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1. Introduction and preliminaries

Let X be a nonempty finite set called alphabet in which the elements are called letters. Let
X∗ be the free monoid generated by an alphabet X . Then, the elements and subsets of X∗

are called the words and languages over X . The identity of the free monoid X∗ is called an
empty word and is denoted by 1. Let X+ = X∗ \ {1} be the free semigroup generated by
X . The length of a word w over X is the number of letters occurring in w and is denoted by
lg(w). We denote the cardinality of a language L over X by |L|. For any two languages A,
B over X , the concatenation AB of A and B is the language {xy|x ∈ A,y ∈ B} over X . For a
given language L over X , the relation PL on X∗ defined by

x≡ y(PL) ⇔ ′′(∀u,v ∈ X∗) uxv ∈ L⇔ uyv ∈ L′′

is a congruence on free monoid X∗ and is known as the principal congruence determined
by L. The quotient monoid X∗/PL is called the syntactic monoid of L and is denoted by
Syn(L). For any word u over X , we often use [u]L to denote the PL-class of X∗ containing u.
As usual, the set of all positive (nonnegative) integers is denoted by N(N0).

We call a language L over X disjunctive [9] if PL is the equality relation on X∗. Let D be
the class of all disjunctive languages over X . A language L over X is called regular [5, 10]
if the index of PL (i.e., the number of PL-classes of X∗) is finite. Let R be the class of all
regular languages over X . Then we call a language L over X a midst-language [12] if L is
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neither regular nor disjunctive. Let M be the class of all midst-languages over X . Then, we
have the following proposition.

Proposition 1.1. [11] Let X be an alphabet with |X | = 1. Then M = /0, that is, over X, a
language is disjunctive if and only if it is not regular.

But when |X | ≥ 2, the case is completely different from |X |= 1 [6]. In this case, M 6= /0,
that is, {R ∪ D}( 2X∗ .

We call a language L over X dense if X∗wX∗
⋂

L 6= /0 for any w ∈ X∗; otherwise, the
language L is said to be thin. According to Reis and Shyr [10], a language L is dense if and
only if L contains a disjunctive language. Denote the class of all dense languages over X by
Dd .

The generalized disjunctive languages have been considered by a number of authors
in the literature, such as, Guo, Reis and Thierrin [1] in 1988 called a language L over X
relatively f-disjunctive (relatively disjunctive), that is, rf-disjunctive for short (r-disjunctive
for short), if there exists a dense language D over X such that for all u ∈ X∗, |[u]L∩D|< ∞

(|[u]L ∩D| ≤ 1). It has been shown in [1] that L is rf-disjunctive if and only if L is r-
disjunctive, if and only if either X∗ has no dense PL-classes or has infinitely many dense
PL-classes. Let Dr be the class of all r-disjunctive languages over X . Then, the concept of
relatively regular language was first introduced by Liu, Shum and Guo in 2008 (see [6]).
They called a language L over X relatively regular, that is, r-regular for short, if Syn(L) has
a finite ideal. Let Rr be the class of all r-regular languages over X .

This paper is based on the following background.

(I) Obviously, when |X | = 1, Dr = D , Rr = R. In [6], the authors proved the following
fact which forms a generalization of Proposition 1.1 to any alphabet X from |X |= 1.

Proposition 1.2. [6] Let X be an alphabet. Then a language over X is r-disjunctive if and
only if it is not r-regular.

Leading up to [1], [6], some special cases of r-disjunctive languages have been defined.
In particular, a language L over an alphabet X was first called by Guo, Shyr and Thierrin [2]
f-disjunctive if each PL-class of X∗ is finite, and later, Mu [8] called a language L over X t-
disjunctive if each PL-class of X∗ is thin. Denote the class of all f-disjunctive (t-disjunctive)
languages over X by D f (Dt).

The following proposition is useful in this paper.

Proposition 1.3. [1, 7]
(1) If |X |= 1, then

D = D f = Dt = Dr.

(2) If |X | ≥ 2, then
D ( D f ( Dt ( Dr ( Dd .

Some more characterizations of r-disjunctive languages can be found in [1, 2, 6, 8, 9, 11].

(II) The following result is a known result on some decompositions of disjunctive languages.

Proposition 1.4. [10] Let L be a disjunctive language over X, L = L1∪̇L2 (i.e., L = L1∪L2
and L1∩L2 = /0). Then, the following statements hold.
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(1) {L1,L2}∩D 6= /0, or
(2) {L1,L2} ⊆Dd \D .

In the case (2) of Proposition 1.4, each one of L1 and L2 is not r-regular language, for
if not, then another one of them must be disjunctive by [6]. This fact clearly contradicts to
L1,L2 6∈D . Hence, Proposition 1.4 can be modified to the following form.

Proposition 1.4′. Let L be a disjunctive language over X, L = L1∪̇L2. Then, the following
statements hold.

(1) {L1,L2}∩D 6= /0, or
(2)′ {L1,L2} ⊆Dr \D .

(III) Proposition 1.4′ actually says that the disjoint union decompositions of disjunctive
languages have two cases. Any disjunctive language has the decomposition of the case (1)
in Proposition 1.4. As to the decomposition in the case (2) of Proposition 1.4, not every
disjunctive language has this decomposition, for instance, discrete disjunctive language,
that is, the disjunctive language L with |L∩Xn| ≤ 1 for any n ∈ N [10]. But Shyr and Yu
have shown in [12] that there exists such a disjunctive language L over X with |X | ≥ 3 so
that L = L1∪̇L2, {L1,L2} ⊆Dd \D , to be more precise, we have

(1.1) {L1,L2} ⊆D f \D .

In this paper, we will further discuss in Section 4 about the existence case mentioned by
Shyr and Yu in [12]; we will also discuss the decompositions of languages in D f ,Dt and
Dr like Proposition 1.4′ in Section 2; and in Section 3, we will show that the languages in
D f ,Dt have similar decompositions just as the case (2)′ in Proposition 1.4′ with (1.1).

Making contact with the above background of this paper, we have started to apply some
results of this paper to our following work to describe the disjunctive degree in some sense
of languages, this shows one spot of the potential value of this paper.

For terminologies and notations not mentioned in this paper, the reader is referred to
[4, 5, 10].

In the remaining part of the paper, we always assume that |X | ≥ 2.

2. Some decompositions of r-disjunctive languages(I)

In the following theorem, we consider the decompositions of languages in D f ,Dt and Dr
which are similar to Proposition 1.4′.

Theorem 2.1. Let L ∈D f (Dt , Dr), L = L1∪̇L2. Then the following statements hold:
(1) {L1,L2}∩D f (Dt , Dr) 6= /0, or
(2) {L1,L2} ⊆Dr \D f (Dr \Dt , Dr \Dr).

Remark 2.1. If we divide a language L ∈Dr into L1 and L2, then L1,L2 must satisfy The-
orem 2.1(1). Otherwise, both of L1,L2 are not in Dr, by Proposition 1.2, they are in Rr.
Hence, L is in Rr because by [6], Rr is closed under the operation of union, this is clearly a
contradiction. Here, we write {L1,L2} ⊆Dr \Dr to seek a unity of expression with the D f
and Dt languages.

In proving the above theorem, we need the following proposition.
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Proposition 2.1.
(1) If L ∈Dt (D f ,Dr), R⊆ L and R ∈Rr, then L\R ∈Dt (D f ,Dr).
(2) If L ∈Dt (D f ,Dr), R ∈Rr and L∩R = /0, then L∪R ∈Dt (D f ,Dr).

Proof. By [6], Proposition 2.1 holds for L ∈ D f and L ∈ Dr. Here we just discuss about
L ∈Dt .

(1) Suppose that L ∈ Dt . Then for any dense language {x1,x2, . . . ,xm, . . .}, there exist
xi,x j, i 6= j such that

xi 6≡ x j(PL).

