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Abstract. The problem of determining the smallest number of edges, h(n; K > r), which
guarantees that any graph with n vertices and 2(n; X > r) edges will contain a pair of vertices
joined by r internally disjoint paths was posed by Erdos and Gallai. Bollobds considered the
problem of determining the largest number of edges f(n; K < ¢) for graphs with n vertices
and local connectivity at most £. One can see that f(n;X < ¢) = h(n;K > {+1) — 1. These
two problems had received a wide attention of many researchers in the last few decades. In
the above problems, only pairs of vertices connected by internally disjoint paths are consid-
ered. In this paper, we study the number of internally disjoint Steiner trees connecting sets
of vertices with cardinality at least 3.
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1. Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to book [5]
for graph theoretical notation and terminology not described here. We call the number of
vertices in a graph as the order of the graph and the number of edges of it as its size. For
two distinct vertices in a connected graph G, we can connect them by a path. Two paths are
called internally disjoint if they have no common vertex except the end vertices. For any
two distinct vertices x and y in G, the local connectivity Kg(x,y) is the maximum number
of internally disjoint paths connecting x and y. Then min{xg(x,y)|x,y € V(G),x # y} is
usually the connectivity of G. In contrast to this parameter, k¥(G) = max{xg(x,y)|x,y €
V(G),x # y}, introduced by Bollobas, is called the maximum local connectivity of G. The
problem of determining the smallest number of edges, &(n; %K > r), which guarantees that
any graph with n vertices and h(n; X > r) edges will contain a pair of vertices joined by r
internally disjoint paths was posed by Erdos and Gallai, see [1] for details.

Bollobis [2] considered the problem of determining the largest number of edges, f(n;
¢), for graphs with n vertices and local connectivity at most ¢, that is, f(m;%x < ¢
max{e(G)||V(G)| = n and ®(G) < {}. Motivated by determining the precise value of
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f(n;% < {), this problem has obtained wide attention and many results have been worked
out, see [2-4,7-9,16-18]. One can see that h(n; K > £+ 1) = f(m; K <€)+ 1.

For ¥ < ¢, it was showed that f(n; K < ¢) > [(({+1)/2)(n—1)]. Since f(n;x < ¥¢) =
[((£+1)/2)(n—1)] for £ = 2,3, Bollobds and Erdds conjectured that the equality holds,
but this was disproved by Leonard [7] for ¢ = 4, and later Mader [16] constructed graphs
disproving it for every ¢ > 4.

For a graph G(V,E) and a set S C V of at least two vertices, an S-Steiner tree or an
Steiner tree connecting S (or simply, an S-tree) is a such subgraph 7' (V' E’) of G that is a
tree with § C V’. Two Steiner trees T and T’ connecting S are said to be internally disjoint
if E(TYNE(T') =@ and V(T)NV(T') =S. For S C V(G) and |S| > 2, the generalized
local connectivity kg(S) is the maximum number of internally disjoint trees connecting S
in G. The generalized connectivity, introduced by Chartrand et al. in 1984 [6], is defined
as K (G) = min{x(S)|S C V(G),|S| = k}. There have been many results on the generalized
connectivity, see [10—15]. Similar to the classical maximal local connectivity, we introduce
another parameter k;(G) = max{x(S)|S C V(G),|S| = k}, which is called the maximum
generalized local connectivity of G. It is easy to check that 0 < & (G) < ki (K,) <n—[k/2]
for a connected graph G.

In this paper, we mainly study the problem of determining the largest number of edges,
Sf(n;%; < L), for graphs with n vertices and maximum generalized local connectivity at most
¢, where 0 < ¢ <n—[k/2]. Thatis, f(n; K < ¢) = max{e(G)||V(G)| =n and K(G) < £}.
We also study the smallest number of edges, h(n; K > r), which guarantees that any graph
with n vertices and h(n;%; > r) edges will contain a set S of k vertices such that there
are r internally disjoint S-trees, where 0 < r < n — [k/2]. It is not difficult to see that
h(n;Kp > L0+1) = f(mK <€)+ 1for0< ¢ <n-—[k/2]. For k=3 and ¢ = 2, we prove
that f(n;xK3 <2)=2n—3 forn >3 and n # 4, and f(n;x3 <2) =2n—2 for n = 4.
Furthermore, we characterize the graphs attaining these values. For k = 3 and a general ¢,
we construct some graphs to show that f(n;x3 < £) > ((€+2)/2)(n—2) + 1/2 for both n
and ¢ odd, and f(n;%3 < £) > ((€+2)/2)(n—2)+ 1 otherwise.

