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Abstract. This paper studies the existence of positive solutions for a class of second-order
semipositone differential equations with a negatively perturbed term and integral boundary
conditions. By using a well-known fixed-point index theorem, some new existence results
are derived for the case where nonlinearity is allowed to be sign changing. Several examples
are presented to demonstrate the application of our main
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1. Introduction

In this paper, we are concerned with positive solutions of the second order semipositone
boundary value problem (BVP for short) with a negatively perturbed term

(1.1)


−u′′(t) = h(t)F(t,u(t))− p(t), t ∈ (0,1),
αu(0)−βu′(0) =

∫ 1
0 u(s)dξ (s),

γu(1)+δu′(1) =
∫ 1

0 u(s)dη(s),

where α,β ,γ,δ ≥ 0 are constants such that ρ = βγ + αγ + αδ > 0, F : [0,1]× [0,∞)→
[0,∞) is continuous, ξ (s) and η(s) are two nondecreasing functions of bounded varia-
tion, and the integrals in (1.1) are Riemann-Stieltjes integrals, h, p : (0,1)→ [0,+∞) are
Lebesgue integrals and may have finitely many singularities in [0,1].

Semipositone BVPs occur in models for steady-state diffusion with reactions [4] and
interest in obtaining conditions for the existence of positive solutions of such problems has
been ongoing for many years. For a small sample of such work, we refer the reader to the
papers of Agarwal et al. [5, 6], Kosmatov [13], Lan [14–16], Liu [17], Ma et al. [20, 21],
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and Xu et al. [25]. In [8], the second-order m-point BVP

(1.2)


−u′′(t) = λ f (t,u(t)), t ∈ (0,1),

u′(0) =
m−2

∑
i=1

aiu′(ξi), u(1) =
m−2

∑
i=1

biu(ξi),

is studied, where ai,bi > 0, (i = 1,2, . . . ,m−2), 0 < ξ1 < ξ2 < · · ·< ξm−2 < 1, λ is a positive
parameter. By using Krasnoselskii fixed point theorem in cones, the authors established the
existence results for at least one positive solution to (1.2), assuming that 0 < ∑

m−2
i=1 ai < 1,

0 < ∑
m−2
i=1 bi < 1, f : [0,1]× [0,+∞)→ (−∞,+∞) is continuous, and there exists A > 0 such

that f (t,u)≥−A, for (t,u) ∈ [0,1]× [0,+∞). Although the existence results are still true if
the constant A replaced by any continuous function A(t) on [0,1], f also has lower bound.

Recently, Webb and Infante [24] studied arbitrary order semi-positone boundary value
problems. The existence of multiple positive solutions is established via a Hammerstein
integral equation of the form

u(t) =
∫ 1

0
k(t,s)g(s) f (s,u(s))ds,

where k is the corresponding Green function, g ∈ L1[0,1] is non-negative and may have
pointwise singularities, f : [0,1]× [0,+∞)→ (−∞,+∞) satisfies Carathéodory conditions
and f (t,u) ≥ −A for some A > 0. The nonlinear term is bounded below by an integral
function. It is worth mentioning that the boundary conditions cover local and nonlocal
types. Nonlocal boundary conditions are quite general, involving positive linear functionals
on the space C[0,1], given by Stieltjes integrals.

When nonlinear term takes nonnegative values, the existence of positive solutions of
boundary value problems with nonlocal boundary conditions, including multi-point and
integral boundary conditions, has been extensively studied by many researchers in recent
years [1–3, 7, 9, 11, 12, 18, 19, 22, 23, 27]. Kong [12] studied the second order singular
boundary value problem

(1.3)


u′′(t)+λ f (t,u(t)) = 0, t ∈ (0,1),
u(0) =

∫ 1
0 u(s)dξ (s),

u(1) =
∫ 1

0 u(s)dη(s),

where λ is a positive parameter, f : (0,1)× (0,+∞)→ [0,+∞) is continuous, ξ (s) and
η(s) are nondecreasing, and the integrals in (1.3) are Riemann-Stieltjes integrals. Sufficient
conditions are obtained for the existence and uniqueness of a positive solution by using the
mixed monotone operator theory.

