\overline{w v}_{a}-\overline{w v}_{b}$, and hence $\overline{w u}_{a}=\overline{w u}_{b}$ if and only if $\overline{w v}_{a}=\overline{w v}_{b}$, for any $w \in X^{*}$.

From the above three cases, we deduce that if $u, v \in C_{i}, i=0, \pm 1, \pm 2, \ldots$, then for any $w \in X^{*}$,

$$
\begin{equation*}
\overline{w u}_{a}-\overline{w u}_{b}=\overline{w v}_{a}-\overline{w v}_{b}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{w u}_{a}=\overline{w u}_{b} \Leftrightarrow \overline{w v}_{a}=\overline{w v}_{b} . \tag{3.3}
\end{equation*}
$$

Similarly, if $u, v \in C_{i}, i=0, \pm 1, \pm 2, \ldots$, then for any $w^{\prime} \in X^{*}$,

$$
\begin{equation*}
{\overline{u w^{\prime}}}_{a}-{\overline{u w^{\prime}}}_{b}={\overline{v w^{\prime}}}^{\prime}{ }^{-}-{\overline{v w^{\prime}}}_{b}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{u w^{\prime}}{ }_{a}=\overline{u w^{\prime}}{ }_{b} \Leftrightarrow \overline{v w^{\prime}}{ }_{a}=\overline{v w^{\prime}}{ }_{b} . \tag{3.5}
\end{equation*}
$$

Then, for every $u, v \in C_{i}, i=0, \pm 1, \pm 2, \ldots$, for any $w, w^{\prime} \in X^{*}$, consider $w u w^{\prime}$ and $w v w^{\prime}$. Since $u, v \in C_{i}$, by (3.2) and by the definition of C_{i}, we see immediately that both $w u$ and $w v$ are in some $C_{i^{\prime}}, i^{\prime} \in\{0, \pm 1, \pm 2, \ldots\}$. Hence, by (3.5), we have $\overline{w u w^{\prime}}{ }_{a}=\overline{w u w^{\prime}}{ }_{b}$ if and only if $\overline{w v w^{\prime}}{ }_{a}=\overline{w v w^{\prime}}{ }_{b}$, that is, $w u w^{\prime} \in L_{1}$ if and only if $w v w^{\prime} \in L_{1}$. This result implies that $u \equiv v\left(P_{L_{1}}\right)$. In view of the above facts, we have $P_{L_{1}}$-classes are

$$
C_{i}=\left\{w \in X^{*} \mid \bar{w}_{a}=\bar{w}_{b}+i\right\}, \quad i=0, \pm 1, \pm 2, \ldots .
$$

It can be easily verified that each C_{i} is dense, $i=0, \pm 1, \pm 2, \ldots$. Hence $L_{1} \in \mathscr{D}_{4}$.
Proposition 3.7. Let $L_{2}=\left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}\right\}$. Then $L_{2} \in \mathscr{D}_{4}$.
Proof. We first show that $\bar{u}_{a}-2 \bar{u}_{b} \neq \bar{v}_{a}-2 \bar{v}_{b}$ implies $u \not \equiv v\left(P_{L_{2}}\right)$, for any two words $u, v \in$ X^{*}. In fact, if $\bar{u}_{a}-2 \bar{u}_{b}=i, \bar{v}_{a}-2 \bar{v}_{b}=j, i \neq j$, then without loss of generality, we may let $i \geq 0$. Then we consider $a^{s} u b^{t}$ and $a^{s} v b^{t}$, where $s, t \in \mathbb{N}^{0}$, by the definition of $\overline{a^{s} u b^{t}}$, we have

$$
\overline{a^{s} u b^{t}}{ }_{a}=s+\bar{u}_{a}, \overline{a^{s} u b^{t}}{ }_{b}=t+\bar{u}_{b} .
$$

Choose s, t such that $s+i=2 t$, then by assumption, we have

$$
s+\bar{u}_{a}=s+2 \bar{u}_{b}+i=2\left(t+\bar{u}_{b}\right),
$$

so $\overline{a^{s} u b^{t}}{ }_{a}=2 \overline{a^{s} u b^{t}}{ }_{b}$, by the construction of $L_{2}, a^{s} u b^{t} \in L_{2}$, while

$$
\begin{gathered}
\overline{a^{s} v b^{t}}{ }_{a}=s+\bar{v}_{a}=s+2 \bar{v}_{b}+j, \\
2 \overline{a^{s} v b^{t}}{ }_{b}=2 t+2 \bar{v}_{b},
\end{gathered}
$$

clearly $\overline{a^{s} v b^{t}}{ }_{a} \neq 2 \overline{a^{s} v b^{t}}{ }_{b}$ since $s+j \neq 2 t$. This shows that $a^{s} v b^{t} \notin L_{2}$. Hence, $u \not \equiv v\left(P_{L_{2}}\right)$. So let

$$
C_{j}=\left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j\right\}, \quad j=0, \pm 1, \pm 2, \ldots,
$$

we have $u \equiv v\left(P_{L_{2}}\right)$ implies $u, v \in C_{j}$ for some $j \in\{0, \pm 1, \pm 2, \ldots\}$.

Next we will show that the $P_{L_{2}}$-classes are not analogous to the $P_{L_{1}}$-classes. In fact, if $u, v \in C_{j}$ for some $j \in\{0, \pm 1, \pm 2, \ldots\}, u$ begins with letter a and v does not begin with a or vice verse, then without loss of generality, we may let $u=a u^{\prime}, u^{\prime} \in X^{*}$. Consider $b u$ and $b v$, since $\overline{b u}_{a}={\overline{u^{\prime}}}_{a}=\bar{u}_{a}-1, \overline{b u}_{b}={\overline{u^{\prime}}}_{b}=\bar{u}_{b}, \overline{b v}_{a}=\bar{v}_{a}$ and $\overline{b v}_{b}=\bar{v}_{b}+1$, we have $\overline{b u}_{a}-2 \overline{b u}_{b} \neq$ $\overline{b v}_{a}-2 \overline{b v}_{b}$. By discussion in the previous paragraph, $b u \not \equiv b v\left(P_{L_{2}}\right)$, so $u \not \equiv v\left(P_{L_{2}}\right)$. Moreover, if $u, v \in C_{j}$ for some $j \in\{0, \pm 1, \pm 2, \ldots\}$, both of u and v begin with letter a and u ends at letter b, v does not end at letter b or vice verse, then without loss of generality, we may let $u=u^{\prime} b, u^{\prime} \in X^{*}$. Consider $u a$ and $v a$, then we have $\overline{u a}_{a}=\bar{u}_{a}, \overline{u a}_{b}=\bar{u}_{b}-1, \overline{v a}_{a}=\bar{v}_{a}+1$ and $\overline{v a}_{b}=\bar{v}_{b}$, so $\overline{u a}_{a}-2 \overline{u a}_{b} \neq \overline{v a}_{a}-2 \overline{v a}_{b}$, by the discussion in the previous paragraph again, we have $u a \not \equiv v a\left(P_{L_{2}}\right)$, and so $u \not \equiv v\left(P_{L_{2}}\right)$. Similarly, if $u, v \in C_{j}$ for some $j \in\{0, \pm 1, \pm 2, \ldots\}$, u and v do not begin with letter a and u ends at the letter b, v does not end at the letter b or vice verse, then we also have $u \not \equiv v\left(P_{L_{2}}\right)$. Hence, each $C_{j}, j=0, \pm 1, \pm 2, \ldots$, can be divided into four parts, say