2. Some basic results

As usual, the union of two graphs G and H is the graph, denoted by GU H, with vertex set
V(G)UV(H) and edge set E(G) UE(H). The disjoint union of k copies of the same graph
G is denoted by kG. The join GV H of two disjoint graphs G and H is obtained from GUH
by joining each vertex of G to every vertex of H.

In this section, we first introduce a graph operation and two graph classes.

Let H be a connected graph, and u a vertex of H. We define the attaching operation at
the vertex u on H as follows: (1) identifying u and a vertex of a Ky; (2) u is attached with
only one Ky. The vertex u is called an attaching vertex.

Now, we introduce two new graph classes. For r >3, %, = {H! H? ,H> H} H> H° H'}
is a class of graphs of order r (see Figure 1 for details). Let £ (1 <i < 7) be the class of
graphs, each of them is obtained from a graph H! by the attaching operation at some vertices
of degree 2 on H!, where 3 < r <nand 1 <i <7 (note that H. € /). 4} is another class of
graphs that contains %, given as follows: 95 = {K3}, 9} = {Ka}, 92 = {G\ }U (UL, 7#2),
Gy ={G3,. Gy U(UL ). 9 = Ul A 95 = {Ga} U (UL ). 47 = ULy A4 for
n > 9 (see Figure 2 for details).

It is easy to see that the following three observations hold.
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Figure 2. Some graphs in ¢".

Observation 1. Let G and H be two connected graphs, and H’ be a subdivision of H. If H’
is a subgraph of G and K3(H) > 3, then K3(G) > 3.

Observation 2. Let H be a graph, u and v be two vertices in H, and G be a graph obtained
from H by attaching a K at u. If there are three internally disjoint paths between u and v in
H, then ¥3(G) > 3.

Observation 3. For each graph in Figure 3, k3 > 3.

Lemma 2.1. Let G be a graph containing a clique Ky. If there exists a path connecting two
vertices of Ky in G\ E[K4], then %3(G) > 3.

Proof. Let K4 be a complete subgraph of G with vertex set {uj,...,us}, and P be a path
connecting u; and u; in G\ E[K4]. It suffices to show that there exists a set S such that
K(S) > 3. Choose S = {uy,up,us}, clearly, Ti = ujup Uujus and Tr = uquy Uugup Uuguz
and T3 = PUuyu3 form three internally disjoint S-trees. Thus, K3(G) > 3. |
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(f) As

Figure 3. Graphs obtained from H51 and H;.

Similarly, the following lemma holds.

Lemma 2.2. Let G be a graph obtained from Hg1 by adding a vertex x and two edges xy,xz,
where y,z € V (H$)(see Figure 4). Then K3(G) >3 or G = H.

(d) By (e) Bs (f) Bs
Figure 4. Graphs obtained from Hg‘ by adding a vertex of degree 2.

Lemma 2.3. For any connected graph G with order 5 and size 8, K3(G) > 3.

Proof. We claim that 2 < §(G) < 3. In fact, if §(G) = 1, without loss of generality, let
d(x) =1, then |V(G —x)| =4 and ¢(G — x) = 7, a contradiction. If 6(G) > 4, then 16 =
2¢(G) > 50 > 20, a contradiction.

If 6(G) =2, without loss of generality, let d(x) =2, then |V(G—x)| =4 and e(G—x) =6,
which implies that G — x is a clique of order 4. From Lemma 2.1, K3(G) > 3. So we
suppose that §(G) = 3. Since |V(G)| = 5, A(G) < 4. Since 2¢(G)/|V(G)| = 16/5, there
exists a vertex x in G such that d(x) = 4. Set Ng(x) = {uy,up,u3,us}. Since (G —x) >2
and ¢(G —x) =4, G —x is a cycle of order 4. Then G is a wheel of order 5 and the trees
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Ty = xup Uxug and 1o = uzx Uusup Uuzug and T3 = upx Uujug Uujuy form 3 internally
disjoint {x,uy, u4 }-trees, namely, K3(G) > 3. 1

Lemma 2.4. For any connected graph G of order 5 and size 7, ¥3(G) < 2 and G €
{G,H} H? H}.