Motivated by the previous work, in this paper, we consider the second order singular
integral boundary value problem (1.1). By using Krasnoselskii’s fixed point theorem, some
new existence results are obtained for the case where the nonlinearity is allowed to be sign
changing. We shall address here that the problem tackled has several new features. Firstly,
as p∈ L1[0,1], the perturbed effect of p on F may be so large that the nonlinearity may tend
to negative infinity at some singular points. Secondly, BVP (1.1) can have finitely many
singularities for t in [0,1]. Thirdly, the BVP (1.1) is more general as it includes two-point,
multi-point, nonlocal problems as special cases. Finally, the nonlinearity is allowed to be
sign changing. Hence, our work on (1.1) generalizes and improves some known results in
the literature to some degree, for example, [8, 13, 14, 17, 20, 21].
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The rest of this paper is organized as follows. In Section 2, we present some lemmas
and preliminaries, and we transform the singularly perturbed problem (1.1) to an equivalent
approximate problem by constructing a modified function. Sections 3 and 4 give the main
results and their proofs. In Section 5, four examples are given to demonstrate the validity of
our main results.

2. Preliminaries and lemmas

In this section, we first state Krasnoselskii’s fixed point theorem, and then present some
lemmas that are very important in the proof of the main results.

Denote

φ1(t) =
1
ρ

(δ + γ(1− t)), φ2(t) =
1
ρ

(β +αt), e(t) = G(t, t), t ∈ [0,1],

k1 = 1−
∫ 1

0
φ1(t)dξ (t), k2 =

∫ 1

0
φ2(t)dξ (t), k3 =

∫ 1

0
φ1(t)dη(t),

k4 = 1−
∫ 1

0
φ2(t)dη(t), k = k1k4− k2k3, σ =

ρ

(α +β )(γ +δ )
,

where

(2.1) G(t,s) =
1
ρ

{
(β +αs)(δ + γ(1− t)), 0≤ s≤ t ≤ 1,
(β +αt)(δ + γ(1− s)), 0≤ t ≤ s≤ 1.

Obviously,

(2.2) e(t) = ρφ1(t)φ2(t) =
1
ρ

(β +αt)(δ + γ(1− t)), t ∈ [0,1],

(2.3) σe(t)e(s)≤ G(t,s)≤ e(s) ( or e(t))≤ σ
−1, t,s ∈ [0,1].

Let X = C[0,1] be a real Banach space with the norm ‖x‖ = maxt∈[0,1] |x(t)| for x ∈ X .
We let P = {x : x ∈ X ,x(t)≥ σe(t)‖x‖ for t ∈ [0,1]}. Clearly P is a cone of X .

Lemma 2.1. [10] Let X be a real Banach space, P is a cone in X. Assume that Ω1 and Ω2
are two bounded open sets of X with θ ∈ Ω1 and Ω1 ⊂ Ω2. Let T : P∩ (Ω2\Ω1)→ P be
completely continuous operator such that either

(i) ‖T x‖ ≤ ‖x‖, x ∈ P∩∂Ω1 and ‖T x‖ ≥ ‖x‖, x ∈ P∩∂Ω2, or
(ii) ‖T x‖ ≥ ‖x‖, x ∈ P∩∂Ω1 and ‖T x‖ ≤ ‖x‖, x ∈ P∩∂Ω2.

Then T has a fixed point in P∩ (Ω2 \Ω1).

Throughout this paper, we adopt the following assumptions:

(H1) : k1 > 0,k4 > 0,k > 0.
(H2) : h, p : (0,1)→ [0,+∞) are Lebesgue integrals and there exists µ ∈ (0, 1

2 ) such
that

∫ 1

0
p(s)ds > 0,

∫ 1−µ

µ

e(s)h(s)ds > 0.

(H3): F : [0,1]× [0,+∞)→ [0,+∞) is continuous.
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Remark 2.1. It follows from (2.3) and (H2) that∫ 1−µ

µ

e(s)h(s)ds≤
∫ 1

0
e(s)[h(s)+ p(s)]ds

≤ σ
−1
∫ 1

0
[h(s)+ p(s)]ds < +∞.

So for convenience, in the rest of this paper, we define several notations as follows:

(2.4)

Λ = 1+
k4(γ +δ )+ k3(α +β )

ρk

∫ 1

0
dξ (τ)+

k2(γ +δ )+ k1(α +β )
ρk

∫ 1

0
dη(τ),

ψ(t) = e(t)+
k4φ1(t)+ k3φ2(t)

k

∫ 1

0
e(τ)dξ (τ)+

k2φ1(t)+ k1φ2(t)
k

∫ 1

0
e(τ)dη(τ),

Γ = min
µ≤1−µ

σe(t), L = Λ

∫ 1

0
e(s)h(s)ds, l = Γ

∫ 1−µ

µ

e(s)h(s)ds.

Remark 2.2. If x ∈C[0,1]
⋂

C2(0,1) satisfies (1.1), and x(t) > 0 for any t ∈ (0,1), then we
say that x is a C[0,1]

⋂
C2(0,1) positive solution of BVP (1.1).