$$
\begin{aligned}
C_{j}^{I}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { begins with } \\
& \text { letter } a \text { and ends at letter } b\}
\end{aligned}
$$

$$
\begin{aligned}
C_{j}^{I I}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { begins with } \\
& \text { eetter } a \text { and does not end at letter } b\}
\end{aligned}
$$

$$
\begin{aligned}
C_{j}^{I I I}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { does not begin } \\
& \text { with letter } a \text { and ends at letter } b\}
\end{aligned}
$$

$$
\begin{aligned}
C_{j}^{I V}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { neither begins } \\
& \text { with letter a nor ends at letter } b\}
\end{aligned}
$$

and we have $u \equiv v\left(P_{L_{2}}\right)$ implies $u, v \in C_{j}^{J}$ for some $j \in\{0, \pm 1, \pm 2, \ldots\}, J \in\{I, I I, I I I, I V\}$. It is routine to check that the converse implication holds for each j and J. Hence, $P_{L_{2}}$-classes are

$$
\begin{aligned}
C_{j}^{I}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { begins with } \\
& \text { letter a and ends at letter } b\} \\
C_{j}^{I I}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { begins with } \\
& \text { letter a and does not end at letter } b\}, \\
C_{j}^{I I I}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { does not begin } \\
& \text { with letter a and ends at letter } b\} \\
C_{j}^{I V}= & \left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}+j, w\right. \text { neither begins } \\
& \text { with letter a nor ends at letter } b\}
\end{aligned}
$$

where $j=0, \pm 1, \pm 2, \ldots$. It is easy to check that each $P_{L_{2}}$-class is dense. Hence, $L_{2} \in \mathscr{D}_{4}$.

We now construct a language in \mathscr{D}_{3} which is a disjoint union of the above two languages L_{1} and L_{2} in \mathscr{D}_{4}.

Consider $L_{1} \cap L_{2}$. If $w \in L_{1} \cap L_{2}$, then by the constructions of L_{1} and L_{2}, we have that $\bar{w}_{a}=\bar{w}_{b}, \bar{w}_{a}=2 \bar{w}_{b}$, so $\bar{w}_{a}=\bar{w}_{b}=0$. This result implies that $w \in((X \cup\{b a\}) \backslash\{a, b\})^{*}$, where $(X \cup\{b a\}) \backslash\{a, b\}$ is a finite language over X since X is finite, and

$$
\begin{aligned}
((X \cup\{b a\}) \backslash\{a, b\})^{*} & =\{1\} \cup((X \cup\{b a\}) \backslash\{a, b\}) \\
& \cup((X \cup\{b a\}) \backslash\{a, b\})^{2} \cup \cdots .
\end{aligned}
$$

Let $C=((X \cup\{b a\}) \backslash\{a, b\})^{*}$. By the above discussion, we have $L_{1} \cap L_{2} \subseteq C$, and $L_{1} \cap L_{2} \supseteq$ C is obviously. Hence, we have $L_{1} \cap L_{2}=C$. By the definition of rational language [4], C is a rational language over X. Then by Theorem 4.2.9 of [4], C is regular. Hence $L_{1} \backslash C \in \mathscr{D}_{4}$ by Corollary 2.1. Let $L_{1}^{\prime}=L_{1} \backslash C$. Then, it is clear that $L_{1}^{\prime} \cap L_{2}=\emptyset$. We have

$$
L_{1} \cup L_{2}=L_{1}^{\prime} \dot{\cup} L_{2}=\left\{w \in X^{*} \mid \bar{w}_{a}=\bar{w}_{b}\right\} \cup\left\{w \in X^{*} \mid \bar{w}_{a}=2 \bar{w}_{b}\right\} .
$$

We have the following proposition.
Proposition 3.8. $L=L_{1}^{\prime} \cup L_{2}$ is in \mathscr{D}_{3}.
Proof. We first assert that if $u, v \in X^{*}$ and $u \equiv v\left(P_{L}\right)$, then $u, v \in C_{i j}$ for some $i, j \in \mathbb{N}^{0}$, where

$$
C_{i j}=\left\{w \in X^{*} \mid \bar{w}_{a}=i, \bar{w}_{b}=j\right\}, i, j \in \mathbb{N}^{0}
$$

In fact, for any two words u, v over X, suppose that u, v are not in the same $C_{i j}$, that is, $\bar{u}_{a} \neq \bar{v}_{a}$ or $\bar{u}_{b} \neq \bar{v}_{b}$, we only discuss the case $\bar{u}_{a} \neq \bar{v}_{a}$, the case for $\bar{u}_{b} \neq \bar{v}_{b}$ can be similarly obtained. Now we divide our discussion into the following two cases:
(1) $\bar{u}_{a}-\bar{u}_{b}=\bar{v}_{a}-\bar{v}_{b}$,
(2) $\bar{u}_{a}-\bar{u}_{b} \neq \bar{v}_{a}-\bar{v}_{b}$.