Proof. For each S C V(G) with |S| = 3, a tree with two edges connecting S is called Type
I, and the others with at least 3 edges are called Type II. One can see that three internally
disjoint trees connecting S will use at least 8 edges since we only have one tree of Type /.
So if G is a connected graph of order 5 and size 7, then k¥3(G) < 2.

Suppose that 6(G) > 3. Then 14 = 2¢(G) > 58 > 15, a contradiction. Thus, 6(G) <
If §(G) = 1, without loss of generality, let d(x) = 1, then |[V(G —x)| =4 and (G —x) =
which implies that G — x is a clique of order 4. Then G = G (see Figure 2).

If 6(G) =2, without loss of generality, let d(x) =2, then |V(G—x)| =4 and e(G—x) =5,
which implies that G —x is a graph obtained from K4 by deleting an edge. Thus, G €
{H1,H2,H?} (see Figure 1). |

2.
69

Lemma 2.5. For any connected graph G with order 6 and size 10, K3(G) > 3.

Proof. If there exists a vertex x € V(G) such that d(x) <2, then |V(G —x)| =5 and ¢(G —
x) > 8. From Lemma 2.3, ¥3(G — x) > 3, which results in k3(G) > 3.

Now we assume that §(G) > 3. If there exists a vertex x € V(G) such that d(x) = 5, then
[V(G—x)| =5 and e(G—x) = 5. Since (G —x) > 2, G—xis a cycle of order 5, which
implies that G is a wheel of order 6. Clearly, ¥3(G) > 3. So we can assume that A(G) < 4.
Let ¢ be the number of vertices of degree 4 in G. Since 20 = 2¢(G) =4t +3(6—1), 1t =2,
namely, there exist two vertices x,y € V(G) such that d(x) = d(y) = 4.

(a) (0)
Figure 5. Graphs for Lemma 2.5.

If xy ¢ E(G), then G must be the graph shown in Figure 5 (a) since 6(G) > 3. Then the
trees 11 = upx Uupy Uupuy and T = uypx Uxuz Uuszy and T3 = uyy U yuy U ugx form three
{x,y,u; }-trees, namely, k3(G) > 3.

If xy € E(G) and Ng—_y(x) # NG—xy(y), then G must be the graph shown in Figure 5 (b)
since §(G) > 3. Then the trees Ty = upxUxusz Uuzy and T = yxUyup and T3 = ujx Uuqup U
uius Uugy form three {x,y, up }-trees, namely, ¥3(G) > 3.

If xy € E(G) and Ng—_yy(x) = Ng—x(y), then G must be the graph shown in Figure 5
(c¢) since 6(G) > 3. Then the trees Ty = xu; Uxup Uxuz and T» = yu; Uyuy Uyus and
T3 = uquy Uugup Uugus form three {ug,un,us }-trees, namely, K3(G) > 3. |

Lemma 2.6. Let G be a connected graph of order 6 and size 9. If K3(G) < 2, then G €
{G3,G4} or G € {H} ,HZ H}} or G € 3.
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Proof. We claim that 2 < §(G) < 3. Suppose that 6(G) > 4. Then 18 = 2¢(G) > 66 >
24, a contradiction. Suppose that §(G) = 1, without loss of generality, let d(x) = 1, then
V(G —x)| =5 and ¢(G —x) = 8. From Lemma 2.3, ¥3(G — x) > 3. Clearly, k3(G) > 3 by
Observation 1.

If 5(G) =3, then G is 3-regular. It is easy to check that G = G3 or G = G4. In the
following, we assume that 6(G) = 2. Without loss of generality, set d(x) = 2, then |V (G —
x)| =5 and ¢(G —x) = 7, which implies that G —x = Gy or G—x € {H{,H?,H?} by Lemma
24.

IfG—x=G),then G€ . If G—x=H., then G=H] or G=A; or G = Ag (see Figure
3), which results in G = H}. If G—x = HZ, then G = H? or G € {A},A;,A3,A4,As}, which
implies that G = Hg by Observation 3. If G—x = H?, then G = H6'5 orG € {By,By,B3,B4,Bs,
B}, which implies that G = H by Lemma 2.2. |

3. Main results

In this section, we give our main results. We first need some more lemmas. In Lemma 2.3
through Lemma 2.6, we have dealt with the cases n < 6. Now we assume that n > 7.