Remark 2.3. From α,β ,γ,δ ≥ 0 and ρ = βγ +αγ +αδ > 0, it is easy to show that e(t) > 0,
t ∈ (0,1).

Lemma 2.2. Assume that (H1) holds. Then for any y ∈ L1[0,1], the problem
−u′′(t) = y(t), t ∈ (0,1),
αu(0)−βu′(0) =

∫ 1
0 u(s)dξ (s),

γu(1)+δu′(1) =
∫ 1

0 u(s)dη(s),

has a unique solution

(2.5) u(t) =
∫ 1

0
H(t,s)y(s)ds,

where

H(t,s) =G(t,s)+
k4φ1(t)+ k3φ2(t)

k

∫ 1

0
G(τ,s)dξ (τ)

+
k2φ1(t)+ k1φ2(t)

k

∫ 1

0
G(τ,s)dη(τ).

Moreover, u(t)≥ 0 on [0,1] provided y≥ 0.

Proof. The proof is similar to Lemma 2.2 of [26], so we omit it.

Lemma 2.3. Suppose that (H1) and (H2) hold, then for any t,s ∈ [0,1], we have

(2.6) σe(t)H (s)≤ H(t,s)≤H (s),

where

H (s) =e(s)+
k4(γ +δ )+ k3(α +β )

ρk

∫ 1

0
G(τ,s)dξ (τ)

+
k2(γ +δ )+ k1(α +β )

ρk

∫ 1

0
G(τ,s)dη(τ).
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Proof. By (2.3) and the monotonicity of φ1,φ2, it is easy to get H(t,s)≤H (s).
On the other hand, by (2.2) and the monotonicity of φ1,φ2, we have

(2.7) φ1(t) =
e(t)

ρφ2(t)
=

e(t)
αt +β

≥ e(t)
α +β

, t ∈ [0,1],

(2.8) φ2(t) =
e(t)

ρφ1(t)
=

e(t)
γ(1− t)+δ

≥ e(t)
γ +δ

, t ∈ [0,1].

By (2.3), (2.7) and (2.8), for any t,s ∈ [0,1], we have

H(t,s)≥σe(t)e(s)+ e(t)

[ k4
α+β

+ k3
γ+δ

k

∫ 1

0
G(τ,s)dξ (τ)+

k2
α+β

+ k1
γ+δ

k

∫ 1

0
G(τ,s)dη(τ)

]

=σe(t)e(s)+σe(t)
[

k4(γ +δ )+ k3(α +β )
ρk

∫ 1

0
G(τ,s)dξ (τ)

+
k2(µ +δ )+ k1(α +β )

ρk

∫ 1

0
G(τ,s)dη(τ)

]
=σe(t)H (s).

The proof of Lemma 2.3 is completed.

Lemma 2.4. Suppose that (H1) and (H2) hold. Then the problem
−w′′(t) = p(t), t ∈ (0,1),
αw(0)−βw′(0) =

∫ 1
0 w(s)dξ (s),

γw(1)+δw′(1) =
∫ 1

0 w(s)dη(s),

has unique solution

(2.9) w(t) =
∫ 1

0
H(t,s)p(s)ds,

which satisfies

(2.10) w(t)≤ ψ(t)
∫ 1

0
p(s)ds, t ∈ [0,1].

where ψ(t) is defined by (2.4).

Proof. It follows from (2.3), (2.5), (H1) and (H2) that (2.9) and (2.10) hold.

Remark 2.4. By (2.3), (2.4) and (2.10), it is not difficult to show that the inequality w(t)≤
σ−1Λ

∫ 1
0 p(s)ds is valid.

For any u ∈ X , let us define a function [·]+,

[u(t)]+ =
{

u(t), u(t)≥ 0,
0, u(t) < 0.

Next we consider the following approximate problem of (1.1)

(2.11)


−x′′(t) = h(t)F(t, [x(t)−w(t)]+), t ∈ (0,1),
αx(0)−βx′(0) =

∫ 1
0 x(s)dξ (s),

γx(1)+δx′(1) =
∫ 1

0 x(s)dη(s).
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Lemma 2.5. If x ∈C[0,1]
⋂

C2(0,1) is a positive solution of problem (2.11), then

(2.12) x(t)≥ σ

Λ
∫ 1

0 p(s)ds
‖x‖ω(t).

Moreover, if x(t) ≥ w(t) for any t ∈ [0,1], then x−w is a positive solution of the singular
semipositone differential equation (1.1).