For case (1), we consider $a^{s}(b a) u(b a) b^{t}$ and $a^{s}(b a) v(b a) b^{t}, s, t \in \mathbb{N}^{0}$. Choose s, t such that $s, t>0$ and $s+\bar{u}_{a}=2\left(t+\bar{u}_{b}\right)$, then by the construction of L_{2}, we have $a^{s}(b a) u(b a) b^{t} \in L_{2}$ and hence $a^{s}(b a) u(b a) b^{t} \notin L_{1}^{\prime}$. Since $s, t>0, a^{s}(b a) u(b a) b^{t} \notin C$. We have $a^{s}(b a) u(b a) b^{t} \notin$ L_{1}. In view of the proof of Proposition 3.6, we have $u \equiv v\left(P_{L_{1}}\right)$ because of the fact $\bar{u}_{a}-\bar{u}_{b}=$ $\bar{v}_{a}-\bar{v}_{b}$, thus $a^{s}(b a) v(b a) b^{t} \notin L_{1}$. And we have

$$
\begin{aligned}
\overline{a^{s}(b a) v(b a) b^{t}}{ }_{a}-2 \overline{a^{s}(b a) v(b a) b^{t}} & =s+\bar{v}_{a}-2\left(t+\bar{v}_{b}\right) \\
& =\bar{v}_{a}-2 \bar{v}_{b}-\left(\bar{u}_{a}-2 \bar{u}_{b}\right) \\
& =\bar{v}_{a}-\bar{v}_{b}-\left(\bar{u}_{a}-\bar{u}_{b}\right)+\bar{u}_{b}-\bar{v}_{b} \\
& =\bar{u}_{b}-\bar{v}_{b} \\
& =\bar{u}_{a}-\bar{v}_{a} \\
& \neq 0 .
\end{aligned}
$$

So $a^{s}(b a) v(b a) b^{t} \notin L_{2}$. Hence $a^{s}(b a) v(b a) b^{t} \notin L$. This shows $u \not \equiv v\left(P_{L}\right)$.
For case (2), if $\bar{u}_{a}-2 \bar{u}_{b}=\bar{v}_{a}-2 \bar{v}_{b}$, then similar to the discussion in the case (1), we choose s, t such that $s, t>0$ and $s+\bar{u}_{a}=t+\bar{u}_{b}$. Then by the construction of L_{1}^{\prime}, $a^{s}(b a) u(b a) b^{t} \in L_{1}^{\prime}$ and hence we deduce that $a^{s}(b a) u(b a) b^{t} \notin L_{2}$. This implies that $s+$ $\bar{u}_{a}-2 t-2 \bar{u}_{b} \neq 0$. This shows that $\overline{a^{s}(b a) v(b a) b^{t}}{ }_{a}-2 \overline{a^{s}(b a) v(b a) b^{t}}{ }_{b}=s+\bar{v}_{a}-2 t-2 \bar{v}_{b}=$ $s-2 t+\bar{u}_{a}-2 \bar{u}_{b} \neq 0, a^{s}(b a) v(b a) b^{t} \notin L_{2}$. Also $\overline{a^{s}(b a) v(b a) b^{t}}{ }_{a}-\overline{a^{s}(b a) v(b a) b^{t}}{ }_{b}=s+\bar{v}_{a}-$
$t-\bar{v}_{b}=\bar{v}_{a}-\bar{v}_{b}-\left(\bar{u}_{a}-\bar{u}_{b}\right) \neq 0$, so $a^{s}(b a) v(b a) b^{t} \notin L_{1}$. Hence, $a^{s}(b a) v(b a) b^{t} \notin L$. We have $u \not \equiv v\left(P_{L}\right)$.

If $\bar{u}_{a}-2 \bar{u}_{b} \neq \bar{v}_{a}-2 \bar{v}_{b}$, then choose s, t such that $s, t>0$ and $s+\bar{u}_{a}=t+\bar{u}_{b}$. Then by the discussion in the previous paragraph, we conclude that $a^{s}(b a) u(b a) b^{t} \in L_{1}^{\prime}$ and $a^{s}(b a) v(b a) b^{t} \notin L_{1}$. Consider

$$
\overline{a^{s}(b a) v(b a) b^{t}}{ }_{a}-2 \overline{a^{s}(b a) v(b a) b^{t}}{ }_{b}=s+\bar{v}_{a}-2 t-2 \bar{v}_{b},
$$

if $s+\bar{v}_{a}-2 t-2 \bar{v}_{b} \neq 0$, then $a^{s}(b a) v(b a) b^{t} \notin L_{2}$. So we have $a^{s}(b a) v(b a) b^{t} \notin L$. This shows that $u \not \equiv v\left(P_{L}\right)$. If $s+\bar{v}_{a}-2 t-2 \bar{v}_{b}=0$, then, we choose another $t^{\prime} \in \mathbb{N}^{0}$ such that $s+\bar{v}_{a}=t^{\prime}+\bar{v}_{b}$. Then $t^{\prime}=2 t+\bar{v}_{b}$, and $t^{\prime}>0$ by $t>0$, and so $a^{s}(b a) v(b a) t^{t^{\prime}} \in L_{1}^{\prime}$. On the other hand, we have $\overline{a^{s}(b a) u(b a) b^{t^{\prime}}}{ }_{a}-\overline{a^{s}(b a) u(b a) b^{t^{\prime}}}{ }_{b}=s+\bar{u}_{a}-t^{\prime}-\bar{u}_{b}$. Since $s+\bar{u}_{a}=t+\bar{u}_{b}$, we have $s+\bar{u}_{a}-t^{\prime}-\bar{u}_{b}=t-t^{\prime}$, so $s+\bar{u}_{a}-t^{\prime}-\bar{u}_{b} \neq 0$ by $t^{\prime}=2 t+\bar{v}_{b}$ and $t>0$. Hence, $a^{s}(b a) u(b a) b^{t^{\prime}} \notin L_{1}$. And $\overline{a^{s}(b a) u(b a) b^{t^{\prime}}}{ }_{a}-2 \overline{a^{s}(b a) u(b a) b^{t^{\prime}}}{ }_{b}=s+$ $\bar{u}_{a}-2 t^{\prime}-2 \bar{u}_{b}=-3 t-2 \bar{v}_{b}-\bar{u}_{b} \neq 0$. Clearly, we see that $a^{s}(b a) u(b a) b^{t^{\prime}} \notin L_{2}$. Hence, $a^{s}(b a) u(b a) b^{t^{\prime}} \notin L$. We also have $u \not \equiv v\left(P_{L}\right)$. Thus, we have shown that our assertion holds.

By the above assertion, we see immediately that each P_{L}-class is contained in some $C_{i j}, i, j \in \mathbb{N}^{0}$. Since $C_{i j}$ is thin (if otherwise, we let $w=(b a) a^{i+1} b^{j+1}(b a)$. Then for any $u, v \in X^{*}$, we have $\overline{u w v}_{a} \geq i+1, \overline{u w v}_{b} \geq j+1$. This shows that $u w v \notin C_{i j}$, a contradiction) for $i, j=0,1,2, \cdots$, we easily see that each P_{L}-class is thin.

