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Abstract. The problem of determining the smallest number of edges, h(n;κ ≥ r), which
guarantees that any graph with n vertices and h(n;κ ≥ r) edges will contain a pair of vertices
joined by r internally disjoint paths was posed by Erdös and Gallai. Bollobás considered the
problem of determining the largest number of edges f (n;κ ≤ `) for graphs with n vertices
and local connectivity at most `. One can see that f (n;κ ≤ `) = h(n;κ ≥ `+1)−1. These
two problems had received a wide attention of many researchers in the last few decades. In
the above problems, only pairs of vertices connected by internally disjoint paths are consid-
ered. In this paper, we study the number of internally disjoint Steiner trees connecting sets
of vertices with cardinality at least 3.

2010 Mathematics Subject Classification: 05C40, 05C05, 05C35, 05C75

Keywords and phrases: Connectivity, Steiner tree, internally disjoint trees, generalized con-
nectivity, generalized local connectivity.

1. Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to book [5]
for graph theoretical notation and terminology not described here. We call the number of
vertices in a graph as the order of the graph and the number of edges of it as its size. For
two distinct vertices in a connected graph G, we can connect them by a path. Two paths are
called internally disjoint if they have no common vertex except the end vertices. For any
two distinct vertices x and y in G, the local connectivity κG(x,y) is the maximum number
of internally disjoint paths connecting x and y. Then min{κG(x,y)|x,y ∈ V (G),x 6= y} is
usually the connectivity of G. In contrast to this parameter, κ(G) = max{κG(x,y)|x,y ∈
V (G),x 6= y}, introduced by Bollobás, is called the maximum local connectivity of G. The
problem of determining the smallest number of edges, h(n;κ ≥ r), which guarantees that
any graph with n vertices and h(n;κ ≥ r) edges will contain a pair of vertices joined by r
internally disjoint paths was posed by Erdös and Gallai, see [1] for details.

Bollobás [2] considered the problem of determining the largest number of edges, f (n;κ ≤
`), for graphs with n vertices and local connectivity at most `, that is, f (n;κ ≤ `) =
max{e(G)||V (G)| = n and κ(G) ≤ `}. Motivated by determining the precise value of
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f (n;κ ≤ `), this problem has obtained wide attention and many results have been worked
out, see [2–4, 7–9, 16–18]. One can see that h(n;κ ≥ `+1) = f (n;κ ≤ `)+1.

For κ ≤ `, it was showed that f (n;κ ≤ `) ≥ b((`+ 1)/2)(n− 1)c. Since f (n;κ ≤ `) =
b((`+ 1)/2)(n− 1)c for ` = 2,3, Bollobás and Erdös conjectured that the equality holds,
but this was disproved by Leonard [7] for ` = 4, and later Mader [16] constructed graphs
disproving it for every `≥ 4.

For a graph G(V,E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or an
Steiner tree connecting S (or simply, an S-tree) is a such subgraph T (V ′,E ′) of G that is a
tree with S ⊆V ′. Two Steiner trees T and T ′ connecting S are said to be internally disjoint
if E(T )∩E(T ′) = ∅ and V (T )∩V (T ′) = S. For S ⊆ V (G) and |S| ≥ 2, the generalized
local connectivity κG(S) is the maximum number of internally disjoint trees connecting S
in G. The generalized connectivity, introduced by Chartrand et al. in 1984 [6], is defined
as κk(G) = min{κ(S)|S⊆V (G), |S|= k}. There have been many results on the generalized
connectivity, see [10–15]. Similar to the classical maximal local connectivity, we introduce
another parameter κk(G) = max{κ(S)|S ⊆ V (G), |S| = k}, which is called the maximum
generalized local connectivity of G. It is easy to check that 0≤ κk(G)≤ κk(Kn)≤ n−dk/2e
for a connected graph G.