Proof. (i) According to (2.5), x ∈ C[0,1]
⋂

C2(0,1) is a solution of equation (2.11) if and
only if x ∈C[0,1] is a solution of the following nonlinear integral equation

x(t) =
∫ 1

0
H(t,s)h(s)F(s, [x(s)−w(s)]+)ds.

Then by (2.3), we have

‖x‖ ≤
∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds

+
k4(γ +δ )+ k3(α +β )

ρk

∫ 1

0
dξ (τ)

∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds

+
k2(γ +δ )+ k1(α +β )

ρk

∫ 1

0
dη(τ)

∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds

=Λ

∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds,

x(t)≥σe(t)
∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds

+
k4φ1(t)+ k3φ2(t)

k

∫ 1

0
σe(τ)dξ (τ)

∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds

+
k2φ1(t)+ k1φ2(t)

k

∫ 1

0
σe(τ)dη(τ)

∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds

=σψ(t)
∫ 1

0
e(s)h(s)F(s, [x(s)−w(s)]+)ds.

This together with (2.10), we have

x(t)≥σψ(t)Λ−1‖x‖ ≥ σ

Λ
∫ 1

0 p(s)ds‖x‖ω(t).

(ii) If x is a positive solution of equation (2.11) such that x(t) ≥ w(t) for any t ∈ [0,1],
then from (2.11) and the definition of [u(t)]+, we have

(2.13)


−x′′(t) = h(t)F(t,x(t)−w(t)), t ∈ (0,1),
αx(0)−βx′(0) =

∫ 1
0 x(s)dξ (s),

γx(1)+δx′(1) =
∫ 1

0 x(s)dη(s).

Let u = x−w, then u′′ = x′′−w′′, which implies that

−x′′ =−u′′−w′′ =−u′′+ p(t).

Thus (2.13) becomes
−u′′(t) = h(t)F(t,u(t))− p(t), t ∈ (0,1),
αu(0)−βu′(0) =

∫ 1
0 u(s)dξ (s),

γu(1)+δu′(1) =
∫ 1

0 u(s)dη(s),
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i.e. x−w is a positive solution of (1.1). This completes the proof of Lemma 2.5.
Define a nonlinear integral operator T : X → X as follows:

T x(t) =
∫ 1

0
H(t,s)h(s)F(s, [x(s)−w(s)]+)ds.

Then, problem (2.11) is equivalent to the fixed point equation T x = x in the Banach space
X = C[0,1].

Lemma 2.6. Assume that (H1)–(H3) hold. Then T : P→ P is well defined, and T : P→ P
is a completely continuous operator.

Proof. For any fixed x ∈ P, there exists a constant L̃ > 0 such that ‖x‖ ≤ L̃. And then,

(2.14) [x(s)−w(s)]+ ≤ x(s)≤ ‖x‖ ≤ L̃.

Thus, for any t ∈ [0,1], it follows from (2.6) and (2.14) that

(2.15)

|T x(t)| ≤
∫ 1

0
H (s)h(s)F(s, [x(s)−w(s)]+)ds

≤M
∫ 1

0
H (s)h(s)ds

≤M
[∫ 1

0
e(s)h(s)ds

+
k4(γ +δ )+ k3(α +β )

ρk

∫ 1

0
e(τ)dξ (τ)

∫ 1

0
h(s)ds

+
k2(γ +δ )+ k1(α +β )

ρk

∫ 1

0
e(τ)dη(τ)

∫ 1

0
h(s)ds

]
<+∞,

where

(2.16) M = max
(t,u)∈[0,1]×[0,L̃]

F(t,u).

Thus T : P→ X is well defined.
Next for any x ∈ P, by (2.6), we have

‖T x‖= max
0≤t≤1

∫ 1

0
H(t,s)h(s)F(s, [x(s)−w(s)]+)ds

≤
∫ 1

0
H (s)h(s)F(s, [x(s)−w(s)]+)ds.

On the other hand, from (2.6), we also obtain

T x(t) =
∫ 1

0
H(t,s)h(s)F(s, [x(s)−w(s)]+)ds

≥ σe(t)
∫ 1

0
H (s)h(s)F(s, [x(s)−w(s)]+)ds.

So
T x(t)≥ σe(t)‖T x‖, t ∈ [0,1].