Since R ∈Rr, by Lemma 3.3 of [6], there exist a w ∈ X∗, and an n ∈N such that (wX∗w)(n)

is contained in a PR-class, and whence

(wx1w)n ≡ (wx2w)n ≡ ·· · ≡ (wxmw)n ≡ ·· ·(PR).

Notice that {(wxiw)n|i = 1,2, . . .} is dense and (wxiw)n 6= (wx jw)n, since xi 6= x j when
i 6= j. Then by the definition of t-disjunctive languages, there exist (wxiw)n and (wx jw)n,
i 6= j such that

(wxiw)n 6≡ (wx jw)n(PL).

That is, for some u,v ∈ X∗, we have

u(wxiw)nv ∈ L, u(wx jw)nv 6∈ L,

or vice versa. We now suppose that the former case hold, so u(wx jw)nv 6∈ R. Then this
result leads to u(wxiw)nv 6∈ R since (wxiw)n ≡ (wx jw)n(PR). Thus u(wxiw)nv ∈ L \R, but
u(wx jw)nv 6∈ L\R. This shows that

(wxiw)n 6≡ (wx jw)n(PL\R),

and hence
xi 6≡ x j(PL\R).

Thus, L\R ∈Dt .
(2) This part follows directly from (1) because for any language L over X , PL = PL, where

L is the complement of L.

Corollary 2.1. If L ∈Dr \Dt and R⊆ L and R ∈Rr, then L\R ∈Dr \Dt .

We now return to prove Theorem 2.1.
Proof of Theorem 2.1. We only prove that L ∈ D f (Dt). Assume that neither L1 nor L2 is
f-disjunctive( t-disjunctive) language and suppose that L2 is not an r-disjunctive language.
Then L2 is an r-regular language. Now, we see that L1 is f-disjunctive( t-disjunctive)language
by Proposition 2.1. This result contradicts to our assumption. Hence, L2 is an r-disjunctive
language. Similarly, L1 is also an r-disjunctive language.

Any f-disjunctive (t-disjunctive, r-disjunctive) language has the decomposition of the
case (1) in Theorem 2.1 by Proposition 2.1. For the languages in D f and Dt , we naturally
ask the question: Does the decomposition of the languages that satisfying Theorem 2.1(2)
exist? More precisely, we ask whether the decomposition which is similar to (1.1) exists
or not? We will give an affirmative answer to the above questions in section 3. In order to
simplify our description, we let D1 = D ,D2 = D f \D ,D3 = Dt \D f ,D4 = Dr \Dt . Hence,
Dr is a disjoint union of D1,D2,D3 and D4.
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3. Some decompositions of r-disjunctive languages(II)—Decomposition from Di to Di+1,
i = 2,3

First of all, we give the following preparations.
Let L be a nonempty language over an alphabet X . We call L contained in X+ a code if for

any xi,y j ∈ L, i = 1,2, . . . ,m, j = 1,2, . . . ,n, x1x2 · · ·xm = y1y2 · · ·yn implies that m = n and
xi = yi, i = 1,2, . . . ,n. We call L a prefix language (suffix language) if for any x ∈ L,xy 6∈ L
for all y∈ X+(yx 6∈ L, for all y∈ X+). It is immediate to see that each prefix(suffix) language
contained in X+ is a code. Hence, we also call a prefix (suffix) language contained in X+ a
prefix (suffix) code. Obviously, a singleton-set of X+ is a prefix code and is a suffix code as
well.

For prefix codes and suffix codes, we have the following lemma.

Lemma 3.1. [2] Let L be a language over X and P(S) a prefix(suffix) code over X. Then for
any u,v ∈ X∗, u 6≡ v(PL) implies u 6≡ v(PPL(PLS)), i. e. PPL(PLS)⊆ PL.

Corollary 3.1. If L is a t-disjunctive language over X and P(S) is a prefix(suffix) code over
X, then PL(LS) is t-disjunctive.

Similar consequence for disjunctive languages and f-disjunctive languages can be found
in [10] and [2] respectively.

Proposition 3.1. Let L be a language over X. If L is not f-disjunctive, then for any finite
language F of X∗, the language FL and LF are not f-disjunctive.

Proof. We just consider the language FL, the conclusion for LF can be dually obtained.
Suppose that F 6= /0 and F 6= {1} (the conclusion is trivial when F = /0 and F = {1}).

Let m = max{lg(x)|x ∈ F} ∈ N. Suppose that L is not an f-disjunctive language. Then
there exist an infinite language {x1,x2, . . . ,xn, . . .} such that

x1 ≡ x2 ≡ ·· · ≡ xn ≡ ·· ·(PL).

Since PL is a congruence,

wmx1 ≡ wmx2 ≡ ·· · ≡ wmxn ≡ ·· ·(PL)

for any w ∈ X+. We now show that

wmx1 ≡ wmx2 ≡ ·· · ≡ wmxn ≡ ·· ·(PFL).

Suppose that there exist wmxi,wmx j ∈{wmx1,wmx2, . . . ,wmxn, . . .} such that wmxi 6≡wmx j(PFL).
Then, there exist u,v ∈ X∗ such that uwmxiv ∈ FL and uwmx jv 6∈ FL or vice verse. Without
loss of generality, we may let uwmxiv ∈ FL and uwmx jv 6∈ FL.

Consider the following two cases:
(1) u = u1u2, for some u1 ∈ X+, u2 ∈ X∗ such that u1 ∈ F , u2wmxiv ∈ L. Clearly,

u2wmx jv 6∈ L. Hence, xi 6≡ x j(PL), which is a contradiction.
(2) uwk1w1 ∈ F , w2wk2xiv ∈ L, where w1 ∈ X+, w2 ∈ X∗, w = w1w2, k1,k2 ∈ N0 and

k1 + k2 +1 = m. Again w2wk2x jv 6∈ L and xi 6≡ x j(PL), and so a contradiction.
This shows that the conclusion

wmx1 ≡ wmx2 ≡ ·· · ≡ wmxn ≡ ·· ·(PFL)

holds and hence FL is not an f-disjunctive language.
The following proposition is a similar proposition for t-disjunctive languages.
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Proposition 3.2. Let L be a language over X. If L is not a t-disjunctive language, then for
any finite language F of X∗, the language FL and LF are not t-disjunctive.

Proof. The proof of this proposition is similar to the proof of Proposition 3.1.
Similar consequence of non-disjunctive languages can be found in [12].
In the following lemma, we will show that there are languages in D2 which are unions

of two disjoint languages in D3, see the following Proposition 3.3 and Proposition 3.4.
We now use wx to denote the number of letters x occurring in the word w over X . Then,

we establish the following lemma.

Lemma 3.2. Let X = {x1,x2, . . . ,xr}, r ≥ 2,

Lxi = {w ∈ X∗| wx1 ,wx2 , . . . ,wxi−1 ,wxi+1 , . . . ,wxr ∈ I},

where I = {20,21,22, . . . ,2n, . . .}. Then Lxi ∈D3, i = 1,2, . . . ,r.

Proof. For any i ∈ {1,2, . . . ,r}, we assert that the PLxi
-classes are

C j1 j2··· ji−1 ji+1··· jr = {w ∈ X∗| wx1 = j1,wx2 = j2, . . . ,wxi−1 = ji−1,

wxi+1 = ji+1, . . . ,wxr = jr},
j1, . . . , ji−1, ji+1, . . . , jr = 0,1,2, . . .. In fact, suppose u,v ∈ X∗, and

uxs = p, vxs = q,

for some letter xs with xs ∈ X \ {xi}, where p,q ∈ N0, p 6= q. Since p 6= q, we may let
p−q = k, k ∈N. Then for a sufficient large m, m ∈N, we can find xn

s ∈ X∗, n ∈N such that

(xn
s u)xs = n+ p = 2m, 2m−2m−1 > k.

Hence, we have (xn
s v)xs = n+q = n+ p− k = 2m− k, and 2m−1 < 2m− k < 2m.