In this paper, we mainly study the problem of determining the largest number of edges,
f (n;κk ≤ `), for graphs with n vertices and maximum generalized local connectivity at most
`, where 0≤ `≤ n−dk/2e. That is, f (n;κk ≤ `) = max{e(G)||V (G)|= n and κk(G)≤ `}.
We also study the smallest number of edges, h(n;κk ≥ r), which guarantees that any graph
with n vertices and h(n;κk ≥ r) edges will contain a set S of k vertices such that there
are r internally disjoint S-trees, where 0 ≤ r ≤ n− dk/2e. It is not difficult to see that
h(n;κk ≥ `+ 1) = f (n;κk ≤ `)+ 1 for 0 ≤ ` ≤ n−dk/2e. For k = 3 and ` = 2, we prove
that f (n;κ3 ≤ 2) = 2n− 3 for n ≥ 3 and n 6= 4, and f (n;κ3 ≤ 2) = 2n− 2 for n = 4.
Furthermore, we characterize the graphs attaining these values. For k = 3 and a general `,
we construct some graphs to show that f (n;κ3 ≤ `) ≥ ((`+ 2)/2)(n−2)+ 1/2 for both n
and ` odd, and f (n;κ3 ≤ `)≥ ((`+2)/2)(n−2)+1 otherwise.

2. Some basic results

As usual, the union of two graphs G and H is the graph, denoted by G∪H, with vertex set
V (G)∪V (H) and edge set E(G)∪E(H). The disjoint union of k copies of the same graph
G is denoted by kG. The join G∨H of two disjoint graphs G and H is obtained from G∪H
by joining each vertex of G to every vertex of H.

In this section, we first introduce a graph operation and two graph classes.
Let H be a connected graph, and u a vertex of H. We define the attaching operation at

the vertex u on H as follows: (1) identifying u and a vertex of a K4; (2) u is attached with
only one K4. The vertex u is called an attaching vertex.

Now, we introduce two new graph classes. For r≥ 3, Gr = {H1
r ,H2

r ,H3
r ,H4

r ,H5
r ,H6

r ,H7
r }

is a class of graphs of order r (see Figure 1 for details). Let H i
n (1≤ i≤ 7) be the class of

graphs, each of them is obtained from a graph H i
r by the attaching operation at some vertices

of degree 2 on H i
r, where 3≤ r≤ n and 1≤ i≤ 7 (note that H i

n ∈H i
n ). G ∗

n is another class of
graphs that contains Gn, given as follows: G ∗

3 = {K3}, G ∗
4 = {K4}, G ∗

5 = {G1}∪(
⋃7

i=1 H i
5 ),

G ∗
6 = {G3,G4}∪ (

⋃7
i=1 H i

6 ), G ∗
7 =

⋃7
i=1 H i

7 , G ∗
8 = {G2}∪ (

⋃7
i=1 H i

8 ), G ∗
n =

⋃7
i=1 H i

n for
n≥ 9 (see Figure 2 for details).

It is easy to see that the following three observations hold.
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Figure 1. The graph class Gn.

G1 G2 G3
G4

Figure 2. Some graphs in G ∗
n .

Observation 1. Let G and H be two connected graphs, and H ′ be a subdivision of H. If H ′
is a subgraph of G and κ3(H)≥ 3, then κ3(G)≥ 3.

Observation 2. Let H be a graph, u and v be two vertices in H, and G be a graph obtained
from H by attaching a K4 at u. If there are three internally disjoint paths between u and v in
H, then κ3(G)≥ 3.

Observation 3. For each graph in Figure 3, κ3 ≥ 3.

Lemma 2.1. Let G be a graph containing a clique K4. If there exists a path connecting two
vertices of K4 in G\E[K4], then κ3(G)≥ 3.

Proof. Let K4 be a complete subgraph of G with vertex set {u1, . . . ,u4}, and P be a path
connecting u1 and u2 in G \E[K4]. It suffices to show that there exists a set S such that
κ(S) ≥ 3. Choose S = {u1,u2,u3}, clearly, T1 = u1u2 ∪ u1u3 and T2 = u4u1 ∪ u4u2 ∪ u4u3
and T3 = P∪u2u3 form three internally disjoint S-trees. Thus, κ3(G)≥ 3.
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(a) A1 (c) A3

(d) A4

x

(b) A2

(e) A5
(f) A6

x x

x x

x

Figure 3. Graphs obtained from H1
5 and H3

5 .

Similarly, the following lemma holds.

Lemma 2.2. Let G be a graph obtained from H4
5 by adding a vertex x and two edges xy,xz,

where y,z ∈V (H4
5 )(see Figure 4). Then κ3(G)≥ 3 or G = H5

6 .

(a) B1 (c) B3(b) B2

(d) B4 (f) B6(e) B5

x

x

xx

x

x

Figure 4. Graphs obtained from H4
5 by adding a vertex of degree 2.

