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1. Introduction

Let us define the triangular region D = {s, t;0 < s < t < T} and introduce the functions
s = αi(t), i = 1,n, which are continuous and have continuous derivatives for t ∈ (0,T ).
We suppose αi(0) = 0, 0 < α1(t) < · · · < αn−1(t) < t for t ∈ (0,T ), 0 < α ′1(0) < · · · <
α ′n−1(0) < 1, and functions s = αi(t), i = 0,n, α0(t) = 0, αn(t) = t, split the region D into
the following disjoint sectors D1 = {s, t : 0≤ s < α1(t)}, Di = {s, t : αi−1(t) < s < αi(t), i =

2,n}, D =
n⋃
1

Di. Let us introduce the continuous functions Ki(t,s) defined for t,s ∈ Di, and

differentiable wrt t, i = 1,n.
Let us consider the integral operator

(1.1)
t∫

0

K(t,s)u(s)ds def=
n

∑
i=1

αi(t)∫
αi−1(t)

Ki(t,s)u(s)ds
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with piecewise continuous kernels

(1.2) K(t,s) =

 K1(t,s), t,s ∈ D1,
. . . . . . . . .
Kn(t,s), t,s ∈ Dn.

In this paper we deal with the following Volterra integral equation

(1.3)
t∫

0

K(t,s)u(s)ds = f (t), 0 < t < T ≤ ∞,

where function f (t) has a continuous derivative for t ∈ (0,T ), f (0) 6= 0. Equation (1.3) we
call the Volterra integral equation (VIE) with piecewise continuous kernel. Our objective is
to construct the solution of VIE (1.3) in the space of Sobolev-Schwartz distributions [19].
Obviously, VIE (1.3) does not have classic solutions since f (0) 6= 0.

The differentiation of VIE (1.3) leads to integral-functional equation and its solution is
not unique in the general case [6]. That is why study of VIE (1.3) cannot be performed
using only the classic methods in the Volterra theory [1, 2, 5, 7]. In this paper we continue
our results on VIE studies [9–13, 15]. We consider the equation (1.3) using the elementary
results of the theory of integral and difference equations, functional analysis [18], Sobolev-
Schwartz distributions and theory of functional equations with perturbed argument of neu-
tral type [9].

This paper is organized as follows.
Section 2 outlines the construction of the singular component of the solution and the

integral-functional equation for the regular component of the solution is derived. In Section
3 we obtain the sufficient conditions for existence and uniqueness of solution of VIE (1.3)
in the following form u(t) = aδ (t)+ x(t), were δ (t) is Dirac delta function, x(t) is regular
continuous function. Such solutions satisfy to the equation (1.3) in the sense of Sobolev-
Schwartz distributions [19]. To the best of our knowledge, similar studies on VIE (1.3)
have not yet been reported in literature. In Section 3 we construct the regular part of the
solution using the “step method” [3] from the theory of functional equations and successive
approximations method. In Sections 4 and 5 we address the most interesting case when VIE
(1.3) has family of solutions depending on free parameters. The method for construction
of asymptotic approximations of parametric solutions is proposed and iterative refinement
method is constructed. It is to be noted that known method of A.O. Gelfond (readers may
refer to [4, p. 338] of solution of difference equations is employed).

2. Definition of the singular component of the solution

Let us extend f (t) on negative semiaxis with zero and differentiation of VIE (1.3) yields the
following equivalent equation

F(u) def= Kn(t, t)u(t)+
n−1

∑
i=1

α
′
i (t)
{

Ki(t,αi(t))−Ki+1(t,αi(t))
}

u(αi(t))

+
n

∑
i=1

αi(t)∫
αi−1(t)

K(1)
i (t,s)u(s)ds = f (1)(t)+ f (0)δ (t),(2.1)
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where α0 = 0, αn(t) = t. Let us assume K1(0,0) 6= 0, Kn(t, t) 6= 0, for t ∈ [0,T ]. Let us
introduce the following functional operator

Au def=
n−1

∑
i=1

K−1
n (t, t)α ′i (t){Ki(t,αi(t))−Ki+1(t,αi(t))}u(αi(t))

and integral operator Ku def= ∑
n
i=1

αi(t)∫
αi−1(t)

K−1
n (t, t)K(1)

i (t,s)u(s)ds.