Lemma 3.1. Let G' be a graph obtained from G by deleting a vertex of degree 2. If G' €
G5 ((n>7), then G € 9; orx3(G) > 3.

Proof. Let x be the deleted vertex of degree 2 in G. Since n > 7, G’ ¢ {K3,K4,G}. From
Observation 2 and Lemma 2.1, if G’ € {G2,G3,G4}, then we can check that G € %3 or
%3(G) > 3. From now on, we consider G' € 4" | \ {G2,G3,G4}.

Casel. G' € 7! |.

First we consider the case that there is no K4 in G'. Thus, G' = H} |. Since n > 7,
G = H) € 7 or G must contain an A, or Ag as its subgraph, which implies that G € ¢4 or
%3(G) > 3 by Observation 1.

Next we consider the case that there exists at least one K4 in G'. For each Ky, if Ng(x) N
(K4 \'y) # @, then we have X3(G) > 3 by Lemma 1, where y is an attaching vertex in G'.
Suppose that Ng(x) N (K4 \ y) = @ for all K4 C G'. Clearly, we can consider the graph
G e %Ll as the join of K, and r isolated vertices, and then doing the attaching operation
at some vertices of degree 2 on K, V rKj. So, we consider N(x) C K, VrK; (r > 1). For
r > 3, it follows that G € ! or G contains the graph A, or Ag as its subgraph, which
implies that G € ¥ or K3(G) > 3.

For r =2, from Lemma 1, we only need to consider N(x) C V(K, V2K) ). By Observation
2,Ge A orGe A or Ge AP orK3(G) > 3. Forr =1, Ky VK| is a triangle and G’ is a
graph obtained from this triangle by the attaching operation at some vertices of this triangle
since n > 7. Thus, from Observation 2 and Lemma 2.1, we can get K3(G) > 3.

Case2. G' € H* ot G € A7 |.

We only prove the conclusion for G’ € > |, the same can be showed for G' € 77 |
similarly. Without loss of generality, let %> | be the graph class obtained from H? by the
attaching operation at some vertices of degree 2 on H?, where r =n— 1,n—4,n—7. One
can see that u; and v,/ can be the attaching vertices. From Lemma 2.1, we only need to

consider the case that Ng(x) C H?. Set Ng(x) = {x1,x2}. Thus x1,x, € V(H?).
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If dpa (x1) = dy2(x2) = 2, without loss of generality, let x; = u; and x, = v, », then
neither u; nor v,/ is an attaching vertex by Observation 2. We can choose a path P :=
UzU4 -~ U)o vy ppxuy connecting uy and uz in G\ {uz,v1,v2}. Thus, G contains a subdivision
of A3 as its subgraph (see Figures 3 and 6 (a)), which results in ¥3(G) > 3.

If dHZ (x1)=2andd 2 (x2) = 3, without loss of generality, let x; = u;, then we can find
a path connecting u; and u3 and obtain K3(G) > 3 for x; € H, \ {u2,v1,v2}. For x, = u and
X2 = vy, G contains an A and Ay as its subgraph, which implies ¥3(G) > 3. If x, = vy, then
Ge P andsoGE Y.

w) Ul U2 Uy /2
U)d - m
Uy /2 w2 V1 V2 Uy /2

(a) (0)
Figure 6. Graphs for Lemma 3.1.

For 3 < dp(x;) <4 (i = 1,2), one can check that G contains a subdivision of one of
{A1,As, ..., As}, which implies K3(G) > 3.

Case3. G € 2t or G € ) .

Note that only v,/ can be an attaching vertex in H? (see Figure 6 (b)), where r = n —
1,n—4. From Lemma 2.1, we only need to consider N(x) C H*. We can consider H? as a
graph obtained from Hg‘ and Hr273 by identifying one edge u;v; in each of them.

Consider N(x) N{wi,wa,w3} # @. If N(x) # {wa2,v1}, then G contains a subdivision of
one of {By,...,Bg} as its subgraph. So, ¥3(G) > 3 by Lemma 2.2. If N(x) = {wy,v; }, then
one can also get that ¥3(G) > 3. Now we can assume that N(x) N {w;,wz,w3} = &. For
[{u1,vi} "N(x)| = 2, G contains an A, as its subgraph, which results in ¥3(G) > 3. For
{uj2,v, 2} NN (x)| = 2, if v, 5 is not an attaching vertex in H;', then G € 7; if v, is an
attaching vertex in Hf , then K3(G) > 3 by Observation 2. For the other cases, we can also
check that k3(G) > 3.