Next we continue to show that there are infinite P_{L}-classes. Consider

$$
C_{00}=\left\{w \in X^{*} \mid \bar{w}_{a}=0, \bar{w}_{b}=0\right\} .
$$

Clearly, $1 \in C_{00}$. For any word $w \in C_{00} \backslash\{1\}$, we shall show that $1 \not \equiv w\left(P_{L}\right)$. Take $x=$ $b^{2}, y=a^{3}$. Then

$$
x 1 y=b^{2} 1 a^{3}=b^{2} a^{3}, x w y=b^{2} w a^{3}
$$

by the definition of $\overline{x 1 y}$, we have $\overline{x 1 y}=b a^{2}$, hence $\overline{x 1 y}_{a}=2, \overline{x 1 y}_{b}=1$ and $x 1 y \in L_{2}$. While $\overline{x w y}=b^{2} \bar{w} a^{3}$ because $w \neq 1$ and w neither begins with a nor ends at b. This leads to $\overline{x w y}_{a}=3, \overline{x w y}_{b}=2$. Hence, we have $x w y \notin L_{1}, x w y \notin L_{2}$, and so $x w y \notin L$. Hence, we have $1 \not \equiv w\left(P_{L}\right)$. On the other hand, for any two words $u, v \in C_{00} \backslash\{1\}$, by the definition of C_{00}, we have $\bar{u}_{a}=\bar{u}_{b}=0, \bar{v}_{a}=\bar{v}_{b}=0$, and so for any $x, y \in X^{*}$,

$$
\begin{aligned}
& \overline{x u y}_{a}=\bar{x}_{a}+\bar{y}_{a}, \overline{x u y}_{b}=\bar{x}_{b}+\bar{y}_{b}, \\
& \overline{x v y}_{a}=\bar{x}_{a}+\bar{y}_{a}, \overline{x v y}_{b}=\bar{x}_{b}+\bar{y}_{b} .
\end{aligned}
$$

This shows that

$$
x u y \in L_{1}^{\prime} \text { if and only if } x v y \in L_{1}^{\prime},
$$

and

$$
x u y \in L_{2} \text { if and only if } x v y \in L_{2} .
$$

Thus, we have

$$
x u y \in L \text { if and only if } x v y \in L .
$$

Hence, we have proved that $u \equiv v\left(P_{L}\right)$.
Now, C_{00} can be divided into two parts, namely, $C_{00} \backslash\{1\}$ and $\{1\}$. In view of the above facts, we see that $C_{00} \backslash\{1\}$ and $\{1\}$ are both P_{L}-classes. Notice that $(b a)^{+} \subseteq C_{00} \backslash\{1\}$, where $(b a)^{+}=(b a)^{*} \backslash\{1\}=\left\{b a,(b a)^{2},(b a)^{3}, \ldots\right\}$, so $C_{00} \backslash\{1\}$ is infinite. Therefore, $L \in \mathscr{D}_{3}$.

4. The decomposition from \mathscr{D}_{1} to \mathscr{D}_{2}

In [12], Shyr and Yu have shown the existence of a disjunctive language which can be partitioned into two parts such that both of them are midst-languages. The disjunctive language can be constructed on X with $|X| \geq 3$. In this section, we will improve their construction on X with $|X| \geq 2$ and simplify the construction of the disjunctive language as well. We will show that the disjunctive language is not only a disjoint union of midst-languages but is also a disjoint union of languages in \mathscr{D}_{2}.

In our study, the free monoid X^{*} sometimes needs to be equipped with a total order. In this paper, we only adopt the standard total order \leq which is defined on X^{*} as follows [10]: For any $u, v \in X^{*}$, if $\lg (u)<\lg (v)$, then $u<v$; if $\lg (u)=\lg (v)$, then \leq is the lexicographical order on X^{n} for all $n \geq 1$. For a word $x \in X^{*}$, we write $\sharp x=m$ if x stands at the m th position in this order.

Recall that $C_{L}(w)$ is the set of L-coefficients of w, for any word w over X and any nonempty language L in X^{+}.

We begin with the following definition.
Definition 4.1. Let $L \subseteq X^{+}, L \neq \emptyset$. Then, we define a binary relation σ_{L} on X^{*} as follows:

$$
\left(w_{1}, w_{2}\right) \in \sigma_{L} \Leftrightarrow C_{L}\left(w_{1}\right) \cap C_{L}\left(w_{2}\right) \neq \emptyset .
$$

If $\left(w_{1}, w_{2}\right) \in \sigma_{L}$, then w_{1} and w_{2} are said to be L-related.
Corollary 4.1. σ_{L} is left compatible and right compatible with the operation on free monoid X^{*}.

Proof. We only consider the left compatibility. For the case of right compatibility, it can be proved analogously. Suppose that $w_{1} \sigma_{L} w_{2}$ holds. Then, by the definition of σ_{L}, there exist ($x_{1}, x_{2}, \ldots, x_{n+1}$) such that w_{1} has an L-representation

$$
w_{1}=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1},
$$

and w_{2} has L-representation

$$
w_{2}=x_{1} y_{1}^{\prime} x_{2} y_{2}^{\prime} \cdots x_{n} y_{n}^{\prime} x_{n+1} .
$$

Now, for any $x \in X^{*}$, we have

$$
\begin{aligned}
& x w_{1}=x x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}^{\prime}, \\
& x w_{2}=x x_{1} y_{1}^{\prime} x_{2} y_{2}^{\prime} \cdots x_{n} y_{n}^{\prime} x_{n+1} .
\end{aligned}
$$

If $I\left(x x_{1}\right) \cap L=\emptyset$, then, we let $x x_{1}=x_{1}^{\prime}$. Now, we see that

$$
\begin{gathered}
x w_{1}=x_{1}^{\prime} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}, \\
x w_{2}=x_{1}^{\prime} y_{1}^{\prime} x_{2} y_{2}^{\prime} \cdots x_{n} y_{n}^{\prime} x_{n+1}
\end{gathered}
$$

are the L-representations of $x w_{1}$ and $x w_{2}$ respectively, so $x w_{1} \sigma_{L} x w_{2}$. If $I\left(x x_{1}\right) \cap L \neq \emptyset$, then $x x_{1}$ has an L-representation

$$
x x_{1}=u_{1} v_{1} \cdots u_{m} v_{m} u_{m+1},
$$

where $v_{i} \in L, I\left(u_{j}\right) \cap L=\emptyset, i=1,2, \ldots, m, j=1,2, \ldots, m+1$. Clearly,

$$
\begin{aligned}
x w_{1} & =u_{1} v_{1} \cdots u_{m} v_{m} u_{m+1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}, \\
x w_{2} & =u_{1} v_{1} \cdots u_{m} v_{m} u_{m+1} y_{1}^{\prime} x_{2} y_{2}^{\prime} \cdots x_{n} y_{n}^{\prime} x_{n+1}
\end{aligned}
$$

are L-representations of $x w_{1}$ and $x w_{2}$ respectively. Hence, we have proved that $x w_{1} \sigma_{L}$ $x w_{2}$.