Then equation (2.1) can be reduced to the following equation

(2.2) u(t)+Au+Ku = K−1
n (t, t) f (1)(t)+K−1

n (0,0) f (0)δ (t).

Let us search for a solution to VIE (3.2) of the form u(t) = aδ (t) + x(t), where a is
constant, x(t) ∈ C(0,T ).

It is easy to verify the following identities:

α1(t)∫
0

∂K1(t,s)
∂ t

δ (s)ds =
∂K1(t,0)

∂ t
,

αi(t)∫
αi−1(t)

∂Ki(t,s)
∂ t

δ (s)ds = 0

for i = 2,n. Indeed, the first identity holds because α1(t) > 0,

∂K1(t,s)
∂ t

δ (s) =
∂K1(t,0)

∂ t
δ (s),

∫ α1(t)
0 δ (s)ds = θ(αi(t)) = 1 for t > 0, were θ is Heaviside function. The second identity

becomes trivial if we notice that for i = 2,n supp δ (s)∩Di = 0,
αi(t)∫

αi−1(t)
δ (s)ds = θ(αi(t))−

θ(αi−1(t)) = 0, since 0 < α1(t) < α2(t) < · · · < αn(t) = t. Let us also recall the iden-
tity δ (αi(t)) = δ (t)

|α ′i (0)| (see, e.g., [19, p. 34]). Let us take into account the outlined iden-
tities and substitution u = aδ (t) + x(t) leads the equation (2.2) to the following equation
K−1

n (0,0)K1(0,0)aδ (t)+K−1
n (t, t) ∂K1(t,0)

∂ t a+x(t)+Ax+Kx = K−1
n (t, t) f (1)(t)+K−1

n (0,0)

f (0)δ (t). Equating the last equation coefficients of δ (t) results a = f (0)
K1(0,0) . It is remained

to determine the regular part from the equation

(2.3) x(t)+Ax+Kx = f (t),

where f (t) = K−1
n (t, t)

{
f (1)(t)− ∂K1(t,0)

∂ t
f (0)

K1(0,0)

}
. It is to be noted that due to the operator

equality
Kn(t, t)(I +A+K)x = F(x)

the equation (2.3) can be written as follows

(2.4) F(x) = f ′(t)− ∂K1(t,0)
∂ t

f (0)
K1(0,0)

.
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3. Sufficient conditions for the existence of a unique generalized solution

Since K1(0,0) 6= 0 then homogeneous equation (2.1) has only trivial solution of singular
functions

using
def=

m

∑
0

ciδ
(i)(t)

with support at the origin. Therefore, the existence and uniqueness of generalized solutions
of the equation (2.1)

u(t) = using + x(t),

x(t) ∈ C(0,T ) is equivalent to proving the existence of a unique solution of equation (2.3) in
C(0,T ). Let us introduce the function

|A(t)| def=
n−1

∑
i=1

∣∣∣α(1)
i (t)K−1

n (t, t)
∣∣∣ |Ki(t,αi(t))−Ki+1(t,αi(t))| . (∗)

Let the following condition be fulfilled

(A) |A(0)|< 1, sup
0<s<t<T

|K−1
n (t, t)K(t,s)| ≤ c < ∞.

Condition (A) is fulfilled if α
(1)
i (0) are sufficiently small. Here and below the kernel

K(t,s) in
n⋃
1

Di is defined as (1.2). It’s derivative wrt t for t,s ∈
n⋃
1

Di is defined as follows:

K(1)(t,s) =


K(1)

1 (t,s), t,s ∈ D1,
. . . . . . . . .
K(1)

n (t,s), t,s ∈ Dn.