This yields that T (P)⊂ P.
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Let D ⊂ P be any bounded set. Then there exists a constant L̃ > 0 such that ‖x‖ ≤ L̃
for any x ∈ D. Thus, for any x ∈ D,s ∈ [0,1], we have [x(s)−w(s)]+ ≤ x(s) ≤ ‖x‖ ≤ L̃. It
follows from (2.15) and (2.16) that T (D) is uniformly bounded. Now we show that T (D)
is equicontinuous on [0,1]. Since φ1,φ2 and G(t,s) are uniformly continuous on [0,1] and
[0,1]× [0,1] respectively, for any ε > 0, there exists a constant δ0 > 0 such that for any
s ∈ [0,1], t, t ′ ∈ [0,1], when |t− t ′|< δ0, it holds

|G(t,s)−G(t ′,s)|<
[

3M
∫ 1

0
h(s)ds

]−1

ε,

|φ1(t)−φ1(t ′)|<
{

3M
[

k4

k

∫ 1

0
e(τ)dξ (τ)+

k2

k

∫ 1

0
e(τ)dη(τ)

]∫ 1

0
h(s)ds

}−1

ε,

|φ2(t)−φ2(t ′)|<
{

3M
[

k3

k

∫ 1

0
e(τ)dξ (τ)+

k1

k

∫ 1

0
e(τ)dη(τ)

]∫ 1

0
h(s)ds

}−1

ε,

where M is defined by (2.16).
Consequently, for any t, t ′ ∈ [0,1] and |t− t ′|< δ0, we have

|T x(t)−T x(t ′)| ≤
∫ 1

0
|H(t,s)−H(t ′,s)|h(s)F(s, [x(s)−w(s)]+)ds

≤
∫ 1

0
|G(t,s)−G(t ′,s)|h(s)F(s, [x(s)−w(s)]+)ds+

1
k

[
k4|φ1(t)−φ1(t ′)|

+ k3|φ2(t)−φ2(t ′)|
]∫ 1

0

∫ 1

0
G(τ,s)h(s)F(s, [x(s)−w(s)]+)dξ (τ)ds

+
1
k

[
k2|φ1(t)−φ1(t ′)|+ k1|φ2(t)−φ2(t ′)|

]
×
∫ 1

0

∫ 1

0
G(τ,s)h(s)F(s, [x(s)−w(s)]+)dη(τ)ds

≤M
∫ 1

0
|G(t,s)−G(t ′,s)|h(s)ds

+
M
k

[
k4|φ1(t)−φ1(t ′)|+ k3|φ2(t)−φ2(t ′)|

]∫ 1

0
e(τ)dξ (τ)

∫ 1

0
h(s)ds

+
M
k

[
k2|φ1(t)−φ1(t ′)|+ k1|φ2(t)−φ2(t ′)|

]∫ 1

0
e(τ)dη(τ)

∫ 1

0
h(s)ds

=M
∫ 1

0
|G(t,s)−G(t ′,s)|h(s)ds

+M
[

k4

k

∫ 1

0
e(τ)dξ (τ)+

k2

k

∫ 1

0
e(τ)dη(τ)

]∫ 1

0
h(s)ds|φ1(t)−φ1(t ′)|

+M
[

k3

k

∫ 1

0
e(τ)dξ (τ)+

k1

k

∫ 1

0
e(τ)dη(τ)

]∫ 1

0
h(s)ds|φ2(t)−φ2(t ′)|

<
ε

3
+

ε

3
+

ε

3
= ε.

This implies that T (D) is equicontinuous. Thus according to the Ascoli-Arzela Theorem,
T (D) is a relatively compact set.
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Now, from the continuity of F , it is not difficult to see that T : P→ P is continuous. Thus
T : P→ P is a completely continuous operator. The proof is completed.

3. Existence of one positive solution

Theorem 3.1. Assume that conditions (H1)–(H3) are satisfied. Further assume that the
following conditions hold:
(S1) There exists a constant

(3.1) R0 > Λσ
−1

Γ
−1
∫ 1

0
p(s)ds

such that for any (t,u) ∈ [0,1]× [0,R0],

F(t,u)≤ R0

L
,

where Λ,L and Γ are defined by (2.4).
(S2) The function F satisfies

lim
u→+∞

min
t∈[µ,1−µ]

F(t,u)
u

= +∞.

Then BVP (1.1) has at least one positive solution u satisfying u(t)≥ l̃e(t) for some positive
constant l̃.

Proof. Let Ω1 = {x ∈ P : ‖x‖< R0}. Then for any x ∈ ∂Ω1,s ∈ [0,1], we have

[x(s)−w(s)]+ ≤ x(s)≤ ‖x‖ ≤ R0.