Lemma 2.3. For any connected graph G with order 5 and size 8, κ3(G)≥ 3.

Proof. We claim that 2 ≤ δ (G) ≤ 3. In fact, if δ (G) = 1, without loss of generality, let
d(x) = 1, then |V (G− x)| = 4 and e(G− x) = 7, a contradiction. If δ (G) ≥ 4, then 16 =
2e(G)≥ 5δ ≥ 20, a contradiction.

If δ (G) = 2, without loss of generality, let d(x) = 2, then |V (G−x)|= 4 and e(G−x) = 6,
which implies that G− x is a clique of order 4. From Lemma 2.1, κ3(G) ≥ 3. So we
suppose that δ (G) = 3. Since |V (G)| = 5, ∆(G) ≤ 4. Since 2e(G)/|V (G)| = 16/5, there
exists a vertex x in G such that d(x) = 4. Set NG(x) = {u1,u2,u3,u4}. Since δ (G− x) ≥ 2
and e(G− x) = 4, G− x is a cycle of order 4. Then G is a wheel of order 5 and the trees
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T1 = xu2 ∪ xu4 and T2 = u3x∪ u3u2 ∪ u3u4 and T3 = u1x∪ u1u4 ∪ u1u2 form 3 internally
disjoint {x,u2,u4}-trees, namely, κ3(G)≥ 3.

Lemma 2.4. For any connected graph G of order 5 and size 7, κ3(G) ≤ 2 and G ∈
{G1,H1

5 ,H3
5 ,H4

5}.

Proof. For each S ⊆ V (G) with |S| = 3, a tree with two edges connecting S is called Type
I, and the others with at least 3 edges are called Type II. One can see that three internally
disjoint trees connecting S will use at least 8 edges since we only have one tree of Type I.
So if G is a connected graph of order 5 and size 7, then κ3(G)≤ 2.

Suppose that δ (G)≥ 3. Then 14 = 2e(G)≥ 5δ ≥ 15, a contradiction. Thus, δ (G)≤ 2.
If δ (G) = 1, without loss of generality, let d(x) = 1, then |V (G− x)|= 4 and e(G− x) = 6,
which implies that G− x is a clique of order 4. Then G = G1 (see Figure 2).

If δ (G) = 2, without loss of generality, let d(x) = 2, then |V (G−x)|= 4 and e(G−x) = 5,
which implies that G− x is a graph obtained from K4 by deleting an edge. Thus, G ∈
{H1

5 ,H3
5 ,H4

5} (see Figure 1).

Lemma 2.5. For any connected graph G with order 6 and size 10, κ3(G)≥ 3.

Proof. If there exists a vertex x ∈V (G) such that d(x)≤ 2, then |V (G− x)|= 5 and e(G−
x)≥ 8. From Lemma 2.3, κ3(G− x)≥ 3, which results in κ3(G)≥ 3.

Now we assume that δ (G)≥ 3. If there exists a vertex x ∈V (G) such that d(x) = 5, then
|V (G− x)| = 5 and e(G− x) = 5. Since δ (G− x) ≥ 2, G− x is a cycle of order 5, which
implies that G is a wheel of order 6. Clearly, κ3(G)≥ 3. So we can assume that ∆(G)≤ 4.
Let t be the number of vertices of degree 4 in G. Since 20 = 2e(G) = 4t + 3(6− t), t = 2,
namely, there exist two vertices x,y ∈V (G) such that d(x) = d(y) = 4.

(a)

u1 u4u3u2

x y

(b)

u1 u4u3u2

x y

(c)

u1

u4

u3u2

x y

Figure 5. Graphs for Lemma 2.5.

If xy /∈ E(G), then G must be the graph shown in Figure 5 (a) since δ (G)≥ 3. Then the
trees T1 = u2x∪ u2y∪ u2u1 and T2 = u1x∪ xu3 ∪ u3y and T3 = u1y∪ yu4 ∪ u4x form three
{x,y,u1}-trees, namely, κ3(G)≥ 3.

If xy ∈ E(G) and NG−xy(x) 6= NG−xy(y), then G must be the graph shown in Figure 5 (b)
since δ (G)≥ 3. Then the trees T1 = u2x∪xu3∪u3y and T2 = yx∪yu2 and T3 = u1x∪u1u2∪
u1u4∪u4y form three {x,y,u2}-trees, namely, κ3(G)≥ 3.