Theorem 3.1. (Sufficient conditions for existence and uniqueness of generalized solutions).
Let condition (A) be fulfilled, Ki(t,s) in (1.2) are continuous functions, and have continuous
derivatives wrt t, function f (t) has continuous derivative, f (0) 6= 0. Let K1(0,0) 6= 0. Then
equation (1.3) has the unique solution

u(t) =
f (0)

K1(0,0)
δ (t)+ x(t),

where x(t) ∈C(0,T ). At the same time we can find x(t) using the step method combined with
successive approximations.

Proof. Since the singular part of the solution is defined let us consider the equation (2.3)
satisfied by the regular component x(t).

Let us fix q < 1 and select h1 > 0 such as sup
0≤t≤h1

|A(t)|= q < 1. Due to condition (A) such

a variable h1 > 0 exists. Let 0 < h < min{h1,
1−q

c }, where variable c is defined in condition
(A). Let us divide the interval [0,T ] into subintervals

(3.1) [0,h], [h,h+ εh], [h+ εh,h+2εh], . . . .

We denote by x0(t) the restriction of the solution x(t) into [0,h], and by xm(t) we denote it’s
restriction into subintervals

Im = [(1+(m−1)ε)h,(1+mε)h], m = 1,2, . . . .
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Let us select ε from (0,1] such as for t ∈ Im “perturbed” arguments αi(t) ∈
m−1⋃
k=1

Ik, i =

1,n−1. If 0 < α
(1)
i (t) < 1

1+ε
for t ∈ [0,T ), i = 1,n−1, then the above inclusion holds

in the interval [0,T ). This inclusion makes it possible to apply the well-known in the theory
of functional differential equations the method of steps. The readers may refer to [3, p. 199].

Let us construct the sequence {xn
0(t)} :

xn
0(t) =−Axn−1

0 −Kxn−1
0 + f (t),

x0
0(t) = f (t), t ∈ [0,h].

to define x0(t) ∈ C[0,h]
Due to the selection of h we have an estimate ||A+K||L (C(0,h)→C(0,h)) < 1.

Therefore for t ∈ [0,h] exists a unique solution x0(t) of equation (2.3). The sequence xn
0(t)

uniformly converges to the solution. We continue the process of constructing the desired
solution for t ≥ h, i.e. on the intervals In, n = 1,2, . . . . For the sake of clarity let ε = 1 in
(3.1).

Once we get the element x0(t) ∈ C[0,h] computed we will look for element x1(t) in the
space C(h,2h). We will find x1(t) from the Volterra integral equation of the 2nd kind

x(t)+
t∫

h

K−1
n (t, t)K′t (t,s)x(s)ds = f (t)−Ax0−

h∫
0

K−1
n (t, t)K′t (t,s)x0(s)ds

using the successive approximations, with already defined right hand side.
Let us introduce the continuous function

(3.2) x1(t) =
{

x0(t), 0≤ t ≤ h,
x1(t), h≤ t ≤ 2h,

which is the reduction of continuous solution x(t) on to [0,2h]. Then we can find element
x2(t) ∈ C(2h,3h) using the successive approximations from the Volterra integral equation of
the 2nd kind

x(t)+
t∫

2h

K−1
n (t, t)K′t (t,s)x(s)ds = f (t)−Ax1−

2h∫
0

K−1
n (t, t)K′t (t,s)x1(s)ds.

The desired solution x(t)∈C(0,T ) of VIE (1.3) can be finally constructed by continuation
of this process for N steps, N ≥ T

h . This completes the proof of the theorem.