Consider
z = xn1

t1 xn2
t2 · · ·x

nr−2
tr−2

xn
s u

and
z′ = xn1

t1 xn2
t2 · · ·x

nr−2
tr−2

xn
s v,

where t1, t2, . . . , tr−2 is an arrangement of {1,2, . . . ,r} \ {s, i}, and n1,n2, . . . ,nr−2 ∈ N0.
Choose n1,n2, . . . ,nr−2 such that zxt1

, . . . ,zxtr−2
∈ I, and by the above discussion, we have

zxs = 2m and zxs ∈ I, but z′xs = 2m− k, z′xs 6∈ I. By the construction of Lxi , we have z ∈ Lxi

and z′ 6∈ Lxi , and hence we conclude that u 6≡ v(PLxi
). This result shows that each PLxi

-class
is contained in some C j1 j2··· ji−1 ji+1··· jr , j1, . . . , ji−1, ji+1, . . . , jr ∈ N0. On the other hand, for
any w,w′ ∈C j1 j2··· ji−1 ji+1··· jr , C j1 j2··· ji−1 ji+1··· jr ∈ {C j1 j2··· ji−1 ji+1··· jr | j1, . . . , ji−1, ji+1, . . . , jr ∈
N0}, if u,v ∈ X∗ and uwv ∈ Lxi , then by the construction of Lxi , we have (uwv)xs = uxs +
wxs +vxs ∈ I, s = 1,2, . . . , i−1, i+1, . . . ,r. Since wxs = w′xs for s = 1,2, . . . , i−1, i+1, . . . ,r,
we have (uw′v)xs = uxs +w′xs + vxs = uxs +wxs + vxs ∈ I, s = 1,2, . . . , i−1, i+1, . . . ,r. This
implies that uw′v ∈ Lxi . Dually, for all u,v ∈ X∗, we can deduce that uwv ∈ Lxi from the fact
uw′v ∈ Lxi . Hence, w≡ w′(PLxi

). Thus the assertion holds.
For each C j1 j2··· ji−1 ji+1··· jr ∈ {C j1 j2··· ji−1 ji+1··· jr | j1, . . . , ji−1, ji+1, . . . , jr ∈N0}, we observe

that for every word w in C j1 j2··· ji−1 ji+1··· jr , the wxi is not restricted, and so wxi can be any
number in N0. Since N0 is infinite, C j1 j2··· ji−1 ji+1··· jr is infinite. Moreover, by the definition
of C j1 j2··· ji−1 ji+1··· jr , for all w ∈ C j1 j2··· ji−1 ji+1··· jr , wx1 = j1, where j1 is a given number in
N0, we have for any word u ∈ X∗ with ux1 greater than j1, u is not a subword of any word
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in C j1 j2··· ji−1 ji+1··· jr . This shows that C j1 j2··· ji−1 ji+1··· jr is not dense. Thus C j1 j2··· ji−1 ji+1··· jr is
an infinite but not dense language. This shows that Lxi ∈D3.

Consider the following languages.
Lxr = {w ∈ X∗| wx1 ,wx2 , . . . , wxr−1 ∈ I}, where I = {20,21,22, . . . ,2n, . . .},
Lx1 = {w ∈ X∗| wx2 , . . . , wxr−1 , wxr ∈ I}, where I = {20,21,22, . . . ,2n, . . .}.

By Lemma 3.2, Lxr ,Lx1 ∈D3. Let

L1 = Lxr{xr}, L2 = Lx1{x1}.
Since {xr}, {x1} are suffix codes, by Corollary 3.1, L1,L2 ∈Dt and L1,L2 6∈D f by Propo-
sition 3.1. Thus, we arrive at the following proposition.

Proposition 3.3. L1,L2 ∈D3 and L1∩L2 = /0.

We also have the following proposition.

Proposition 3.4. Let L = L1∪L2. Then L ∈D2.

Proof. To proceed with the proof, we assert that if u ≡ v(PL) for u,v ∈ X∗, u 6= v, then
uxi = vxi for all xi ∈ X , i = 1,2, . . . ,r. In fact, if u,v ∈ X∗, uxs 6= vxs , xs ∈ X \{xr}, then by
the proof of Lemma 3.2, there exist w1,w2 ∈ X∗ such that w1uw2 ∈ Lxr ,w1vw2 6∈ Lxr , and
so w1uw2xr ∈ L1,w1vw2xr 6∈ L1, also by the construction of L2, w1vw2xr 6∈ L2, we have u 6≡
v(PL). If u,v ∈ X∗, uxr 6= vxr , then by the proof of Lemma 3.2 again, there exist w1,w2 ∈ X∗

such that w1uw2 ∈ Lx1 ,w1vw2 6∈ Lx1 , and so we have w1uw2x1 ∈ L2,w1vw2x1 6∈ L2. Now, by
the construction of L1, w1vw2x1 6∈ L1, we see that u 6≡ v(PL). This shows that each PL-class
is contained in some C j1 j2··· jr with j1, j2, . . . , jr ∈ N0, where C j1 j2··· jr = {w ∈ X∗| wx1 =
j1, . . . ,wxi = ji, . . . ,wxr = jr}.

Moreover, for C j1 j2··· jr ∈ {C j1 j2··· jr | j1, . . . , jr ∈ N0} with |C j1 j2··· jr | = 1, by the above
discussions, we have C j1 j2··· jr is a PL-class. For C j1 j2··· jr ∈ {C j1 j2··· jr | j1, . . . , jr ∈ N0} with
|C j1 j2··· jr | ≥ 2. Suppose that u,v ∈C j1 j2··· jr , u ends at letter x1, and v does not end at letter
x1. Then we have the following two cases:

(1) v ends at letter xr,
(2) v does not end at letter xr.

For case (1), in view of the proof in Lemma 3.2, we are able to find some word w1 ∈ X∗

such that
(w1u)xi ∈ I, i = 2, . . . , r, (w1u)x1 6∈ I.

This shows that w1u ∈ Lx1 , by the above assumption and the construction of L2, w1u ∈ L2.
On the other hand, by u,v ∈C j1 j2··· jr , we have

(w1v)xi ∈ I, i = 2, . . . , r, (w1v)x1 6∈ I.

This shows that w1v ∈ Lx1 and w1v 6∈ Lxr . Since v does not end at x1, we have w1v 6∈ L2, and
by the construction of L1, w1v 6∈ L1. Hence, we have u 6≡ v(PL).

For case (2), by using similar arguments as those in case (1), we can obtain u 6≡ v(PL).
Similarly, if u,v ∈ C j1 j2··· jr , u ends at xr, and v does not end at xr, then we also have u 6≡
v(PL). Thus, for C j1 j2··· jr ∈ {C j1 j2··· jr | j1, . . . , jr ∈ N0} with |C j1 j2··· jr | ≥ 2, C j1 j2··· jr can be
divided into three parts:

CI
j1 j2··· jr = {w ∈ X∗| wx1 = j1, . . . ,wxi = ji, . . . ,wxr = jr,

and w ends at xi, i = 2, . . . ,r−1},
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CII
j1 j2··· jr = {w ∈ X∗| wx1 = j1, . . . ,wxi = ji, . . . ,wxr = jr,

and w ends at x1},

CIII
j1 j2··· jr = {w ∈ X∗| wx1 = j1, . . . ,wxi = ji, . . . ,wxr = jr,

and w ends at xr},

and if PL-class is contained in C j1 j2··· jr with |C j1 j2··· jr | ≥ 2, j1, j2, . . . , jr ∈ N0, then it must
be in some CJ

j1 j2··· jr , J ∈ {I, II, III}. On the other hand, if u,v are any two words in CI
j1 j2··· jr ,

|C j1 j2··· jr | ≥ 2, j1, . . . , jr ∈ N0, that is, u,v ∈C j1 j2··· jr and both of u and v end neither at x1
nor at xr, then for any w1,w2 ∈ X∗, (w1uw2)xi = (w1vw2)xi , i = 1,2, . . . ,r. So w1uw2 ∈ Lx1
if and only if w1vw2 ∈ Lx1 , and w1uw2 ∈ Lxr if and only if w1vw2 ∈ Lxr . If w2 = 1, then by
previous assumption, both of w1uw2 and w1vw2 belong neither to L1, nor to L2. If w2 6= 1,
then w1uw2 ∈ L1 if and only if w1vw2 ∈ L1, and w1uw2 ∈ L2 if and only if w1vw2 ∈ L2.
This implies that w1uw2 ∈ L if and only if w1vw2 ∈ L. Both of the two cases show that
u≡ v(PL). So CI

j1 j2··· jr , |C j1 j2··· jr | ≥ 2, j1, . . . , jr ∈N0, is a PL-class. Similarly, we can show
that CII

j1 j2··· jr and CIII
j1 j2··· jr are PL-classes, |C j1 j2··· jr | ≥ 2, j1, . . . , jr ∈ N0.