Cased. G' € H°  or G e A .
From the above Case 2 and Lemma 2.2, we can get k3(G) > 3 in this case. |

Similarly, we have the following lemma.

Lemma 3.2. Let G' be a graph obtained from G by deleting a vertex of degree 3. If G' €
G (n>71), then K3(G) > 3.

Lemma 3.3. Let G be a graph obtained from G' by deleting an edge e = x1x, and adding
a vertex x such that Ng(x) = {x1,x2,x3}, where x3 € V(G')\{x1,02}. If G’ € 97 | (n>7),
then G € 9; or k3(G) > 3.
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Proof. Since n > 7, G’ ¢ {K3,K4,G1}. From Observation 2 and Lemma 2.1, if G’ €
{G2,G3,G4}, we can easily check that X3(G) > 3 or G € 4. Thus we consider G’ €
gn*—l \{G27 Gs, G4}'

We claim that if there exists a K4 in G’ such that e € E(K4), then K3(G) > 3. Let V(Ky) =
{u1,uz,u3,us}. Without loss of generality, let x; = u» and x; = ug4.

If x3 € V(Ky), then x3 = u; or x3 = u3. It follows that K3(G) > 3 (see Figure 7 (a)).
So we assume that x3 ¢ V(K4). From Lemma 2.1, if x3 belongs to another clique of order
4 such that x3 is not an attaching vertex, then ¥3(G) >3 or G € 4. So, we only need
to consider x3 € Hﬁ(l < i< 7). If neither uy nor uy is an attaching vertex, then u; or u3
is an attaching vertex, say u;. Then there must exist a path P connecting x3 and u; such
that uo, u3,us ¢ V(P) since H.(1 <i < 7) is connected. Then the trees T} = xup Uxus UP
and T» = ujup Uujug and T3 = uzu; Uuzuy Uusuy form three {u),un,uqs }-trees, namely,
&3(G) > 3 (see Figure 7 (D)).

T3 xT
/O === —/—O— ~
\' b - \
y; \
/ UQ(Il) ]
[ YISTTTTTN A Vz
U1 uq(x2)

(a) (b) ()
Figure 7. Graphs for the claim.

Suppose that one of {uy,us} is an attaching vertex, say up. Thus there must exist two
paths P; and P, connecting x3 and u; in Hﬁ since Hﬁ is 2-connected. Then the trees 71 =
xup Uxug Uxxs and T = wquy Uuguy U Py and T3 = uguz Uuzuy U P form three internally
disjoint {uy,us,x3 }-trees, namely, ¥3(G) > 3 (see Figure 7 (c)).

(a) C1 (b) C2 (0 Cs
Figure 8. Graphs for Lemma 3.3.

Now we consider e ¢ E(Ky). Thus e € E(H!)(1 <i < 7). We only consider e € E(H,"),
and for e € E(H!)(2 < i < 7) one can also check that G € ¢; or k3(G) > 3. Since H, =
K>V (r—2)K;, we suppose that e € E(K> V (r—2)K;)(r > 3). For r > 5, G must contain
one of {C1,C,,C3} as its subgraph. One can check that ¥3(G) > 3 by Observation 1 (see
Figure 8). For r =4, G € J# or G € 7 or G € 7} or K3(G) > 3. For r = 3, we can
obtain G € 7* or G € 3 or K3(G) > 3 by Lemma 2.1 and Observation 2. 1
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Theorem 3.1. Let G be a connected graph of order n such that K3(G) < 2. Then

e(G) < 2n—12 l.fn:47
2n—3 ifn>3, n#4

with equality if and only if G € 4.

Proof. We apply induction on n(n > 7). For n = 3,4, it is easy to see that 4, = {K,}. For
n =>5 or n = 6, the assertion holds by Lemmas 2.4 and 2.6.