4. Construction of an asymptotic approximation x̂(t) of the regular part of parametric
family of the desired solution

Let us consider the equation (2.4) which is satisfied by the regular part of generalized solu-
tion. Let the following condition be fulfilled
(B) Exist polynomials Pi = ∑

N
ν+µ=1 Kiνµ tν sµ , i = 1,n,

f N(t) = ∑
N
ν=1 fν tν , αN

i (t) = ∑
N
ν=1 αiν tν , i = 1,n−1, where 0 < α11 < α21 < · · ·< αn−1,1 <

1, such as for t → +0, s → +0 we have the following estimates |Ki(t,s)−Pi(t,s)| =
O((t + s)N+1), i = 1,n, | f (t)− f N(t)| = O(tN+1), |αi(t)−αN

i (t)| = O(tN+1), i = 1,n−1.
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Expansion in powers of t,s which are presented in condition (B) we call as “Taylor polyno-
mials” of the corresponding functions. Let us introduce the function

B( j) = Kn(0,0)+
n−1

∑
i=1

(α ′i (0))1+ j(Ki(0,0)−Ki+1(0,0)),

which depends on argument j, j ∈ N∪ 0. Function B( j) which corresponds to the main
“functional” part of the equation (2.4) is called as characteristic function of equation (2.4).
Let us consider the construction of asymptotic solution of equation (2.4).

In contrast to Section 3, in Sections 4 and 5 it is not supposed that homogeneous equation
for equation (1.3) has only trivial solution. Therefore the solution of integral-functional
equation (2.4) can be non unique. Let us follow paper [8] and search for the asymptotic
approximation of a particular solution of the inhomogeneous equation (2.4) as following
polynomial

(4.1) x̂(t) =
N

∑
j=0

x j(ln t)t j.

Let us demonstrate that coefficients x j depend on ln t and free parameters in general irregular
case. This is consistent with the possibility of the existence of nontrivial solutions of the
homogeneous equation.

For computation of the coefficients x j we consider regular and irregular cases.

Definition 4.1. Point j∗ is called regular point of characteristic function B( j), if B( j∗) 6= 0
and irregular point otherwise.

4.1. The regular case: characteristic function B( j) 6= 0 for j ∈ (0,1, . . . ,N), where N is
sufficiently large

In this case, the coefficients x j will be constant, i.e. independent on ln t. Indeed, lets substi-
tute expansion (4.1) into equation (2.4). Using the method of undetermined coefficients and
taking into account conditions (B), lead to the recursive sequence of the systems of linear
algebraic equations wrt x j :

(4.2) B(0)x0 = f ′(0)− f (0)
K1(0,0)

− f (0)
K1(0,0)

∂K1(t,0)
∂ t

∣∣∣∣
t=0

,

(4.3) B( j)x j = M j(x0, . . . ,x j−1), j = 1, . . . ,N.

M j are expressed in terms of solutions x0, . . . ,x j−1 of previous equations and coefficients of
the Taylor polynomials from the condition (B).

Since in the regular case B( j) 6= 0 the coefficients x0, . . . ,xN can be uniquely determined
and the asymptotic expansion (4.1) can be constructed by this means.

4.2. Irregular case: characteristic function B( j) in (0,1, . . . ,N) has zeros

Let us demonstrate that in irregular case the coefficients x j are polynomials in powers of ln t
and depends upon arbitrary constants. The order of polynomials and the number of arbitrary
constants are related to the multiplicities of integer solutions of the equation B( j) = 0.
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Indeed, since the coefficient x0 in the irregular case can depend on ln t, then based on
the method of undetermined coefficients x0 can be found as the solution of the difference
equation

Kn(0,0)x0(z)+
n−1

∑
i=1

α
′
i (0)(Ki(0,0)−Ki+1(0,0))x0(z+ai) = f ′(0)− f (0)

K1(0,0)
K1(t,0)

∂ t

∣∣∣∣
t=0

,

(4.4)

where ai = lnα ′(0),z = ln t. There are three possible cases here:
1st case. In this case the coefficient x0 does not depend on z and can be determined uniquely
from the equation (4.2).
2nd case. (B(0) = 0).
Let j = 0 be simple zero of the function B( j), i.e. B(0) = 0, B′(0) 6= 0. Then the coefficient
x0(z) we can find from the difference equation (4.4) as linear function

(4.5) x0(z) = x01z+ x02.