If xy ∈ E(G) and NG−xy(x) = NG−xy(y), then G must be the graph shown in Figure 5
(c) since δ (G) ≥ 3. Then the trees T1 = xu1 ∪ xu2 ∪ xu3 and T2 = yu1 ∪ yu2 ∪ yu3 and
T3 = u4u1∪u4u2∪u4u3 form three {u1,u2,u3}-trees, namely, κ3(G)≥ 3.

Lemma 2.6. Let G be a connected graph of order 6 and size 9. If κ3(G) ≤ 2, then G ∈
{G3,G4} or G ∈ {H1

6 ,H2
6 ,H5

6} or G ∈H 3
6 .
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Proof. We claim that 2 ≤ δ (G) ≤ 3. Suppose that δ (G) ≥ 4. Then 18 = 2e(G) ≥ 6δ ≥
24, a contradiction. Suppose that δ (G) = 1, without loss of generality, let d(x) = 1, then
|V (G− x)|= 5 and e(G− x) = 8. From Lemma 2.3, κ3(G− x)≥ 3. Clearly, κ3(G)≥ 3 by
Observation 1.

If δ (G) = 3, then G is 3-regular. It is easy to check that G = G3 or G = G4. In the
following, we assume that δ (G) = 2. Without loss of generality, set d(x) = 2, then |V (G−
x)|= 5 and e(G−x) = 7, which implies that G−x = G1 or G−x∈ {H1

5 ,H3
5 ,H4

5} by Lemma
2.4.

If G−x = G1, then G∈H 3
6 . If G−x = H1

5 , then G = H1
6 or G = A2 or G = A6 (see Figure

3), which results in G = H1
6 . If G−x = H3

5 , then G = H2
6 or G ∈ {A1,A2,A3,A4,A5}, which

implies that G = H2
6 by Observation 3. If G−x = H4

5 , then G = H5
6 or G∈{B1,B2,B3,B4,B5,

B6}, which implies that G = H5
6 by Lemma 2.2.

3. Main results

In this section, we give our main results. We first need some more lemmas. In Lemma 2.3
through Lemma 2.6, we have dealt with the cases n≤ 6. Now we assume that n≥ 7.

Lemma 3.1. Let G′ be a graph obtained from G by deleting a vertex of degree 2. If G′ ∈
G ∗

n−1(n≥ 7), then G ∈ G ∗
n or κ3(G)≥ 3.

Proof. Let x be the deleted vertex of degree 2 in G. Since n ≥ 7, G′ /∈ {K3,K4,G1}. From
Observation 2 and Lemma 2.1, if G′ ∈ {G2,G3,G4}, then we can check that G ∈ H 3

9 or
κ3(G)≥ 3. From now on, we consider G′ ∈ G ∗

n−1 \{G2,G3,G4}.

Case 1. G′ ∈H 1
n−1.

First we consider the case that there is no K4 in G′. Thus, G′ = H1
n−1. Since n ≥ 7,

G = H1
n ∈H 1

n or G must contain an A2 or A6 as its subgraph, which implies that G ∈ G ∗
n or

κ3(G)≥ 3 by Observation 1.
Next we consider the case that there exists at least one K4 in G′. For each K4, if NG(x)∩

(K4 \ y) 6= ∅, then we have κ3(G) ≥ 3 by Lemma 1, where y is an attaching vertex in G′.
Suppose that NG(x)∩ (K4 \ y) = ∅ for all K4 ⊆ G′. Clearly, we can consider the graph
G′ ∈H 1

n−1 as the join of K2 and r isolated vertices, and then doing the attaching operation
at some vertices of degree 2 on K2 ∨ rK1. So, we consider N(x) ⊆ K2 ∨ rK1 (r ≥ 1). For
r ≥ 3, it follows that G ∈ H 1

n or G contains the graph A2 or A6 as its subgraph, which
implies that G ∈ G ∗

n or κ3(G)≥ 3.
For r = 2, from Lemma 1, we only need to consider N(x)⊆V (K2∨2K1). By Observation

2, G∈H 1
11 or G∈H 1

8 or G∈H 3
8 or κ3(G)≥ 3. For r = 1, K2∨K1 is a triangle and G′ is a

graph obtained from this triangle by the attaching operation at some vertices of this triangle
since n≥ 7. Thus, from Observation 2 and Lemma 2.1, we can get κ3(G)≥ 3.