Suppose that the assertion holds for graphs of order less than n > 7. Now we show
that the assertion holds for n > 7. We claim that §(G) < 3. Otherwise, 6(G) > 4. Let
G’ be the graph obtained from G by deleting a vertex x such that d(x) = 6(G). Then,
2¢(G') =2e(G) —2d(x) =2¢(G) —28(G) > (n—2)6(G) > 4(n—2). But, by the induction
hypothesis, 2¢(G") < 2[2(n— 1) — 3] = 4n — 10, a contradiction.

If §(G) = 1, then we let G’ be the graph obtained from G by deleting a pendant vertex.
Then by the induction hypothesis, e(G) = e(G')+1<2(n—1)—-3+1=2n—4 <2n-3.

If 6(G) = 2, then we let G’ be the graph obtained from G by deleting a vertex of degree
2. Ife(G') <2(n—1)—3,then e(G) = e(G') +2<2(n—1)—-3+2=2n—3. If e(G') =
2(n—1)—3, then ¢(G) = e(G')+2=2(n—1)—3+2=2n—3. Since G' € ¥’ | and
K3(G) <2, we can obtain G € ¢ by Lemma 3.1.

Suppose that §(G) = 3. Let G’ be the graph obtained from G by deleting a vertex of
degree 3, say x. If e(G') =2(n—1) — 3, then G’ € 4 ;. We can get a contradiction by
Lemma 3.2. If ¢(G') < 2(n—1) —3, then e¢(G) = e(G')+3<2(n—1)—4+3=2n-3.

Now we will show that G € ¢, for e(G') = 2(n— 1) — 4. Suppose Ng(x) = {x1,x2,x3}.
We have the following two cases to consider.

Case 5. G[Ng(x)] is not a triangle.

In this case, there exists an edge xix; ¢ E(G)(1 <i,j <3). Let G” = G +x;x;. Then
we claim that K3(G”) < 2. In fact, suppose that K3(G”) > 3. Then there exists a 3-subset
S C V(G) such that G” contains three internally disjoint S-trees, denoted by Ty,T»,T3. If
xixj ¢ Ui E(T;), then T1, T3, T5 are 3 S-trees in G, which contradicts 3 (G) < 2.

Assume that x;x; belongs to some S-tree, without loss of generality, say x;x; € E (1),
then 7] = (71 —x;x;) UxixUxx; is an S-tree in G. Thus, T/, 7>, T3 are three internally disjoint
S-trees in G, which implies that K3(G) > 3, a contradiction.

Since ¢(G") =e(G')+1=2(n—1)—3 and K3(G) < 2, we have G” € 4" . Furthermore,
G € ¥; by Lemma 3.3.

Case 6. G[Ng(x)] is a triangle.

Clearly, G[Ng[x]] is a clique of order 4, where Ng[x] = Ng(x) U{x}. From Lemma 2.1,
there is no path connecting any two vertices of G[Ng[x]]. So, G\ E(G[Ng[x]]) has three
connected components except x. We denote them by Gy,G>,G3 (note that G; # Ky(i =
1,2,3)). By the induction hypothesis, e(G) = ¥'3_;e(G;) +6 <2Y3 ,|Gi| -3 =2(n—1)—
3<2n-3. 1

Corollary 3.1.
2n—2 ifn=4,

fln¥es <2) = {2)1—3 ifn>3,n#4.
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Since for 0 < ¢ <n—k+ |k/2] — 1, we have that h(n; K > £+ 1) = f(n; K, < £) + 1, the
following corollary is immediate.

Corollary 3.2.
2n—1 ifn=4,

hin;xk3 >3) =
(K23 =000 0 ifns3. nzd

Remark 3.1. Let n,¢ be odd, and G’ be a graph obtained from an (£ — 3)-regular graph
of order n — 2 by adding a maximum matching, and G = G’ V K;. Then 8(G) = ¢ —1,
K3(G) <land e(G) = (£+2/2)(n—2)+1/2.

Otherwise, let G’ be an (¢ — 2)-regular graph of order n —2 and G = G’V K,. Then
0(G)=4,%3(G) <land e(G) = (£+2/2)(n—2)+ 1.

Therefore,

~

HB2(n-2)+1  forn, Lodd,

HB2(n—2)+1 otherwise.

fmxs <f)>

~

One can see that for £ = 2 this bound is the best possible (f(n; %3 <2) =2n—3). Actu-
ally, the graph constructed for this bound is K> V (n — 2)K|, which belongs to 4"
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