Lets substitute (4.5) into (4.4). Thus for determination of the coefficients x01,x02 we
obtain two equations as follows:

(4.6) B(0)x01 = 0,

(4.7) B(0)x02 +B(1)(0)x01 = f ′(0)− f (0)
K1(0,0)

∂K1(t,0)
∂ t

∣∣∣∣
t=0

,

where B(0) = 0, B(1)(0) 6= 0. Hence the coefficient x0(z) is linear wrt z and depends on the
arbitrary constant. So, it the 2nd case

x0(z) =
(

f (1)(0)− f (0)
K1(0,0)

∂K1(0,0)
∂ t

)
1

B(1)(0)
z+ c,

where c is arbitrary constant.
3rd case. Let j = 0 be root of the equation B( j) = 0 with order of multiplicity of k + 1,

i.e. B(0) = B′(0) = . . .B(k)(0) = 0, B(k+1)(0) 6= 0, k ≥ 1. Solution x0(z) of the difference
equation (4.3) we search in the form of a polynomial

(4.8) x0(z) = x01zk+1 + x02zk + · · ·+ x0k+1z+ x0k+2.

Let us substitute polynomial (4.8) into equation (4.4) and take into account the identity

dk

d jk B( j) =
n−1

∑
i=1

(α ′i (0))1+ jak
i (Ki(0,0)−Ki+1(0,0)),

where ai = lnα ′i (0). Next lets equate the coefficients of powers

zk+1,zk, . . . ,z,z0
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to zero. Finally we get recurrent sequence of linear algebraic equations wrt x01,x02, . . . ,x0k+2 :

(4.9)



B(0)x01 = 0,

B(0)x02 +B(1)(0)
(

k +1
k

)
x01 = 0,

B(0)x0l+1 +B(l)(0)
(

k +1
k +1− l

)
x01 +B(l−1)(0)

(
k

k +1− l

)
x02 + . . .

· · ·+B(1)(0)
(

k +1− l +1
k +1− l

)
xol = 0, l = 1, . . . ,k,

(4.10)

B(0)x0k+2 +B(k+1)(0)x01 +B(k)(0)x02 + . . .B(1)(0)x0k+1 = f ′(0)− f (0)
K1(0,0)

∂K1(t,0)
∂ t

∣∣∣∣
t=0

.

In our case B(0) = B′(0) = · · ·= B(k)(0) = 0, B(k+1)(0) 6= 0. Hence in polynomial (4.8)
we let

x01 =
1

B(k+1)(0)

(
f ′(0)− f (0)

K1(0,0)
∂K1(0,0)

∂ t

)
.

Equations of system (4.9) become identities B(0)x0 j = 0, j = 1,k +1, B(0) = 0. Hence
coefficients x02, . . . ,x0k+2 of polynomial (4.8) remain arbitrary constants. Next, let’s employ
the method of undetermined coefficients and take into account the identity

∫
t j lnk t dt = t j+1

k

∑
s=0

(−1)s k(k−1) . . .(k− (s−1))
( j +1)s+1 lnk−s t.

By this means we construct the difference equations for determination of the coefficient
x1(z) (z = ln t) and next coefficients of the asymptotic expansion (4.1). Indeed,

L(x)
∣∣∣∣
x=x0(z)+x1(z)t

def=
[

Kn(0,0)x1(z)+
n−1

∑
i=1

(α ′i (0))2(Ki(0,0)(4.11)

−Ki+1(0,0))x1(z+ai)+P1(x0(z))
]

t + r(t), r(t) = o(t).

Here P1(x0(z)) is the polynomial of z. It’s degree is equal to the multiplicity of solution
j = 0 of equation B( j) = 0 as have been proved. From the relation (4.11) due to r(t) = o(t)
for t→ 0 it follows that coefficient x1(z) have to satisfy the difference equation

(4.12) Kn(0,0)x1(z)+
n−1

∑
i=1

(α ′(0))2(Ki(0,0)−Ki+1(0,0)
)
x1(z+ai)+P1(x0(z)) = 0.