In view of the above facts, we deduce that for C j1 j2··· jr ∈ {C j1 j2··· jr | j1, . . . , jr ∈N0} with
|C j1 j2··· jr | ≥ 2, the PL-classes are

CI
j1 j2··· jr = {w ∈ X∗| wx1 = j1, . . . ,wxi = ji, . . . ,wxr = jr,

and w ends at xi, i = 2, . . . ,r−1},

CII
j1 j2··· jr = {w ∈ X∗| wx1 = j1, . . . ,wxi = ji, . . . ,wxr = jr,

and w ends at x1},

CIII
j1 j2··· jr = {w ∈ X∗| wx1 = j1, . . . ,wxi = ji, . . . ,wxr = jr,

and w ends at xr}.

Clearly,
|CI

j1 j2··· jr |+ |C
II
j1 j2··· jr |+ |C

III
j1 j2··· jr | = |C j1 j2··· jr |

and
|C j1 j2··· jr | ≤ r j1+ j2+···+ jr .

This shows that L ∈D2.
We will construct a language of the form L = L1∪L2, where L is in D3 and L1,L2 are two

disjoint languages in D4. To this aim, we need some preparations. Recall that a nonempty
language L over X is an infix language if for all x,y,u ∈ X∗, u ∈ L and xuy ∈ L together
imply x = y = 1. Clearly, each infix language contained in X+ is a code, we usually call this
code an infix code.

For any x ∈ X+ with |X | ≥ 2, we let

Pnt(x) = {w ∈ X+ | x = wu f or some u ∈ X+},

Snt(x) = {w ∈ X+ | x = uw f or some u ∈ X+},
and

I(x) = {w ∈ X∗ | x = uwv f or some u,v ∈ X∗}.
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Remark 3.1. We denote the set of all non-trivial prefixes(suffixes) of word x by Pnt(x)
(Snt(x)) and the set of all infixes of word x by I(x).

Definition 3.1. [7, 13] Let L⊆ X+, L 6= /0. Then, we call L a solid code if L is an infix code
and Pnt(u)∩Snt(v) = /0 for every u,v ∈ L.

Corollary 3.2. [13] Any nonempty subset of a solid code is also a solid code.

Definition 3.2. [13] Let L⊆ X+, L 6= /0 and w ∈ X∗. Then, we call the factorization

(3.1) w = x1y1x2y2 · · ·xnynxn+1

an L-representation of w if yi ∈ L, I(x j)∩L = /0, for i = 1,2, . . . ,n, j = 1,2, . . . ,n + 1, n ∈
N0. And we call the case n = 0 in (3.1), that is, w = x1, the trivial L-representation of w.
Obviously, w has the trivial L-representation if and only if I(w)∩L = /0, and at this time, w
has only the trivial L-representation.

We call n in (3.1) an L-length of w, denote the set of L-lengths of w by LL(w) and call
(x1,x2, . . . ,xn,xn+1) in (3.1) an L-coefficient of w, and the set of L-coefficients of w is de-
noted by CL(w).

Proposition 3.5. [12, 13] Let L be a nonempty language in X+. Then the following state-
ments hold.

(1) Any word w over X has L-representation.
(2) Any word w over X has unique L-representation if and only if L is a solid code.

Obviously, if L is a solid code, then for any w ∈ X∗, the L-length of w and L-coefficient
of w are unique, at this time, we denote them by lL(w) and cL(w) respectively.

In the following, we let |X | ≥ 2, and {a,b}⊆ X . Consider {ba}, by the definition of solid
code, {ba} is a solid code. Now, by Proposition 3.5, for any word w ∈ X∗, w has unique
{ba}-representation

w = x1y1 · · ·xnynxn+1,

where yi = ba, i = 1,2, . . . ,n, and ba 6∈ I(x j), j = 1,2, . . . ,n + 1. Let w = x1x2 · · ·xnxn+1,
where (x1,x2, . . . ,xn+1) is the {ba}-coefficient of w. Notice that ba may be in I(w), for
example, if w = bbaa, then w = ba. We use wa and wb to denote the numbers of the letter
a and b occurring in word w respectively. Clearly, for any word w ∈ X∗, w is unique, and
hence wa and wb are unique.

Proposition 3.6. Let L1 = {w ∈ X∗ | wa = wb}. Then L1 ∈D4.

Proof. We assert that the PL1 -classes are

Ci = {w ∈ X∗|wa = wb + i}, i = 0, ±1, ±2, . . . .

In fact, if u,v are any two words over X with ua−ub = i, va− vb = j, i 6= j, without loss
of generality, we may let i≥ 0, then, obviously, for x = 1,y = bi, we have

xuy = ubi, xvy = vbi,

by the definition of xuy,xvy, we have

xuy = ubi, xvy = vbi.

And so
xuya = ua, xuyb = ub + i, and xuya = xuyb by assumption,
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xvya = va, xvyb = vb + i, and xvya 6= xvyb by assumption.

By the construction of L1, we have xuy ∈ L1,xvy 6∈ L1. Hence, u 6≡ v(PL1).
On the other hand, for every two words u,v ∈Ci, i = 0, ±1, ±2, . . ., by the definition of

Ci, we have
ua− ub = va− vb = i.

Consider wu and wv, w ∈ X∗. Then we divide our discussion into the following cases:
(1) Both of u,v begin with letter a. In this case, let u = au′,v = av′, where u′,v′ ∈ X∗. If
w = w′b,w′ ∈ X∗, then wu = w′bau′ and wv = w′bav′, hence

wua = w′a + u′a = w′a + ua− 1,

wub = w′b + u′b = w′b + ub,

and
wva = w′a + v′a = w′a + va− 1,

wvb = w′b + v′b = w′b + vb,

so
wua− wub = w′a−w′b + i−1,

wva− wvb = w′a−w′b + i−1.

If w = w′a,w′ ∈ X∗, and wa = w′a +1, then wu = w′aau′ and wv = w′aav′, hence

wua = w′a + ua + 1,

wub = w′b + ub,

and
wva = w′a + va + 1,

wvb = w′b + vb,

so
wua− wub = w′a−w′b + i+1,

wva− wvb = w′a−w′b + i+1.

If w = w′x, where w′ ∈ X∗ and x ∈ (X ∪{ba})\{a,b}, then wu = w′xau′ and wv = w′xav′,
hence

wua = w′a + ua,

wub = w′b + ub,

and
wva = w′a + va,

wvb = w′b + vb,

so
wua− wub = w′a−w′b + i,
wva− wvb = w′a−w′b + i.

Therefore, in every case, we have wua−wub = wva−wvb, and hence wua = wub if and only
if wva = wvb, for any w ∈ X∗.