Case 2. G′ ∈H 2
n−1 or G′ ∈H 3

n−1.

We only prove the conclusion for G′ ∈ H 2
n−1, the same can be showed for G′ ∈H 3

n−1
similarly. Without loss of generality, let H 2

n−1 be the graph class obtained from H2
r by the

attaching operation at some vertices of degree 2 on H2
r , where r = n− 1,n− 4,n− 7. One

can see that u1 and vr/2 can be the attaching vertices. From Lemma 2.1, we only need to
consider the case that NG(x)⊆ H2

r . Set NG(x) = {x1,x2}. Thus x1,x2 ∈V (H2
r ).
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If dH2
r
(x1) = dH2

r
(x2) = 2, without loss of generality, let x1 = u1 and x2 = vr/2, then

neither u1 nor vr/2 is an attaching vertex by Observation 2. We can choose a path P :=
u3u4 · · ·ur/2vr/2xu1 connecting u1 and u3 in G\{u2,v1,v2}. Thus, G contains a subdivision
of A3 as its subgraph (see Figures 3 and 6 (a)), which results in κ3(G)≥ 3.

If dH2
r
(x1) = 2 and dH2

r
(x2) = 3, without loss of generality, let x1 = u1, then we can find

a path connecting u1 and u3 and obtain κ3(G)≥ 3 for x2 ∈Hr \{u2,v1,v2}. For x2 = u2 and
x2 = v2, G contains an A1 and A4 as its subgraph, which implies κ3(G)≥ 3. If x2 = v1, then
G ∈H 3

n and so G ∈ G ∗
n .

(b)(a)

u1

w3

w2

w1

v2v3 v1

u2u2 u3u1

vr/2
v2v1 vr/2

ur/2ur/2

x
P

Figure 6. Graphs for Lemma 3.1.

For 3 ≤ dH2
r
(xi) ≤ 4 (i = 1,2), one can check that G contains a subdivision of one of

{A1,A2, . . . ,A5}, which implies κ3(G)≥ 3.

Case 3. G′ ∈H 4
n−1 or G′ ∈H 5

n−1.

Note that only vr/2 can be an attaching vertex in H4
r (see Figure 6 (b)), where r = n−

1,n−4. From Lemma 2.1, we only need to consider N(x)⊆ H4
r . We can consider H4

r as a
graph obtained from H4

5 and H2
r−3 by identifying one edge u1v1 in each of them.

Consider N(x)∩{w1,w2,w3} 6=∅. If N(x) 6= {w2,v1}, then G contains a subdivision of
one of {B1, . . . ,B6} as its subgraph. So, κ3(G)≥ 3 by Lemma 2.2. If N(x) = {w2,v1}, then
one can also get that κ3(G) ≥ 3. Now we can assume that N(x)∩{w1,w2,w3} = ∅. For
|{u1,v1}∩N(x)| = 2, G contains an A2 as its subgraph, which results in κ3(G) ≥ 3. For
|{ur/2,vr/2}∩N(x)|= 2, if vr/2 is not an attaching vertex in H4

r , then G ∈H 5
n ; if vr/2 is an

attaching vertex in H4
r , then κ3(G) ≥ 3 by Observation 2. For the other cases, we can also

check that κ3(G)≥ 3.

Case 4. G′ ∈H 6
n−1 or G′ ∈H 7

n−1.

From the above Case 2 and Lemma 2.2, we can get κ3(G)≥ 3 in this case.

Similarly, we have the following lemma.

Lemma 3.2. Let G′ be a graph obtained from G by deleting a vertex of degree 3. If G′ ∈
G ∗

n−1(n≥ 7), then κ3(G)≥ 3.

Lemma 3.3. Let G be a graph obtained from G′ by deleting an edge e = x1x2 and adding
a vertex x such that NG(x) = {x1,x2,x3}, where x3 ∈V (G′)\{x1,x2}. If G′ ∈ G ∗

n−1 (n≥ 7),
then G ∈ G ∗

n or κ3(G)≥ 3.
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Proof. Since n ≥ 7, G′ /∈ {K3,K4,G1}. From Observation 2 and Lemma 2.1, if G′ ∈
{G2,G3,G4}, we can easily check that κ3(G) ≥ 3 or G ∈ G ∗

n . Thus we consider G′ ∈
G ∗

n−1 \{G2,G3,G4}.
We claim that if there exists a K4 in G′ such that e∈ E(K4), then κ3(G)≥ 3. Let V (K4) =

{u1,u2,u3,u4}. Without loss of generality, let x1 = u2 and x2 = u4.
If x3 ∈ V (K4), then x3 = u1 or x3 = u3. It follows that κ3(G) ≥ 3 (see Figure 7 (a)).