It follows from (S1) that

(3.2)

‖T x‖ ≤
∫ 1

0
H (s)h(s)F(s,x(s)−w(s))ds

<
R0

L

∫ 1

0
H (s)h(s)ds

≤R0

L

[∫ 1

0
e(s)h(s)ds

+
k4(γ +δ )+ k3(α +β )

ρk

∫ 1

0

∫ 1

0
G(τ,s)h(s)dξ (τ)ds

+
k2(γ +δ )+ k1(α +β )

ρk

∫ 1

0

∫ 1

0
G(τ,s)h(s)dη(τ)ds

]
≤R0

L

[∫ 1

0
e(s)h(s)ds

+
k4(γ +δ )+ k3(α +β )

ρk

∫ 1

0
dξ (τ)

∫ 1

0
e(s)h(s)ds

+
k2(γ +δ )+ k1(α +β )

ρk

∫ 1

0
dη(τ)

∫ 1

0
e(s)h(s)ds

]
=R0 = ‖x‖,
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which means that

(3.3) ‖T x‖< ‖x‖, x ∈ ∂Ω1.

On the other hand, choose a real number M > 0 such that

Γ2M
2

∫ 1−µ

µ

e(s)h(s)ds > 1.

From (S2), there exists N > R0 such that, for any t ∈ [µ,1−µ],

(3.4) F(t,u)≥Mu, u≥ N.

Take R∗ = max{2Γ−1N,2R0}. Let Ω2 = {x ∈ P : ‖x‖ < R∗}. Then for any x ∈ ∂Ω2, t ∈
[µ,1−µ], we have

(3.5)
x(t)−w(t)≥ x(t)−ψ(t)

∫ 1

0
p(s)ds≥ R∗σe(t)σ−1

Λ

∫ 1

0
p(s)ds

≥ R∗Γ−σ
−1

Λ

∫ 1

0
p(s)ds≥ Γ

2
R∗ ≥ N > 0.

So for any x ∈ ∂Ω2, t ∈ [µ,1−µ], by (2.6), (3.4) and (3.5) we have

(3.6)

T x(t) =
∫ 1

0
H(t,s)h(s)F(s, [x(s)−w(s)]+)ds

≥ σe(t)
∫ 1

0
H (s)h(s)F(s, [x(s)−w(s)]+)ds

≥ σe(t)
∫ 1−µ

µ

H (s)h(s)F(s, [x(s)−w(s)]+)ds

≥ σe(t)
∫ 1−µ

µ

e(s)h(s)F(s, [x(s)−w(s)]+)ds

≥ Γ

∫ 1−µ

µ

e(s)h(s)ds× Γ

2
MR∗

=
Γ2MR∗

2

∫ 1−µ

µ

e(s)h(s)ds > R∗ = ‖x‖.

Therefore,

(3.7) ‖T x‖> ‖x‖, x ∈ ∂Ω2.

By (3.3), (3.7) and Lemma 2.1, T has a fixed point x in P such that R0 < ‖x‖< R∗. Since
R0 > Λσ−1Γ−1 ∫ 1

0 p(s)ds > Λσ−1 ∫ 1
0 p(s)ds, combining with (2.12) yields that

(3.8)

x(t)−w(t)≥x(t)− Λx(t)
σ‖x‖

∫ 1

0
p(s)ds≥ x(t)− Λx(t)

σR0

∫ 1

0
p(s)ds

≥

(
1−

Λ
∫ 1

0 p(s)ds
σR0

)
x(t)≥

(
1−

Λ
∫ 1

0 p(s)ds
σR0

)
R0σe(t)

= l̃e(t), t ∈ (0,1),

where l̃ =
(

1− Λ
∫ 1

0 p(s)ds
σR0

)
R0σ > 0.
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Let u(t) = x(t)−w(t), then we have u(t)≥ l̃e(t) > 0. By Lemma 2.5, we know that BVP
(1.1) has at least one positive solution u satisfying u ≥ l̃e(t) for any t ∈ [0,1]. The proof is
completed.

Theorem 3.2. Assume that conditions (H1)–(H3) are satisfied. In addition, assume that the
following conditions hold:
(S3) There exists a constant r > 2Λσ−1Γ−1 ∫ 1

0 p(s)ds such that for any (t,u) ∈ [µ,1−µ]×[
Γ

2 r,r
]
,

F(t,u) >
r
l
,

where Λ, l and Γ are defined by (2.4).
(S4) The function F satisfies

lim
u→+∞

max
t∈[0,1]

F(t,u)
u

= 0.

Then BVP (1.1) has at least one positive solution u satisfying u(t)≥ l̃e(t) for some positive
constant l̃.