(2) u begins with letter a and v does not begin with letter a or vice verse. Without loss of
generality, suppose that u = au′, where u′ ∈ X∗. In this case, if w = w′b,w′ ∈ X∗, then for
wu = w′bau′, we have wua− wub = w′a−w′b + i−1 ; for wv = w′bv, we have wva− wvb =
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w′a−w′b + i− 1. If w = w′a,w′ ∈ X∗ and wa = w′a + 1, then for wu = w′aau′, we have
wua− wub = w′a−w′b + i + 1 ; for wv = w′av, we have wva− wvb = w′a−w′b + i + 1.
If w = w′x, where w′ ∈ X∗ and x ∈ (X ∪ {ba}) \ {a,b}, then for wu = w′xau′, we have
wua− wub = w′a−w′b + i ; for wv = w′xv, we have wva− wvb = w′a−w′b + i. Therefore,
in every case, we also have wua−wub = wva−wvb, and hence wua = wub if and only if
wva = wvb, for any w ∈ X∗.

(3) u,v do not begin with letter a. Similar to case (1), we obtain that wua−wub = wva−wvb,
and hence wua = wub if and only if wva = wvb, for any w ∈ X∗.

From the above three cases, we deduce that if u,v ∈ Ci, i = 0,±1,±2, . . ., then for any
w ∈ X∗,

(3.2) wua − wub = wva − wvb,

and

(3.3) wua = wub ⇔ wva = wvb.

Similarly, if u,v ∈Ci, i = 0,±1,±2, . . ., then for any w′ ∈ X∗,

(3.4) uw′a − uw′b = vw′a − vw′b,

and

(3.5) uw′a = uw′b ⇔ vw′a = vw′b.

Then, for every u,v ∈ Ci, i = 0,±1,±2, . . ., for any w,w′ ∈ X∗, consider wuw′ and wvw′.
Since u,v ∈ Ci, by (3.2) and by the definition of Ci, we see immediately that both wu and
wv are in some Ci′ , i′ ∈ {0,±1,±2, . . .}. Hence, by (3.5), we have wuw′a = wuw′b if and
only if wvw′a = wvw′b, that is, wuw′ ∈ L1 if and only if wvw′ ∈ L1. This result implies that
u≡ v(PL1). In view of the above facts, we have PL1 -classes are

Ci = {w ∈ X∗|wa = wb + i}, i = 0, ±1, ±2, . . . .

It can be easily verified that each Ci is dense, i = 0, ±1, ±2, . . . . Hence L1 ∈D4.

Proposition 3.7. Let L2 = {w ∈ X∗ | wa = 2wb}. Then L2 ∈D4.

Proof. We first show that ua−2ub 6= va−2vb implies u 6≡ v(PL2), for any two words u,v ∈
X∗. In fact, if ua−2ub = i, va−2vb = j, i 6= j, then without loss of generality, we may let
i≥ 0. Then we consider asubt and asvbt , where s, t ∈N0, by the definition of asubt , we have

asubt a = s+ ua, asubt
b = t + ub.

Choose s, t such that s+ i = 2t, then by assumption, we have

s+ ua = s+ 2ub + i = 2(t + ub),

so asubt a = 2asubt
b, by the construction of L2, asubt ∈ L2, while

asvbt a = s+ va = s+ 2vb + j,

2asvbt
b = 2t + 2vb,

clearly asvbt a 6= 2asvbt
b since s + j 6= 2t. This shows that asvbt 6∈ L2. Hence, u 6≡ v(PL2).

So let
C j = {w ∈ X∗ | wa = 2wb + j}, j = 0, ±1, ±2, . . . ,

we have u≡ v(PL2) implies u,v ∈C j for some j ∈ {0, ±1, ±2, . . .}.
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Next we will show that the PL2 -classes are not analogous to the PL1 -classes. In fact, if
u,v∈C j for some j ∈ {0, ±1, ±2, . . .}, u begins with letter a and v does not begin with a or
vice verse, then without loss of generality, we may let u = au′, u′ ∈ X∗. Consider bu and bv,
since bua = u′a = ua−1, bub = u′b = ub, bva = va and bvb = vb +1, we have bua−2bub 6=
bva−2bvb. By discussion in the previous paragraph, bu 6≡ bv(PL2), so u 6≡ v(PL2). Moreover,
if u,v ∈C j for some j ∈ {0, ±1, ±2, . . .}, both of u and v begin with letter a and u ends at
letter b, v does not end at letter b or vice verse, then without loss of generality, we may let
u = u′b, u′ ∈ X∗. Consider ua and va, then we have uaa = ua, uab = ub−1, vaa = va +1 and
vab = vb, so uaa−2uab 6= vaa−2vab, by the discussion in the previous paragraph again, we
have ua 6≡ va(PL2), and so u 6≡ v(PL2). Similarly, if u,v ∈C j for some j ∈ {0, ±1, ±2, . . .},
u and v do not begin with letter a and u ends at the letter b, v does not end at the letter b
or vice verse, then we also have u 6≡ v(PL2). Hence, each C j, j = 0, ±1, ±2, . . . , can be
divided into four parts, say

CI
j = {w ∈ X∗ | wa = 2wb + j, w begins with

letter a and ends at letter b },

CII
j = {w ∈ X∗ | wa = 2wb + j, w begins with

letter a and does not end at letter b},

CIII
j = {w ∈ X∗ | wa = 2wb + j, w does not begin

with letter a and ends at letter b},

CIV
j = {w ∈ X∗ | wa = 2wb + j, w neither begins

with letter a nor ends at letter b},

and we have u≡ v(PL2) implies u,v ∈CJ
j for some j ∈ {0, ±1, ±2, . . .}, J ∈ {I, II, III, IV}.

It is routine to check that the converse implication holds for each j and J. Hence, PL2 -classes
are

CI
j = {w ∈ X∗ | wa = 2wb + j, w begins with

letter a and ends at letter b },

CII
j = {w ∈ X∗ | wa = 2wb + j, w begins with

letter a and does not end at letter b},

CIII
j = {w ∈ X∗ | wa = 2wb + j, w does not begin

with letter a and ends at letter b},

CIV
j = {w ∈ X∗ | wa = 2wb + j, w neither begins

with letter a nor ends at letter b},

where j = 0, ±1, ±2, . . .. It is easy to check that each PL2 -class is dense. Hence, L2 ∈D4.
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We now construct a language in D3 which is a disjoint union of the above two languages
L1 and L2 in D4.

Consider L1 ∩L2. If w ∈ L1 ∩L2, then by the constructions of L1 and L2, we have that
wa = wb, wa = 2wb, so wa = wb = 0. This result implies that w ∈ ((X ∪{ba}) \ {a,b})∗,
where (X ∪{ba})\{a,b} is a finite language over X since X is finite, and

((X ∪{ba})\{a,b})∗ = {1} ∪ ((X ∪{ba})\{a,b})

∪ ((X ∪{ba})\{a,b})2 ∪ ·· · .

Let C = ((X∪{ba})\{a,b})∗. By the above discussion, we have L1∩L2⊆C, and L1∩L2⊇
C is obviously. Hence, we have L1∩L2 = C. By the definition of rational language [4], C is
a rational language over X . Then by Theorem 4.2.9 of [4], C is regular. Hence L1 \C ∈D4

by Corollary 2.1. Let L′1 = L1 \C. Then, it is clear that L
′
1∩L2 = /0. We have

L1∪L2 = L
′
1 ∪̇ L2 = {w ∈ X∗ | wa = wb}∪{w ∈ X∗ | wa = 2wb}.

We have the following proposition.

Proposition 3.8. L = L′1∪L2 is in D3.

Proof. We first assert that if u,v ∈ X∗ and u ≡ v(PL), then u,v ∈ Ci j for some i, j ∈ N0,
where

Ci j = {w ∈ X∗ | wa = i,wb = j}, i, j ∈ N0.

In fact, for any two words u,v over X , suppose that u,v are not in the same Ci j, that is,
ua 6= va or ub 6= vb, we only discuss the case ua 6= va, the case for ub 6= vb can be similarly
obtained. Now we divide our discussion into the following two cases:

(1) ua−ub = va− vb,
(2) ua−ub 6= va− vb.