Lemma 4.1. If L is a solid code, then σ_{L} is a congruence on X^{*}.
Proof. By the definition of σ_{L}, σ_{L} is clearly reflexive and symmetric. If L is a solid code, then σ_{L} is transitive by Proposition 3.5 since, at this point, $\left(w_{1}, w_{2}\right) \in \sigma_{L}$ if and only if $c_{L}\left(w_{1}\right)=c_{L}\left(w_{2}\right)$. Hence, σ_{L} is an equivalence relation on X^{*}. By Corollary 4.1, we have proved that σ_{L} is a congruence on X^{*}.

For the solid codes, we have the following lemma.
Lemma 4.2. Let L be a solid code. Then the following statements are equivalent:
(1) L is finite.
(2) every σ_{L}-class is finite.

Proof. (1) \Rightarrow (2). Suppose that $|L|=m, m \in \mathbb{N}$. For any $w \in X^{*}$, if $I(w) \cap L \neq \emptyset$ and w has the unique L-representation $w=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}$, then $\left|w \sigma_{L}\right|=m^{n}$. Moreover, if $I(w) \cap L=\emptyset$ and w has the trivial L-representation $w=x_{1}$, then $\left|w \sigma_{L}\right|=1$.
$(2) \Rightarrow(1)$. Observe that L is a σ_{L}-class. Hence, every σ_{L}-class is finite implies L is finite.

Now, let $|X| \geq 2$ and $X=\{a, b, \ldots\}$. Consider $u_{1}=a^{3} b^{3}, u_{2}=a^{2} b a b^{2}, v=a^{2} b^{2} a b$. We have

$$
\begin{gathered}
P_{n t}\left(u_{1}\right)=\left\{a, a^{2}, a^{3}, a^{3} b, a^{3} b^{2}\right\}, S_{n t}\left(u_{1}\right)=\left\{b, b^{2}, b^{3}, a b^{3}, a^{2} b^{3}\right\}, \\
P_{n t}\left(u_{2}\right)=\left\{a, a^{2}, a^{2} b, a^{2} b a, a^{2} b a b\right\}, S_{n t}\left(u_{2}\right)=\left\{b, b^{2}, a b^{2}, b a b^{2}, a b a b^{2}\right\}, \\
P_{n t}(v)=\left\{a, a^{2}, a^{2} b, a^{2} b^{2}, a^{2} b^{2} a\right\}, S_{n t}(v)=\left\{b, a b, b a b, b^{2} a b, a b^{2} a b\right\} .
\end{gathered}
$$

Clearly $\left\{u_{1}, u_{2}, v\right\}$ is a solid code. By Corollary 3.2, we obtain that $\left\{u_{i}, v\right\}$ is also a solid code, for $i=1,2$. Thus, the $\left\{u_{i}, v\right\}$-representation of every $w \in X^{+}$is unique, for $i=1,2$.

We define the following sets, where $s \in \mathbb{N}$:

$$
\begin{aligned}
A_{u_{1}, v}(s)= & \left\{w \in X^{+} \mid l_{\left\{u_{1}, v\right\}}(w)=s\right\} . \\
\bar{A}_{u_{1}, v}(s)= & \left\{a b^{6} w a^{6+q_{1}} b a^{6+q_{2}} \cdots b a^{6+q_{s+1}} \mid w \in A_{u_{1}, v}(s) \text { and } \sharp x_{i}=q_{i}, i=1,2, \ldots, s+1,\right. \\
& \text { when the } \left.\left\{u_{1}, v\right\}-\text { representation of } w \text { is } w=x_{1} y_{1} x_{2} y_{2} \cdots x_{s} y_{s} x_{s+1}\right\} .
\end{aligned}
$$

$$
A_{u_{1}, v}=\bigcup_{s \geq 1} \bar{A}_{u_{1}, v}\left(2^{s}\right) .
$$

The following lemma is a crucial lemma. The proof can be found in [13]. However, we notice that the proof given in [13] has a possible gap (that is, let $\{u\}$ be a solid code with $u \in\left\{a X^{+} b\right\}$ and $u \notin\left\{a^{+} b, a b^{+}\right\}, \lg (u)=n, n \geq 3$. If $u \in I\left(a^{k} b^{n} w\right)$ for any $k \in \mathbb{N}^{0}$, and any $w \in X^{*}$, then $u \notin I\left(a^{k} b^{n}\right)$. But we notice that there exist such solid codes $\{u\}$ such that $u \in I\left(a^{k} b^{n}\right)$, for example, let $n=6, k \geq 3$. Then by the above discussion, $\left\{u=a^{3} b^{3}\right\}$ is a solid code, and clearly $u \in I\left(a^{k} b^{6}\right)$). Therefore, in the following revised proof of this lemma, it contains the consideration for $u \in I\left(a^{k} b^{n}\right)$.
Lemma 4.3. [13, Lemma 3.11] Let $\{u, v\}$ be a solid code, $\{u, v\} \subseteq\left(a X^{+} b \cap X^{n}\right)$ for some $n \geq 3$, and $\{u, v\} \cap\left\{a^{+} b, a b^{+}\right\}=\emptyset, w_{1}, w_{2} \in X^{*}$. If $\left(w_{1}, w_{2}\right) \notin \sigma_{\{u, v\}}$, then for any $i, j, k \in$ \mathbb{N}^{0},

$$
\left(u^{i} v^{j} a^{k} b^{n} w_{1}, u^{i} v^{j} a^{k} b^{n} w_{2}\right) \notin \sigma_{\{u, v\}} .
$$

Proof. (revised) Let $z=u^{i} v^{j} a^{k} b^{n} w_{1}$ and $z^{\prime}=u^{i} v^{j} a^{k} b^{n} w_{2}$. We first suppose that $\left(z, z^{\prime}\right) \in$ $\sigma_{\{u, v\}}$. Then, the $\{u, v\}$-representations of z and z^{\prime} are

$$
z=x_{1} y_{1} x_{2} y_{2} \cdots x_{m} y_{m} x_{m+1}
$$

and

$$
z^{\prime}=x_{1} y_{1}^{\prime} x_{2} y_{2}^{\prime} \cdots x_{m} y_{m}^{\prime} x_{m+1} .
$$

Thus, $x_{1}=x_{2}=\cdots=x_{i+j}=1$, and the $\{u, v\}$-representations of $a^{k} b^{n} w_{1}$ and $a^{k} b^{n} w_{2}$ are

$$
a^{k} b^{n} w_{1}=x_{i+j+1} y_{i+j+1} \cdots x_{m} y_{m} x_{m+1}
$$

and

$$
a^{k} b^{n} w_{2}=x_{i+j+1} y_{i+j+1}^{\prime} \cdots x_{m} y_{m}^{\prime} x_{m+1}
$$