Proof. Firstly, let Ω1 = {x ∈ P : ‖x‖< r}. Then for any x ∈ ∂Ω1, t ∈ [µ,1−µ], we have

(3.9)
x(t)−w(t)≥ x(t)−ψ(t)

∫ 1

0
p(s)ds≥ rσe(t)−σ

−1
Λ

∫ 1

0
p(s)ds

≥ rΓ−σ
−1

Λ

∫ 1

0
p(s)ds≥ Γ

2
r > 0.

So for any x ∈ ∂Ω1, t ∈ [µ,1−µ], by (3.9) we have

(3.10)
Γ

2
r ≤ x(t)−w(t)≤ r.

It follows from (S3), (3.10) and (2.6) that, for any x ∈ ∂Ω1, t ∈ [µ,1−µ], we have

(3.11)

T x(t) =
∫ 1

0
H(t,s)h(s)F(s, [x(s)−w(s)]+)ds

≥ σe(t)
∫ 1

0
H (s)h(s)F(s, [x(s)−w(s)]+)ds

≥ σe(t)
∫ 1−µ

µ

H (s)h(s)F(s, [x(s)−w(s)]+)ds

≥ σe(t)
∫ 1−µ

µ

e(s)h(s)F(s, [x(s)−w(s)]+)ds

> Γ

∫ 1−µ

µ

e(s)h(s)ds× r
l

= r = ‖x‖.

Therefore,

(3.12) ‖T x‖> ‖x‖, x ∈ ∂Ω1.

Next, let us choose ε > 0 such that ε
∫ 1

0 H (s)h(s)ds < 1. Then for the above ε, by (S4),
there exists N > r > 0 such that, for any t ∈ [0,1] and for any u > N, F(t,u)≤ εu.
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Take

R∗ =
τ

{∫ 1
0 H (s)[h(s)+ p(s)]ds+

∫ 1
0 H (s)p(s)ds

}
1− ε

∫ 1
0 H (s)h(s)ds

+N,

where τ = maxt∈[0,1],u≤N F(t,u). Then R∗ > N > r.
Now let Ω2 = {x ∈ P : ‖x‖< R∗}. Then for any x ∈ ∂Ω2, we have

(3.13)

‖T x‖ ≤
∫ 1

0
H (s)h(s)F(s, [x(s)−w(s)]+)ds

< max
t∈[0,1],u≤N

F(t,u)
∫ 1

0
H (s)h(s)ds

+
∫ 1

0
H (s)h(s)ε[x(s)−w(s)]+ds

≤τ

∫ 1

0
H (s)h(s)ds+

∫ 1

0
H (s)h(s)ε‖x‖ds

≤τ

∫ 1

0
H (s)h(s)ds+ εR∗

∫ 1

0
H (s)h(s)ds

<

(
1− ε

∫ 1

0
H (s)h(s)ds

)
R∗+ εR∗

∫ 1

0
H (s)h(s)ds

=R∗ = ‖x‖.

Thus we get

(3.14) ‖T x‖< ‖x‖, x ∈ ∂Ω2.

By (3.12), (3.14) and Lemma 2.1, T has a fixed point x in P such that r < ‖x‖ < R∗.
Since r > 2Λσ−1Γ−1 ∫ 1

0 p(s)ds > 2Λσ−1 ∫ 1
0 p(s)ds, combining with (2.12) yields

(3.15)
x(t)−w(t)≥ x(t)− Λx(t)

σ‖x‖

∫ 1

0
p(s)ds≥ x(t)−Λ

x(t)
σr

∫ 1

0
p(s)ds

≥ 1
2

x(t)≥ 1
2

rσe(t) = l̃e(t), t ∈ (0,1),

where l̃ = 1
2 rσ > 0.

Let u(t) = x(t)−w(t), then we have u(t)≥ l̃e(t) > 0. By Lemma 2.5, we know that BVP
(1.1) has at least one positive solution u satisfying u ≥ l̃e(t) for any t ∈ [0,1]. The proof is
completed.

4. Existence of two positive solutions

Theorem 4.1. Assume that conditions (H1)–(H3) and (S1),(S4) are satisfied. Further as-
sume that the following condition holds:
(C1) There exists a constant R > 2R0 such that for any (t,u) ∈ [µ,1−µ]×

[
Γ

2 R,R
]
,

F(t,u) >
R
l
,

where l,Γ and R0 are defined by (2.4) and (3.1), respectively.
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Then BVP (1.1) has at least two positive solutions u1,u2 satisfying u1(t) ≥ l1e(t), u2(t) ≥

l2e(t) for l1 =
(

1− Λ
∫ 1

0 p(s)ds
σR0

)
R0σ , l2 = 1

2 rσ .