For case (1), we consider as(ba)u(ba)bt and as(ba)v(ba)bt , s, t ∈ N0. Choose s, t such that
s, t > 0 and s+ua = 2(t +ub), then by the construction of L2, we have as(ba)u(ba)bt ∈ L2
and hence as(ba)u(ba)bt 6∈ L′1. Since s, t > 0, as(ba)u(ba)bt 6∈C. We have as(ba)u(ba)bt 6∈
L1. In view of the proof of Proposition 3.6, we have u≡ v(PL1) because of the fact ua−ub =
va− vb, thus as(ba)v(ba)bt 6∈ L1. And we have

as(ba)v(ba)bt
a− 2as(ba)v(ba)bt

b = s+ va −2 (t + vb)

= va− 2vb− (ua− 2ub)

= va− vb− (ua− ub)+ ub− vb

= ub− vb

= ua− va

6= 0.

So as(ba)v(ba)bt 6∈ L2. Hence as(ba)v(ba)bt 6∈ L. This shows u 6≡ v(PL).
For case (2), if ua − 2ub = va − 2vb, then similar to the discussion in the case (1),

we choose s, t such that s, t > 0 and s + ua = t + ub. Then by the construction of L′1,
as(ba)u(ba)bt ∈ L′1 and hence we deduce that as(ba)u(ba)bt 6∈ L2. This implies that s +
ua−2t−2ub 6= 0. This shows that as(ba)v(ba)bt

a−2as(ba)v(ba)bt
b = s+ va−2t−2vb =

s−2t +ua−2ub 6= 0, as(ba)v(ba)bt 6∈ L2. Also as(ba)v(ba)bt
a−as(ba)v(ba)bt

b = s+va−
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t−vb = va−vb−(ua−ub) 6= 0, so as(ba)v(ba)bt 6∈ L1. Hence, as(ba)v(ba)bt 6∈ L. We have
u 6≡ v(PL).

If ua − 2ub 6= va − 2vb, then choose s, t such that s, t > 0 and s + ua = t + ub. Then
by the discussion in the previous paragraph, we conclude that as(ba)u(ba)bt ∈ L′1 and
as(ba)v(ba)bt 6∈ L1. Consider

as(ba)v(ba)bt
a− 2as(ba)v(ba)bt

b = s+ va− 2t− 2vb,

if s + va− 2t − 2vb 6= 0, then as(ba)v(ba)bt 6∈ L2. So we have as(ba)v(ba)bt 6∈ L. This
shows that u 6≡ v(PL). If s + va − 2t − 2vb = 0, then, we choose another t ′ ∈ N0 such
that s + va = t ′+ vb. Then t ′ = 2t + vb, and t ′ > 0 by t > 0, and so as(ba)v(ba)bt ′ ∈ L′1.
On the other hand, we have as(ba)u(ba)bt ′

a− as(ba)u(ba)bt ′
b = s + ua− t ′− ub. Since

s + ua = t + ub, we have s + ua− t ′− ub = t − t ′, so s + ua− t ′− ub 6= 0 by t ′ = 2t + vb

and t > 0. Hence, as(ba)u(ba)bt ′ 6∈ L1. And as(ba)u(ba)bt ′
a− 2as(ba)u(ba)bt ′

b = s +
ua − 2t ′− 2ub = −3t − 2vb − ub 6= 0. Clearly, we see that as(ba)u(ba)bt ′ 6∈ L2. Hence,
as(ba)u(ba)bt ′ 6∈ L. We also have u 6≡ v(PL). Thus, we have shown that our assertion holds.

By the above assertion, we see immediately that each PL-class is contained in some
Ci j, i, j ∈ N0. Since Ci j is thin (if otherwise, we let w = (ba)ai+1b j+1(ba). Then for any
u,v ∈ X∗, we have uwva ≥ i +1,uwvb ≥ j +1. This shows that uwv 6∈Ci j, a contradiction)
for i, j = 0,1,2, · · · , we easily see that each PL-class is thin.

Next we continue to show that there are infinite PL-classes. Consider

C00 = {w ∈ X∗|wa = 0,wb = 0}.

Clearly, 1 ∈ C00. For any word w ∈ C00 \ {1}, we shall show that 1 6≡ w(PL). Take x =
b2,y = a3. Then

x1y = b21a3 = b2a3, xwy = b2wa3,

by the definition of x1y, we have x1y = ba2, hence x1ya = 2, x1yb = 1 and x1y ∈ L2. While
xwy = b2wa3 because w 6= 1 and w neither begins with a nor ends at b. This leads to
xwya = 3, xwyb = 2. Hence, we have xwy 6∈ L1, xwy 6∈ L2, and so xwy 6∈ L. Hence, we have
1 6≡ w(PL). On the other hand, for any two words u,v ∈C00 \{1}, by the definition of C00,
we have ua = ub = 0,va = vb = 0, and so for any x,y ∈ X∗,

xuya = xa + ya, xuyb = xb + yb,

xvya = xa + ya, xvyb = xb + yb.

This shows that
xuy ∈ L

′
1 i f and only i f xvy ∈ L

′
1,

and
xuy ∈ L2 i f and only i f xvy ∈ L2.

Thus, we have
xuy ∈ L i f and only i f xvy ∈ L.

Hence, we have proved that u≡ v(PL).
Now, C00 can be divided into two parts, namely, C00 \{1} and {1}. In view of the above

facts, we see that C00\{1} and {1} are both PL-classes. Notice that (ba)+⊆C00\{1}, where
(ba)+ = (ba)∗ \{1}= {ba,(ba)2,(ba)3, . . .}, so C00 \{1} is infinite. Therefore, L ∈D3.
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4. The decomposition from D1 to D2

In [12], Shyr and Yu have shown the existence of a disjunctive language which can be parti-
tioned into two parts such that both of them are midst-languages. The disjunctive language
can be constructed on X with |X | ≥ 3. In this section, we will improve their construction on
X with |X | ≥ 2 and simplify the construction of the disjunctive language as well. We will
show that the disjunctive language is not only a disjoint union of midst-languages but is also
a disjoint union of languages in D2.

In our study, the free monoid X∗ sometimes needs to be equipped with a total order. In
this paper, we only adopt the standard total order ≤ which is defined on X∗ as follows [10]:
For any u,v∈ X∗, if lg(u) < lg(v), then u < v; if lg(u) = lg(v), then≤ is the lexicographical
order on Xn for all n≥ 1. For a word x ∈ X∗, we write ]x = m if x stands at the mth position
in this order.

Recall that CL(w) is the set of L-coefficients of w, for any word w over X and any
nonempty language L in X+.

We begin with the following definition.

Definition 4.1. Let L⊆ X+, L 6= /0. Then, we define a binary relation σL on X∗ as follows:

(w1, w2) ∈ σL ⇔ CL(w1)∩CL(w2) 6= /0.

If (w1,w2) ∈ σL, then w1 and w2 are said to be L-related .

Corollary 4.1. σL is left compatible and right compatible with the operation on free monoid
X∗.

Proof. We only consider the left compatibility. For the case of right compatibility, it can be
proved analogously. Suppose that w1σLw2 holds. Then, by the definition of σL, there exist
(x1,x2, . . . ,xn+1) such that w1 has an L-representation

w1 = x1y1x2y2 · · ·xnynxn+1,

and w2 has L-representation

w2 = x1y
′
1x2y

′
2 · · ·xny

′
nxn+1.

Now, for any x ∈ X∗, we have

xw1 = xx1y1x2y2 · · ·xnynxn+1,

xw2 = xx1y
′
1x2y

′
2 · · ·xny

′
nxn+1.

If I(xx1)∩L = /0, then, we let xx1 = x
′
1. Now, we see that

xw1 = x
′
1y1x2y2 · · ·xnynxn+1,

xw2 = x
′
1y
′
1x2y

′
2 · · ·xny

′
nxn+1

are the L-representations of xw1 and xw2 respectively, so xw1 σL xw2. If I(xx1)∩L 6= /0, then
xx1 has an L-representation

xx1 = u1v1 · · ·umvmum+1,

where vi ∈ L, I(u j)∩L = /0, i = 1,2, . . . ,m, j = 1,2, . . . ,m+1. Clearly,

xw1 = u1v1 · · ·umvmum+1y1x2y2 · · ·xnynxn+1,

xw2 = u1v1 · · ·umvmum+1y
′
1x2y

′
2 · · ·xny

′
nxn+1
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are L-representations of xw1 and xw2 respectively. Hence, we have proved that xw1 σL
xw2.