So we assume that x3 /∈ V (K4). From Lemma 2.1, if x3 belongs to another clique of order
4 such that x3 is not an attaching vertex, then κ3(G) ≥ 3 or G ∈ G ∗

n . So, we only need
to consider x3 ∈ H i

r(1 ≤ i ≤ 7). If neither u2 nor u4 is an attaching vertex, then u1 or u3
is an attaching vertex, say u1. Then there must exist a path P connecting x3 and u1 such
that u2,u3,u4 /∈ V (P) since H i

r(1 ≤ i ≤ 7) is connected. Then the trees T1 = xu2 ∪ xu4 ∪P
and T2 = u1u2 ∪ u1u4 and T3 = u3u1 ∪ u3u2 ∪ u3u4 form three {u1,u2,u4}-trees, namely,
κ3(G)≥ 3 (see Figure 7 (b)).

(a)

u2(x1)

u3(x3)

u1 u4(x2)

x

u3

(b)

u2(x1)

u1 u4(x2)

x

u3

(c)

u2(x1)

u1 u4(x2)

xx3

P2

P1

P x3

Figure 7. Graphs for the claim.

Suppose that one of {u2,u4} is an attaching vertex, say u2. Thus there must exist two
paths P1 and P2 connecting x3 and u2 in H i

r since H i
r is 2-connected. Then the trees T1 =

xu2 ∪ xu4 ∪ xx3 and T2 = u4u1 ∪ u1u2 ∪P1 and T3 = u4u3 ∪ u3u2 ∪P2 form three internally
disjoint {u2,u4,x3}-trees, namely, κ3(G)≥ 3 (see Figure 7 (c)).

(a) C1

x1

x2

x3x

P

(b) C2

x1

x2

x3x

(c) C3

x1

x2

x3

x

P

P

Figure 8. Graphs for Lemma 3.3.

Now we consider e /∈ E(K4). Thus e ∈ E(H i
r)(1≤ i≤ 7). We only consider e ∈ E(H1

r ),
and for e ∈ E(H i

r)(2 ≤ i ≤ 7) one can also check that G ∈ G ∗
n or κ3(G) ≥ 3. Since H1

r =
K2 ∨ (r− 2)K1, we suppose that e ∈ E(K2 ∨ (r− 2)K1)(r ≥ 3). For r ≥ 5, G must contain
one of {C1,C2,C3} as its subgraph. One can check that κ3(G) ≥ 3 by Observation 1 (see
Figure 8). For r = 4, G ∈H 3

8 or G ∈H 4
8 or G ∈H 3

11 or κ3(G) ≥ 3. For r = 3, we can
obtain G ∈H 2

7 or G ∈H 2
10 or κ3(G)≥ 3 by Lemma 2.1 and Observation 2.
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Theorem 3.1. Let G be a connected graph of order n such that κ3(G)≤ 2. Then

e(G)≤
{

2n−2 i f n = 4,

2n−3 i f n≥ 3, n 6= 4.

with equality if and only if G ∈ G ∗
n .

Proof. We apply induction on n(n≥ 7). For n = 3,4, it is easy to see that G ∗
n = {Kn}. For

n = 5 or n = 6, the assertion holds by Lemmas 2.4 and 2.6.
Suppose that the assertion holds for graphs of order less than n ≥ 7. Now we show

that the assertion holds for n ≥ 7. We claim that δ (G) ≤ 3. Otherwise, δ (G) ≥ 4. Let
G′ be the graph obtained from G by deleting a vertex x such that d(x) = δ (G). Then,
2e(G′) = 2e(G)−2d(x) = 2e(G)−2δ (G)≥ (n−2)δ (G)≥ 4(n−2). But, by the induction
hypothesis, 2e(G′)≤ 2[2(n−1)−3] = 4n−10, a contradiction.

If δ (G) = 1, then we let G′ be the graph obtained from G by deleting a pendant vertex.
Then by the induction hypothesis, e(G) = e(G′)+1≤ 2(n−1)−3+1 = 2n−4 < 2n−3.