On the one hand, if $I\left(a^{k} b^{n}\right) \cap\{u, v\} \neq \emptyset$, then by our hypothesis and the $\{u, v\}$-representations of $a^{k} b^{n} w_{1}$ and $a^{k} b^{n} w_{2}$, we have $a^{k} b^{n}=x_{i+j+1} y_{i+j+1} b^{p}$ with $1<p<n-1$, and b^{p} is a prefix of x_{i+j+2} (that is, $x_{i+j+2}=b^{p} x, x \in X^{*}$). Hence, the $\{u, v\}$-representations of w_{1} and w_{2} have the forms

$$
w_{1}=x_{i+j+2}^{\prime} y_{i+j+2} \cdots x_{m} y_{m} x_{m+1}
$$

and

$$
w_{2}=x_{i+j+2}^{\prime} y_{i+j+2}^{\prime} \cdots x_{m} y_{m}^{\prime} x_{m+1}
$$

with $b^{p} x_{i+j+2}^{\prime}=x_{i+j+2}, x_{i+j+2}^{\prime} \in X^{*}$. On the other hand, if $I\left(a^{k} b^{n}\right) \cap\{u, v\}=\emptyset$, then from the $\{u, v\}$-representations of $a^{k} b^{n} w_{1}$ and $a^{k} b^{n} w_{2}$ again, $a^{k} b^{n}$ is a prefix of x_{i+j+1} or x_{i+j+1} is a proper prefix of $a^{k} b^{n}$ (that is, $x_{i+j+1} x=a^{k} b^{n}, x \in X^{+}$). We now claim that x_{i+j+1} is not the proper prefix of $a^{k} b^{n}$, for otherwise, if $x_{i+j+1} a^{k^{\prime}} b^{n}=a^{k} b^{n}, k^{\prime} \geq 1$, then by the hypothesis $\lg (u)=\lg (v)=n$, we have $y_{i+j+1} x=a^{k^{\prime}} b^{n}, x \in X^{+}$. This result contradicts to $I\left(a^{k} b^{n}\right) \cap\{u, v\}=\emptyset$; if $x_{i+j+1} b^{n^{\prime}}=a^{k} b^{n}, 1 \leq n^{\prime} \leq n$, then y_{i+j+1} begins with letter b, this contradicts to $\{u, v\} \subseteq a X^{+} b$. This result hence shows that $a^{k} b^{n}$ is the prefix of x_{i+j+1}. Hence, the $\{u, v\}$-representations of w_{1} and w_{2} are

$$
w_{1}=x_{i+j+1}^{\prime} y_{i+j+1} \cdots x_{m} y_{m} x_{m+1} \text { and } w_{2}=x_{i+j+1}^{\prime} y_{i+j+1}^{\prime} \cdots x_{m} y_{m}^{\prime} x_{m+1}
$$

where $a^{k} b^{n} x_{i+j+1}^{\prime}=x_{i+j+1}, x_{i+j+1}^{\prime} \in X^{*}$.
Both of the above two cases imply that $\left(w_{1}, w_{2}\right) \in \sigma_{\{u, v\}}$. Thus, we arrive at a contradiction and our proof is completed.

We state the following proposition.
Proposition 4.1. $P_{A_{u_{1}, v}}=\sigma_{\left\{u_{1}, v\right\}}$.
Proof. Let w_{1} and w_{2} be two words over $X,\left(w_{1}, w_{2}\right) \notin \sigma_{\left\{u_{1}, v\right\}}$. Then, we will show that $w_{1} \not \equiv w_{2}\left(P_{A_{u_{1}, v}}\right)$. Consider $z_{1}=u_{1}^{i} v^{j} a b^{6} w_{1}$ and $z_{2}=u_{1}^{i} v^{j} a b^{6} w_{2}$. By Lemma 4.3, we have $\left(z_{1}, z_{2}\right) \notin \sigma_{\left\{u_{1}, v\right\}}$. Now, we choose i and j such that $l_{\left\{u_{1}, v\right\}}\left(z_{1}\right)=2^{t}$ for some $t \in \mathbb{N}$. Let the $\left\{u_{1}, v\right\}$-representation of z_{1} be

$$
z_{1}=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}
$$

$n=2^{t}$ and let the $\left\{u_{1}, v\right\}$-representation of z_{2} be

$$
z_{2}=x_{1}^{\prime} y_{1}^{\prime} x_{2}^{\prime} y_{2}^{\prime} \cdots x_{m}^{\prime} y_{m}^{\prime} x_{m+1}^{\prime}
$$

for some $m \in \mathbb{N}^{0}$. Since $\left(z_{1}, z_{2}\right) \notin \sigma_{\left\{u_{1}, v\right\}}$, we have $n \neq m$, or $n=m$ but $x_{h} \neq x_{h}^{\prime}$ for some h, $1 \leq h \leq n+1$. Let $\sharp x_{p}=q_{p}, p=1,2, \cdots, n+1$. Then by the construction of $A_{u_{1}, v}$, we have

$$
\overline{z_{1}}=a b^{6} z_{1} a^{6+q_{1}} b a^{6+q_{2}} b \cdots a^{6+q_{n+1}} \in \bar{A}_{u_{1}, v}\left(2^{t}\right),
$$

and

$$
\overline{z_{2}}=a b^{6} z_{2} a^{6+q_{1}} b a^{6+q_{2}} b \cdots a^{6+q_{n+1}} \notin \bar{A}_{u_{1}, v}\left(2^{s}\right), \text { for each } s \in \mathbb{N} .
$$

Hence $\overline{z_{1}} \not \equiv \overline{z_{2}}\left(P_{A_{u_{1}, v}}\right)$. It follows that $z_{1} \not \equiv z_{2}\left(P_{A_{u_{1}, v}}\right)$, and hence $w_{1} \not \equiv w_{2}\left(P_{A_{u_{1}, v}}\right)$. So

$$
P_{A_{u_{1}, v}} \subseteq \sigma_{\left\{u_{1}, v\right\}} .
$$

We now proceed to prove the converse statement of the above proposition. We first suppose that w_{1} and w_{2} are two different words over $X,\left(w_{1}, w_{2}\right) \in \sigma_{\left\{u_{1}, v\right\}}$. Since $\sigma_{\left\{u_{1}, v\right\}}$ is a congruence, $\left(x w_{1} y, x w_{2} y\right) \in \sigma_{\left\{u_{1}, v\right\}}$ for any $x, y \in X^{*}$. From the definition of $\sigma_{\left\{u_{1}, v\right\}}$, we have

$$
\begin{aligned}
& x w_{1} y=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}, \\
& x w_{2} y=x_{1} y_{1}^{\prime} x_{2} y_{2}^{\prime} \cdots x_{n} y_{n}^{\prime} x_{n+1} .
\end{aligned}
$$