Lemma 4.1. If L is a solid code, then σL is a congruence on X∗.

Proof. By the definition of σL, σL is clearly reflexive and symmetric. If L is a solid code,
then σL is transitive by Proposition 3.5 since, at this point, (w1,w2) ∈ σL if and only if
cL(w1) = cL(w2). Hence, σL is an equivalence relation on X∗. By Corollary 4.1, we have
proved that σL is a congruence on X∗.

For the solid codes, we have the following lemma.

Lemma 4.2. Let L be a solid code. Then the following statements are equivalent:

(1) L is finite.
(2) every σL-class is finite.

Proof. (1)⇒ (2). Suppose that |L| = m, m ∈ N. For any w ∈ X∗, if I(w)∩L 6= /0 and w
has the unique L-representation w = x1y1x2y2 · · ·xnynxn+1, then |wσL| = mn. Moreover, if
I(w)∩L = /0 and w has the trivial L-representation w = x1, then |wσL|= 1.

(2)⇒ (1). Observe that L is a σL-class. Hence, every σL-class is finite implies L is
finite.

Now, let |X | ≥ 2 and X = {a,b, . . .}. Consider u1 = a3b3,u2 = a2bab2,v = a2b2ab. We
have

Pnt(u1) = {a,a2,a3,a3b,a3b2}, Snt(u1) = {b,b2,b3,ab3,a2b3},

Pnt(u2) = {a,a2,a2b,a2ba,a2bab}, Snt(u2) = {b,b2,ab2,bab2,abab2},

Pnt(v) = {a,a2,a2b,a2b2,a2b2a}, Snt(v) = {b,ab,bab,b2ab,ab2ab}.
Clearly {u1,u2,v} is a solid code. By Corollary 3.2, we obtain that {ui,v} is also a solid
code, for i = 1,2. Thus, the {ui,v}-representation of every w ∈ X+ is unique, for i = 1,2.

We define the following sets, where s ∈ N:
Au1,v(s) = {w ∈ X+ | l{u1,v}(w) = s}.

Au1,v(s) ={ab6wa6+q1ba6+q2 · · ·ba6+qs+1 | w ∈ Au1,v(s) and ]xi = qi, i = 1,2, . . . ,s+1,

when the {u1,v}− representation of w is w = x1y1x2y2 · · ·xsysxs+1}.

Au1,v =
⋃

s≥1 Au1,v(2s).
The following lemma is a crucial lemma. The proof can be found in [13]. However,

we notice that the proof given in [13] has a possible gap (that is, let {u} be a solid code
with u ∈ {aX+b} and u 6∈ {a+b,ab+}, lg(u) = n,n ≥ 3. If u ∈ I(akbnw) for any k ∈ N0,
and any w ∈ X∗, then u 6∈ I(akbn). But we notice that there exist such solid codes {u} such
that u ∈ I(akbn), for example, let n = 6,k ≥ 3. Then by the above discussion, {u = a3b3}
is a solid code, and clearly u ∈ I(akb6)). Therefore, in the following revised proof of this
lemma, it contains the consideration for u ∈ I(akbn).

Lemma 4.3. [13, Lemma 3.11] Let {u,v} be a solid code, {u,v} ⊆ (aX+b∩Xn) for some
n ≥ 3, and {u,v}∩{a+b,ab+} = /0, w1,w2 ∈ X∗. If (w1,w2) 6∈ σ{u,v}, then for any i, j,k ∈
N0,

(uiv jakbnw1,uiv jakbnw2) 6∈ σ{u,v}.
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Proof. (revised) Let z = uiv jakbnw1 and z
′
= uiv jakbnw2. We first suppose that (z,z

′
) ∈

σ{u,v}. Then, the {u,v}-representations of z and z
′

are

z = x1y1x2y2 · · ·xmymxm+1,

and
z
′
= x1y

′
1x2y

′
2 · · ·xmy

′
mxm+1.

Thus, x1 = x2 = · · ·= xi+ j = 1, and the {u,v}-representations of akbnw1 and akbnw2 are

akbnw1 = xi+ j+1yi+ j+1 · · ·xmymxm+1,

and
akbnw2 = xi+ j+1y

′
i+ j+1 · · ·xmy

′
mxm+1.

On the one hand, if I(akbn)∩{u,v} 6= /0, then by our hypothesis and the {u,v}-representations
of akbnw1 and akbnw2, we have akbn = xi+ j+1yi+ j+1bp with 1 < p < n−1, and bp is a pre-
fix of xi+ j+2 (that is, xi+ j+2 = bpx,x ∈ X∗). Hence, the {u,v}-representations of w1 and w2
have the forms

w1 = x
′
i+ j+2yi+ j+2 · · ·xmymxm+1

and
w2 = x

′
i+ j+2y

′
i+ j+2 · · ·xmy

′
mxm+1,

with bpx
′
i+ j+2 = xi+ j+2,x

′
i+ j+2 ∈ X∗. On the other hand, if I(akbn)∩{u,v} = /0, then from

the {u,v}-representations of akbnw1 and akbnw2 again, akbn is a prefix of xi+ j+1 or xi+ j+1

is a proper prefix of akbn (that is, xi+ j+1x = akbn,x ∈ X+). We now claim that xi+ j+1

is not the proper prefix of akbn, for otherwise, if xi+ j+1ak′bn = akbn, k′ ≥ 1, then by the
hypothesis lg(u) = lg(v) = n, we have yi+ j+1x = ak′bn,x ∈ X+. This result contradicts to
I(akbn)∩{u,v} = /0; if xi+ j+1bn′ = akbn, 1 ≤ n′ ≤ n, then yi+ j+1 begins with letter b, this
contradicts to {u,v} ⊆ aX+b. This result hence shows that akbn is the prefix of xi+ j+1.
Hence, the {u,v}-representations of w1 and w2 are

w1 = x
′
i+ j+1yi+ j+1 · · ·xmymxm+1 and w2 = x

′
i+j+1y

′
i+j+1 · · ·xmy

′
mxm+1,

where akbnx
′
i+ j+1 = xi+ j+1,x

′
i+ j+1 ∈ X∗.

Both of the above two cases imply that (w1,w2) ∈ σ{u,v}. Thus, we arrive at a contradic-
tion and our proof is completed.

We state the following proposition.

Proposition 4.1. PAu1 ,v = σ{u1,v}.

Proof. Let w1 and w2 be two words over X , (w1,w2) 6∈ σ{u1,v}. Then, we will show that
w1 6≡ w2(PAu1 ,v). Consider z1 = ui

1v jab6w1 and z2 = ui
1v jab6w2. By Lemma 4.3, we have

(z1,z2) 6∈ σ{u1,v}. Now, we choose i and j such that l{u1,v}(z1) = 2t for some t ∈ N. Let the
{u1,v}-representation of z1 be

z1 = x1y1x2y2 · · ·xnynxn+1,

n = 2t and let the {u1,v}-representation of z2 be

z2 = x
′
1y
′
1x
′
2y
′
2 · · ·x

′
my
′
mx
′
m+1,
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for some m ∈ N0. Since (z1,z2) 6∈ σ{u1,v}, we have n 6= m, or n = m but xh 6= x
′
h for some h,

1≤ h≤ n+1. Let ]xp = qp, p = 1,2, · · · ,n+1. Then by the construction of Au1,v, we have

z1 = ab6z1a6+q1ba6+q2b · · ·a6+qn+1 ∈ Au1,v(2t),

and
z2 = ab6z2a6+q1ba6+q2b · · ·a6+qn+1 6∈ Au1,v(2s), for each s ∈ N.