If B(1) 6= 0, then the equation (4.12) has solution x1(z) as the same degree polynomial as
multiplicity order of solution j = 0 of equation B( j) = 0. If j = 1 is also the solution of
equation B( j) = 0 the solution x1(z) can be constructed as polynomial of the power k0 +k1,
where k0 and k1 are corresponding multiplicities of solutions j = 0 and j = 1 of equation
B( j) = 0. Coefficient x1(z) depends on k0 + k1 arbitrary constants.

Let us introduce the following condition
(C) Let equation B( j) = 0 in array (0,1, . . . ,N) has solutions j1, . . . , jν of multiplicities
ki, i = 1,ν .
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Then, in a similar way we can calculate the remaining coefficients x2(z), . . . ,xN(z) of
asymptotic approximation x̂(t) of solution of equation (2.4) from the following sequence of
difference equation

Kn(0,0)x j(z)+
n−1

∑
i=1

(α ′(0))1+ j(Ki(0,0)−Ki+1(0,0)
)
x j(z+ai)+P j(x0(z), . . . ,x j−1(z)))= 0,

j = 2,N. Thus we have the following lemma.

Lemma 4.1. Let conditions (B) and (C) be fulfilled. Then exists the function x̂(t)= ∑
N
i=0 xi(ln t)t i,

such as for t→+0 the residual solution of equation (2.4) satisfies the estimate∣∣∣∣F(x̂(t))− f (1)(t)+K(1)(t,0)
f (0)

K1(0,0)

∣∣∣∣= o(tN).

The coefficients xi(ln t) are polynomials of ln t. The degrees of these polynomials are
increasing and do not exceed the sum of the multiplicities of ∑ j k j of solutions of equation
B( j) = 0 from the array (0,1, . . . , i). The coefficients xi(ln t) depend on ∑

i
j=0 k j arbitrary

constants.

Remark 4.1. If B( j) 6= 0, then in the sum ∑
i
j=0 k j we zero the corresponding k j.

5. An existence theorem for continuous parametric solutions families

Since 0 < α ′i (0) < 1, αi(0) = 0, i = 1,n−1, then for any 0 < ε < 1 exists T ′ ∈ (0,T ] such
as the following estimates are fulfilled

max
i=1,n−1,t∈[0,T ′]

|α ′i (t)| ≤ ε,

sup
i=1,n−1,t∈(0,T ′]

αi(t)
t
≤ ε.

Let us introduce the condition
(D) Let Kn(t, t) 6= 0 for t ∈ [0,T ′] and N∗ is chosen so large that the following equality

sup
t∈(0,T ′)

ε
N∗ |A(t)| ≤ q < 1

is fulfilled, where function A(t) is defined the Section 3 with formula (∗).

Lemma 5.1. Let condition (D) be fulfilled. Let in C(0,T ′) class of continuous functions for
t ∈ (0,T ′] which have the limit (which could be infinite) for t → +0 exists an element x̂(t)
such as for t→+0 error of the solution of equation (2.4) satisfy the estimate∣∣F(x̂(t))− f ′(t)+K′1(t,0)

f (0)
K1(0,0)

∣∣= o(tN),

where N ≥ N∗. Then equation (2.4) in C(0,T ′) has the solution

(5.1) x(t) = x̂(t)+ tNv(t),

where v(t) is uniquely determined by successive approximations.
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Proof. Substitution of (5.1) in equation (2.4) gives us the following integral-functional
equation for determination of the function v(t)

v(t)+Kn(t, t)
{n−1

∑
i=1

α
′
i (t)
(

αi(t)
t

)N∗(
Ki(t,αi(t))−Ki+1(t,αi(t))

)
v(αi(t))

+
n

∑
i=1

αi(t)∫
αi−1(t)

K(1)
i (t,s)

(
s
t

)N∗

v(s)ds
}

=
{

f ′(t)− ∂K1(t,0)
∂ t

f (0)
K1(0,0)

−F(x̂(t))
}

(tN∗Kn(t, t))−1.