If $x w_{1} y$ is in some $\bar{A}_{u_{1}, v}\left(2^{t}\right), t \in \mathbb{N}$, then $x w_{1} y=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}$ has the form $a b^{6} w^{\prime} a^{6+q_{1}}$ $b a^{6+q_{2}} b \cdots a^{6+q_{2} t+1}$, where $w^{\prime} \in X^{*}, q_{i} \in \mathbb{N}, i=1,2, \ldots, 2^{t}+1$. Since $I\left(a b^{6}\right) \cap\left\{u_{1}, v\right\}=\emptyset$ by the definitions of u_{1} and v, similar to the proof of Lemma 4.3, we have $a b^{6} x_{1}^{\prime}=x_{1}, x_{1}^{\prime} \in X^{*}$. Similarly, we have $x_{n+1}^{\prime} a^{6+q_{1}} b a^{6+q_{2}} b \cdots a^{6+q_{2} t+1}=x_{n+1}, x_{n+1}^{\prime} \in X^{*}$. Thus, $x w_{1} y$ and $x w_{2} y$ can be written as

$$
\begin{align*}
& a b^{6} x_{1}^{\prime} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}^{\prime} a^{6+q_{1}} b a^{6+q_{2}} b \cdots a^{6+q_{2} t+1}, \tag{4.1}\\
& a b^{6} x_{1}^{\prime} y_{1}^{\prime} x_{2} y_{2}^{\prime} \cdots x_{n} y_{n}^{\prime} x_{n+1}^{\prime} a^{6+q_{1}} b a^{6+q_{2}} b \cdots a^{6+q_{2 t+1}}, \tag{4.2}
\end{align*}
$$

respectively. By our assumption that $x w_{1} y \in \bar{A}_{u_{1}, v}\left(2^{t}\right)$, we have $n=2^{t}$ in (4.1), and $\sharp x_{1}^{\prime}=$ $q_{1}, \sharp x_{i}=q_{i}, i=2, \ldots, 2^{t}, \sharp x_{2^{t}+1}^{\prime}=q_{2^{t}+1}$. This means that $x w_{2} y \in \bar{A}_{u_{1}, v}\left(2^{t}\right)$. Dually, it can be proved that $x w_{1} y \in \bar{A}_{u_{1}, v}\left(2^{t}\right)$ from the fact that $x w_{2} y \in \bar{A}_{u_{1}, v}\left(2^{t}\right), t \in \mathbb{N}$. This shows that $x w_{1} y \in \bar{A}_{u_{1}, v}\left(2^{t}\right)$ if and only if $x w_{2} y \in \bar{A}_{u_{1}, v}\left(2^{t}\right)$. Hence, $w_{1} \equiv w_{2}\left(P_{A_{u_{1}, v}}\right)$ and so

$$
\sigma_{\left\{u_{1}, v\right\}} \subseteq P_{A_{u_{1}, v}} .
$$

Proposition 4.2. The following statements always hold.
(1) $u_{1}^{i} v^{j} \equiv v^{j} u_{1}^{i}\left(P_{A_{u_{1}, v}}\right)$, for all $i, j \in \mathbb{N}^{0}$.
(2) $A_{u_{1}, v}$ is an f-disjunctive language.

Proof. (1) Clearly, $\left(u_{1}^{i} v^{j}, \nu^{j} u_{1}^{i}\right) \in \sigma_{\left\{u_{1}, v\right\}}$, for all $i, j \in \mathbb{N}^{0}$, by Proposition 4.1, the result holds.
(2) By Proposition 4.1, $P_{A_{u_{1}, v}}=\sigma_{\left\{u_{1}, v\right\}}$ and by Lemma 4.2, every $\sigma_{\left\{u_{1}, v\right\}}$-class contains only finite elements. This shows that $A_{u_{1}, v}$ is f-disjunctive.

By Proposition 4.2, we have $A_{u_{1}, v} \in \mathscr{D}_{2}$, it is clear that $A_{u_{1}, v}$ is a midst-language. Similarly, by replacing u_{1} with u_{2}, the languages $A_{u_{2}, v}(s), \bar{A}_{u_{2}, v}(s), A_{u_{2}, v}$ are defined respectively. Clearly, Proposition 4.2 is also valid for $A_{u_{2}, v}$. Thus, $A_{u_{2}, v} \in \mathscr{D}_{2}$.

Let $B_{1}=A_{u_{1}, v}\{b\}, B_{2}=\{b\} A_{u_{2}, v}$. Then, by Lemma 3.1 and Lemma 4.3 of [12], B_{1} and B_{2} are both in \mathscr{D}_{2}. Clearly, B_{1} and B_{2} are disjoint. We now show that $B_{1} \cup B_{2}$ is a disjunctive language.

Proposition 4.3. The language $B_{1} \cup B_{2}$ is disjunctive.

Proof. Let w_{1}, w_{2} be two words over X such that $\left(w_{1}, w_{2}\right) \notin \sigma_{\left\{u_{1}, v\right\}}$ and $\left(w_{1}, w_{2}\right) \notin \sigma_{\left\{u_{2}, v\right\}}$. Then by Proposition 4.1, we have $w_{1} \not \equiv w_{2}\left(P_{A_{u_{1}, v}}\right), w_{1} \not \equiv w_{2}\left(P_{A_{u_{2}, v}}\right)$. This means that there exist $x, y \in X^{*}$ such that $x w_{1} y \in A_{u_{1}, v}, x w_{2} y \notin A_{u_{1}, v}$ or vice versa. Hence, by the construction of $B_{1}, x w_{1} y b \in B_{1}, x w_{2} y b \notin B_{1}$ or vice versa. Moreover, by the construction of $B_{2}, x w_{1} y b \notin$ B_{2} and $x w_{2} y b \notin B_{2}$. We have $x w_{1} y b \in B_{1} \cup B_{2}, x w_{2} y b \notin B_{1} \cup B_{2}$ or vice versa. This implies that $w_{1} \not \equiv w_{2}\left(P_{B_{1} \cup B_{2}}\right)$. Similarly, when $w_{1} \not \equiv w_{2}\left(P_{A_{u_{2}, v}}\right)$, we also have $w_{1} \not \equiv w_{2}\left(P_{B_{1} \cup B_{2}}\right)$.