Hence z1 6≡ z2(PAu1 ,v). It follows that z1 6≡ z2(PAu1 ,v), and hence w1 6≡ w2(PAu1 ,v). So

PAu1 ,v ⊆ σ{u1,v}.

We now proceed to prove the converse statement of the above proposition. We first
suppose that w1 and w2 are two different words over X , (w1,w2) ∈ σ{u1,v}. Since σ{u1,v} is
a congruence, (xw1y,xw2y) ∈ σ{u1,v} for any x,y ∈ X∗. From the definition of σ{u1,v}, we
have

xw1y = x1y1x2y2 · · ·xnynxn+1,

xw2y = x1y′1x2y′2 · · ·xny′nxn+1.

If xw1y is in some Au1,v(2t), t ∈N, then xw1y = x1y1x2y2 · · ·xnynxn+1 has the form ab6w′a6+q1

ba6+q2b · · ·a6+q2t +1 , where w′ ∈ X∗, qi ∈N, i = 1,2, . . . ,2t +1. Since I(ab6)∩{u1,v}= /0 by
the definitions of u1 and v, similar to the proof of Lemma 4.3, we have ab6x′1 = x1, x′1 ∈ X∗.
Similarly, we have x′n+1a6+q1ba6+q2 b · · ·a6+q2t +1 = xn+1, x′n+1 ∈ X∗. Thus, xw1y and xw2y
can be written as

(4.1) ab6x′1y1x2y2 · · ·xnynx′n+1a6+q1ba6+q2 b · · ·a6+q2t +1 ,

(4.2) ab6x′1y′1x2y′2 · · ·xny′nx′n+1a6+q1ba6+q2b · · ·a6+q2t +1 ,

respectively. By our assumption that xw1y ∈ Au1,v(2t), we have n = 2t in (4.1), and ]x′1 =
q1, ]xi = qi, i = 2, . . . ,2t , ]x′2t+1 = q2t+1. This means that xw2y ∈ Au1,v(2t). Dually, it can
be proved that xw1y ∈ Au1,v(2t) from the fact that xw2y ∈ Au1,v(2t), t ∈ N. This shows that
xw1y ∈ Au1,v(2t) if and only if xw2y ∈ Au1,v(2t). Hence, w1 ≡ w2(PAu1 ,v) and so

σ{u1,v} ⊆ PAu1 ,v .

Proposition 4.2. The following statements always hold.
(1) ui

1v j ≡ v jui
1(PAu1 ,v), for all i, j ∈ N0.

(2) Au1,v is an f-disjunctive language.

Proof. (1) Clearly, (ui
1v j,v jui

1) ∈ σ{u1,v}, for all i, j ∈ N0, by Proposition 4.1, the result
holds.

(2) By Proposition 4.1, PAu1 ,v = σ{u1,v} and by Lemma 4.2, every σ{u1,v}-class contains
only finite elements. This shows that Au1,v is f-disjunctive.

By Proposition 4.2, we have Au1,v ∈ D2, it is clear that Au1,v is a midst-language. Simi-
larly, by replacing u1 with u2, the languages Au2,v(s), Au2,v(s), Au2,v are defined respectively.
Clearly, Proposition 4.2 is also valid for Au2,v. Thus, Au2,v ∈D2.

Let B1 = Au1,v{b},B2 = {b}Au2,v. Then, by Lemma 3.1 and Lemma 4.3 of [12], B1 and
B2 are both in D2. Clearly, B1 and B2 are disjoint. We now show that B1∪B2 is a disjunctive
language.

Proposition 4.3. The language B1∪B2 is disjunctive.
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Proof. Let w1,w2 be two words over X such that (w1,w2) 6∈ σ{u1,v} and (w1,w2) 6∈ σ{u2,v}.
Then by Proposition 4.1, we have w1 6≡ w2(PAu1 ,v), w1 6≡ w2(PAu2 ,v). This means that there
exist x,y∈ X∗ such that xw1y∈ Au1,v, xw2y 6∈ Au1,v or vice versa. Hence, by the construction
of B1, xw1yb ∈ B1, xw2yb 6∈ B1 or vice versa. Moreover, by the construction of B2, xw1yb 6∈
B2 and xw2yb 6∈ B2. We have xw1yb ∈ B1∪B2, xw2yb 6∈ B1∪B2 or vice versa. This implies
that w1 6≡ w2(PB1∪B2). Similarly, when w1 6≡ w2(PAu2,v), we also have w1 6≡ w2(PB1∪B2).

Let w1,w2 be two words over X such that (w1,w2) ∈ σ{u1,v} or (w1,w2) ∈ σ{u2,v}. Then
by the definition of u1,u2,v, there exist no w1,w2 ∈ X∗, w1 6= w2 such that (w1,w2)∈ σ{u1,v}
and (w1,w2) ∈ σ{u2,v}. Assume that (w1,w2) ∈ σ{u1,v} but (w1,w2) 6∈ σ{u2,v}. Now, by
applying Proposition 4.1, we see that w1 6≡ w2(PAu2 ,v). Hence, there exist x,y ∈ X∗ such
that xw1y ∈ Au2,v, xw2y 6∈ Au2,v or vice versa. Thus, we have bxw1y ∈ B2, bxw2y 6∈ B2 or
vice versa. By the construction of B1 again, we also have bxw1y 6∈ B1 and bxw2y 6∈ B1.
Hence, we deduce that bxw1y ∈ B1 ∪B2, bxw2y 6∈ B1 ∪B2 or vice versa. This shows that
w1 6≡ w2(PB1∪B2). Similarly, if (w1,w2) ∈ σ{u2,v} and (w1,w2) 6∈ σ{u1,v}, one also has w1 6≡
w2(PB1∪B2).

Therefore, B1∪B2 is indeed a disjunctive language.

5. Some questions related to the decompositions of r-disjunctive languages

We first observe that Proposition 1.4′ can be modified into the following form.

Proposition 1.4′′. Let L be a disjunctive language over X, L = L1∪̇L2. Then the following
statements hold.

(1) |{L1,L2}∩D |= 1, or
(2) |{L1,L2}∩D |= 2, or
(3) {L1,L2} ⊆Dr \D .

By the main result in [6], we see immediately that any disjunctive language L has a de-
composition of L = L1∪̇L2 such that L1 ∈Rr,L2 ∈D . At this time, we have |{L1,L2}∩D |=
1; and any disjunctive language has the decomposition of case (2), in fact, the disjunctive
language L is dense and so by [3] (a dense language can be divided into two disjoint dis-
junctive languages), L has the decomposition L = L1∪̇L2 such that |{L1,L2}∩D | = 2; for
the case (3), not every disjunctive language has this decomposition, but it has been shown
that there exist such languages, see Section 4. Meanwhile, for those r-disjunctive languages,
we see that any f-disjunctive (t-disjunctive, r-disjunctive) language L has the decomposition
of L = L1∪̇L2 and |{L1,L2}∩D f |= 1 (|{L1,L2}∩Dt |= 1, |{L1,L2}∩Dr|= 1) by Proposi-
tion 2.1. Now, we can also see that there exist f-disjunctive( t-disjunctive) languages L such
that L = L1∪̇L2 and {L1,L2} ⊆ Dr \D f (Dr \Dt), see Section 3. But we still do not know
whether every f-disjunctive( t-disjunctive, r-disjunctive) language L has the decomposition
L = L1∪̇L2 with |{L1,L2}∩D f |= 2 (|{L1,L2}∩Dt |= 2, |{L1,L2}∩Dr|= 2)?

In closing this paper, we point out that the above question also leads to a more special
question.

Does every f-disjunctive (t-disjunctive, r-disjunctive) language L can be decomposed into
L = L1∪̇L2 such that PL = PL1 = PL2?

We remark that for disjunctive languages, the above two questions are actually the same
question, but for f-disjunctive (t-disjunctive, r-disjunctive) languages, they are different
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questions.
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