(5.2)

Let us introduce the linear operators

Mu def= K−1
n (t, t)

n−1

∑
i=1

α
′
i (t)
(

αi(t)
t

)N∗{
Ki(t,αi(t))−Ki+1(t,αi(t))

}
v(αi(t)),

Kv def=
n

∑
i=1

αi(t)∫
αi−1(t)

K−1
n (t, t)K(1)

i (t,s)(s/t)N∗v(s)ds.

Then equation (5.2) can be presented as following operator equation

u+(M +K)u = γ(t),

where γ(t) is the right hand side of the equation (5.2). This function is continuous due to
condition of the Lemma 5.1. Let us introduce the Banach space X of continuous functions
v(t) with norm

||v||l = max
0≤t≤T ′

e−lt |v(t)|, l > 0.

Then due to the inequalities sup
t∈(0,T ′]

αi(t)
t ≤ ε < 1 and due to the condition (D) for ∀l ≥ 0

norm of a linear function of the operator M satisfies

||M||L (X→X) ≤ q < 1.

In addition, for the integral operator K for sufficiently large l the following estimate is
correct

||K||L (X→X) ≤ q1 < 1−q.

For sufficiently large l > 0 this implies that

||M +K||L (X→X) < 1,

i.e. the linear operator M +K is a contraction operator in the space X . Hence the sequence
{vn} converge where vn =−(M +K)vn−1 + γ(t), v0 = γ(t). This completes the proof of the
theorem.

Theorem 5.1. Let the following conditions be fulfilled (B), (C), (D), f (0) 6= 0, K1(0,0) 6=
0. Then equation (1.3) for 0 < t ≤ T ′ ≤ T has the solution

x(t) =
f (0)

K1(0,0)
δ (t)+ x̂(t)+ tN∗v(t),
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which depends on ∑
ν
i=1 ki arbitrary constants, where ki are determined in condition (C).

Function x̂ is constructed in the form of (4.1), then v(t) is uniquely determined with succes-
sive approximations. And we have the following asymptotic estimate∣∣∣∣x(t)− f (0)

K1(0,0)
δ (t)− x̂(t)

∣∣∣∣= O(tN∗)

for t→+0.

Proof. Based on the Lemma 4.1 because of the conditions of the theorem is possible to
construct an asymptotic approximation of the regular part x̂(t) of the solution in the form of
the following log-power polynomial:

N

∑
i=0

xi(ln t)t i.

In this case, by construction, the coefficients xi(ln t) depend on the certain number of ar-
bitrary constants. Due to Lemma 5.1 the substitution x(t) = x̂(t)+ tN∗u(t) enable the con-
struction of the continuous function u(t) using the successive approximations method.

The solution constructed on [0,T ′] can be extended on the whole interval [0,T ], based on
known method of steps [3, c. 199].

In simple cases one can use the solution of the equivalent equation (2.1) in order to
construct the solution of integral equation (1.3) in closed form.

Example 5.1.
t/2∫
0

x(s)ds+2
t∫

t/2

x(s)ds = 2+ t, t > 0.

An equivalent equation (2.1) in this example has the following form − t
2 x( t

2 ) + 2x(t) =
2δ (t)+1. The desired solution is as follows x(t) = 2δ (t)+2/3.

Example 5.2.
t/2∫
0

x(s)ds−
t∫

t/2

x(s)ds = 1+ t, t > 0.

The equivalent equation here is as follows x( t
2 )−x(t) = δ (t)+1. It has c–parametric family

of generalized solutions x(t) = δ (t)+ c− ln t
ln2 , c is constant.

Conclusion. The method proposed in this article does not covering all the feasible gen-
eralized solutions of such new class of linear Volterra integral equations with piece-wise
continuous kernels. The future work may involve development of new theory with a view to
relaxing the smoothness conditions on Ki(t,s) and f (t). Some related work can be found in
the monograph [17]. We may also address this equation in the form

∫ t
0 K(t,s)dg(s) = f (t)

where g(s) is unknown bounded variation which can be presented as Lebesgue’s decom-
position. In this case it make sense to seek solution in the form g = aµ + ν , where a is
arbitrary constant value, µ and ν are measures, e.g. the Borel charges of bounded variation
on certain intervals.
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