Let w_{1}, w_{2} be two words over X such that $\left(w_{1}, w_{2}\right) \in \sigma_{\left\{u_{1}, v\right\}}$ or $\left(w_{1}, w_{2}\right) \in \sigma_{\left\{u_{2}, v\right\}}$. Then by the definition of u_{1}, u_{2}, v, there exist no $w_{1}, w_{2} \in X^{*}, w_{1} \neq w_{2}$ such that $\left(w_{1}, w_{2}\right) \in \sigma_{\left\{u_{1}, v\right\}}$ and $\left(w_{1}, w_{2}\right) \in \sigma_{\left\{u_{2}, v\right\}}$. Assume that $\left(w_{1}, w_{2}\right) \in \sigma_{\left\{u_{1}, v\right\}}$ but $\left(w_{1}, w_{2}\right) \notin \sigma_{\left\{u_{2}, v\right\}}$. Now, by applying Proposition 4.1 , we see that $w_{1} \not \equiv w_{2}\left(P_{A_{u_{2}}, v}\right)$. Hence, there exist $x, y \in X^{*}$ such that $x w_{1} y \in A_{u_{2}, v}, x w_{2} y \notin A_{u_{2}, v}$ or vice versa. Thus, we have $b x w_{1} y \in B_{2}, b x w_{2} y \notin B_{2}$ or vice versa. By the construction of B_{1} again, we also have $b x w_{1} y \notin B_{1}$ and $b x w_{2} y \notin B_{1}$. Hence, we deduce that $b x w_{1} y \in B_{1} \cup B_{2}, b x w_{2} y \notin B_{1} \cup B_{2}$ or vice versa. This shows that $w_{1} \not \equiv w_{2}\left(P_{B_{1} \cup B_{2}}\right)$. Similarly, if $\left(w_{1}, w_{2}\right) \in \sigma_{\left\{u_{2}, v\right\}}$ and $\left(w_{1}, w_{2}\right) \notin \sigma_{\left\{u_{1}, v\right\}}$, one also has $w_{1} \not \equiv$ $w_{2}\left(P_{B_{1} \cup B_{2}}\right)$.

Therefore, $B_{1} \cup B_{2}$ is indeed a disjunctive language.

5. Some questions related to the decompositions of r-disjunctive languages

We first observe that Proposition 1.4^{\prime} can be modified into the following form.
Proposition 1.4". Let L be a disjunctive language over $X, L=L_{1} \cup L_{2}$. Then the following statements hold.
(1) $\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}\right|=1$, or
(2) $\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}\right|=2$, or
(3) $\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}_{r} \backslash \mathscr{D}$.

By the main result in [6], we see immediately that any disjunctive language L has a decomposition of $L=L_{1} \dot{\cup} L_{2}$ such that $L_{1} \in \mathscr{R}_{r}, L_{2} \in \mathscr{D}$. At this time, we have $\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}\right|=$ 1 ; and any disjunctive language has the decomposition of case (2), in fact, the disjunctive language L is dense and so by [3] (a dense language can be divided into two disjoint disjunctive languages), L has the decomposition $L=L_{1} \dot{U} L_{2}$ such that $\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}\right|=2$; for the case (3), not every disjunctive language has this decomposition, but it has been shown that there exist such languages, see Section 4 . Meanwhile, for those r-disjunctive languages, we see that any f-disjunctive (t-disjunctive, r-disjunctive) language L has the decomposition of $L=L_{1} \cup L_{2}$ and $\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}_{f}\right|=1\left(\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}_{t}\right|=1,\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}_{r}\right|=1\right)$ by Proposition 2.1. Now, we can also see that there exist f-disjunctive(t-disjunctive) languages L such that $L=L_{1} \cup L_{2}$ and $\left\{L_{1}, L_{2}\right\} \subseteq \mathscr{D}_{r} \backslash \mathscr{D}_{f}\left(\mathscr{D}_{r} \backslash \mathscr{D}_{t}\right)$, see Section 3. But we still do not know whether every f-disjunctive (t -disjunctive, r -disjunctive) language L has the decomposition $L=L_{1} \cup L_{2}$ with $\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}_{f}\right|=2\left(\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}_{t}\right|=2,\left|\left\{L_{1}, L_{2}\right\} \cap \mathscr{D}_{r}\right|=2\right)$?

In closing this paper, we point out that the above question also leads to a more special question.

Does every f-disjunctive (t-disjunctive, r-disjunctive) language L can be decomposed into $L=L_{1} \dot{U} L_{2}$ such that $P_{L}=P_{L_{1}}=P_{L_{2}}$?

We remark that for disjunctive languages, the above two questions are actually the same question, but for f -disjunctive (t -disjunctive, r -disjunctive) languages, they are different
questions.
Acknowledgement. Yuqi Guo is the corresponding author of the article. The research was supported by the National Natural Science Foundation of China (No. 11371177). The authors would like to thank the referees for their revision suggestions.

References

[1] Y. Q. Guo, C. M. Reis and G. Thierrin, Relatively f-disjunctive languages, Semigroup Forum 37 (1988), no. 3, 289-299.
[2] Y. Q. Guo, H. J. Shyr and G. Thierrin, F-disjunctive language, Internat. J. Comput. Math. 18 (1986), $219-237$.
[3] Y. Q. Guo, G. W. Xu and G. Thierrin, Disjunctive decomposition of languages, Theoret. Comput. Sci. 46 (1986), no. 1, 47-51.
[4] J. M. Howie, Automata and Languages, Oxford Science Publications, Oxford Univ. Press, New York, 1991.
[5] G. Lallement, Semigroups and Combinatorial Applications, John Wiley \& Sons, New York, 1979.
[6] Y. Liu, K. P. Shum and Y. Q. Guo, Relatively regular languages and thin codes, European J. Combin. 29 (2008), no. 1, 261-267.
[7] Y. Liu, Studies on some languages and their syntactic semigroups, Doctoral Dissertation of Zhongshan University, 2006.
[8] L. W. Mu, Some kinds of generalized disjunctive languages, Dissertation of Harbin Institute of Technology, 1988.
[9] C. M. Reis and H. J. Shyr, Some properties of disjunctive languages on a free monoid, Inform. and Control 37 (1978), no. 3, 334-344.
[10] H. J. Shyr, Free Monoids and Languages, third edition, Hon Min Book Co., Taichung, 2001.
[11] H. J. Shyr, Disjunctive languages on a free monoid, Information and Control 34 (1977), no. 2, 123-129.
[12] H. J. Shyr and S. S. Yu, Midst-languages, Soochow J. Math. 24 (1998), no. 2, 113-130.
[13] H. J. Shyr and S. S. Yu, Solid codes and disjunctive domains, Semigroup Forum 41 (1990), no. 1, 23-37.
[14] H. J. Shyr, A characterization of dense languages, Semigroup Forum 30 (1984), no. 2, 237-240.

[^0]: Communicated by Lee See Keong.
 Received: July 28, 2013; Revised: March 3, 2014.