If δ (G) = 2, then we let G′ be the graph obtained from G by deleting a vertex of degree
2. If e(G′) < 2(n−1)−3, then e(G) = e(G′)+ 2 < 2(n−1)−3 + 2 = 2n−3. If e(G′) =
2(n− 1)− 3, then e(G) = e(G′) + 2 = 2(n− 1)− 3 + 2 = 2n− 3. Since G′ ∈ G ∗

n−1 and
κ3(G)≤ 2, we can obtain G ∈ G ∗

n by Lemma 3.1.
Suppose that δ (G) = 3. Let G′ be the graph obtained from G by deleting a vertex of

degree 3, say x. If e(G′) = 2(n− 1)− 3, then G′ ∈ G ∗
n−1. We can get a contradiction by

Lemma 3.2. If e(G′) < 2(n−1)−3, then e(G) = e(G′)+3≤ 2(n−1)−4+3 = 2n−3.
Now we will show that G ∈ G ∗

n for e(G′) = 2(n−1)−4. Suppose NG(x) = {x1,x2,x3}.
We have the following two cases to consider.

Case 5. G[NG(x)] is not a triangle.

In this case, there exists an edge xix j /∈ E(G)(1 ≤ i, j ≤ 3). Let G′′ = G′+ xix j. Then
we claim that κ3(G′′) ≤ 2. In fact, suppose that κ3(G′′) ≥ 3. Then there exists a 3-subset
S ⊆ V (G) such that G′′ contains three internally disjoint S-trees, denoted by T1,T2,T3. If
xix j /∈⋃3

i=1 E(Ti), then T1,T2,T3 are 3 S-trees in G, which contradicts κ3(G)≤ 2.
Assume that xix j belongs to some S-tree, without loss of generality, say xix j ∈ E(T1),

then T ′1 = (T1−xix j)∪xix∪xx j is an S-tree in G. Thus, T ′1 ,T2,T3 are three internally disjoint
S-trees in G, which implies that κ3(G)≥ 3, a contradiction.

Since e(G′′) = e(G′)+1 = 2(n−1)−3 and κ3(G)≤ 2, we have G′′ ∈G ∗
n−1. Furthermore,

G ∈ G ∗
n by Lemma 3.3.

Case 6. G[NG(x)] is a triangle.

Clearly, G[NG[x]] is a clique of order 4, where NG[x] = NG(x)∪{x}. From Lemma 2.1,
there is no path connecting any two vertices of G[NG[x]]. So, G \E(G[NG[x]]) has three
connected components except x. We denote them by G1,G2,G3 (note that Gi 6= K4(i =
1,2,3)). By the induction hypothesis, e(G) = ∑3

i=1 e(Gi)+6≤ 2∑3
i=1 |Gi|−3 = 2(n−1)−

3 < 2n−3.

Corollary 3.1.

f (n;κ3 ≤ 2) =

{
2n−2 i f n = 4,

2n−3 i f n≥ 3,n 6= 4.



756 H. Li, X. Li and Y. Mao

Since for 0≤ `≤ n−k+bk/2c−1, we have that h(n;κk ≥ `+1) = f (n;κk ≤ `)+1, the
following corollary is immediate.

Corollary 3.2.

h(n;κ3 ≥ 3) =

{
2n−1 i f n = 4,

2n−2 i f n≥ 3, n 6= 4.

Remark 3.1. Let n, ` be odd, and G′ be a graph obtained from an (`− 3)-regular graph
of order n− 2 by adding a maximum matching, and G = G′ ∨K2. Then δ (G) = `− 1,
κ3(G)≤ ` and e(G) = (`+2/2)(n−2)+1/2.

Otherwise, let G′ be an (`− 2)-regular graph of order n− 2 and G = G′ ∨K2. Then
δ (G) = `, κ3(G)≤ ` and e(G) = (`+2/2)(n−2)+1.

Therefore,

f (n;κ3 ≤ `)≥
{

`+2
2 (n−2)+ 1

2 f or n, ` odd,
`+2

2 (n−2)+1 otherwise.

One can see that for ` = 2 this bound is the best possible ( f (n;κ3 ≤ 2) = 2n−3). Actu-
ally, the graph constructed for this bound is K2∨ (n−2)K1, which belongs to G ∗

n .
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