Proof. Set Ω1 = {x ∈ P : ‖x‖< R0}. From (S1) and proceeding as in (3.2), we have

(4.1) ‖T x‖< ‖x‖, x ∈ ∂Ω1.

On the other hand, Let Ω2 = {x ∈ P : ‖x‖< R}. Similar to the proof of Theorem 3.2, by
(C1) and (2.6), we have

(4.2) ‖T x‖> ‖x‖, x ∈ ∂Ω2.

Next, let us choose ε > 0 such that ε
∫ 1

0 H (s)h(s)ds < 1. Similar to the proof of Theorem
3.2, combining with (S4) we can take R∗ as Theorem 3.2. Then R∗ > N > R. Let Ω3 = {x ∈
P : ‖x‖< R∗}. Similar to (3.13), we have

(4.3) ‖T x‖< ‖x‖, x ∈ ∂Ω3.

By (4.1), (4.2), (4.3) and Lemma 2.1, T has two fixed points x1,x2 in P such that R0 <

‖x1‖ < R < ‖x2‖. By arguments similar to (3.8), there exists l1 =
(

1− Λ
∫ 1

0 p(s)ds
σR0

)
R0σ ,

such that x1(t)−w(t)≥ l1e(t), t ∈ (0,1).
Let u1(t) = x1(t)−w(t), then we have u1(t)≥ l1e(t) > 0. On the other hand, let u2(t) =

x2(t)−w(t), as (3.15), it is easy to find a constant l2 = 1
2 rσ such that u2(t) ≥ l2e(t) > 0.

By Lemma 2.5, we know BVP (1.1) has at least two positive solutions u1,u2 satisfying
u1(t)≥ l1e(t),u2(t)≥ l2e(t) for any t ∈ [0,1]. The proof is completed.

Theorem 4.2. Assume that conditions (H1)–(H3) and (S2),(S3) are satisfied. In addition,
assume that the following condition holds:
(C2) There exists a constant R > max

{
r, Lr

l

}
such that for any (t,u) ∈ [0,1]× [0,R],

F(t,u)≤ R
L

,

where L, l are defined by (2.4) and r is defined in (S3).
Then BVP (1.1) has at least two positive solutions u1,u2 satisfying u1(t)≥ m1e(t), u2(t)≥

m2e(t) for m1 = 1
2 rσ , m2 =

(
1− Λ

∫ 1
0 p(s)ds
σR

)
Rσ .

Proof. Firstly, let Ω1 = {x ∈ P : ‖x‖< r}. From (S3) and proceeding as in (3.11), we obtain

(4.4) ‖T x‖> ‖x‖, x ∈ ∂Ω1.

Next, by (C2), we have R > r and R
L > r

l > 0. Let Ω2 = {x ∈ P : ‖x‖< R}. Then for any
x ∈ ∂Ω2,s ∈ [0,1], we have

[x(s)−w(s)]+ ≤ x(s)≤ ‖x‖ ≤ R.

It follows from (C2), (2.6) and proceeding as in (3.2), we have

(4.5) ‖T x‖< ‖x‖, x ∈ ∂Ω2.

On the other hand, choose a real number M > 0 such that

Γ2M
2

∫ 1−µ

µ

e(s)h(s)ds > 1.
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From (S2), there exists N > R such that, for any t ∈ [µ,1− µ], F(t,u) ≥ Mu. Take R∗ =
max{2Γ−1N,R}, then R∗ > R > r. Let Ω3 = {x ∈ P : ‖x‖< R∗}. Similar to (3.6), we have

(4.6) ‖T x‖> ‖x‖, x ∈ ∂Ω3.

By (4.4), (4.5), (4.6) and Lemma 2.1, T has two fixed points x1,x2 in P such that
r < ‖x1‖ < R < ‖x2‖. By similar arguments to (3.15), there exist m1 = 1

2 rσ , m2 =(
1− Λ

∫ 1
0 p(s)ds
σR

)
Rσ such that xi(t)−w(t)≥ mie(t), t ∈ (0,1)(i = 1,2).

Let ui(t) = xi(t)−w(t)(i = 1,2), then we have ui(t)≥ mie(t) > 0(i = 1,2). By Lemma
2.5, we know that BVP (1.1) has at least two positive solutions u1,u2 satisfying u1(t) ≥
m1e(t),u2(t)≥ m2e(t) for any t ∈ [0,1]. The proof is completed.

5. Applications

In this section, we construct several examples to demonstrate the application of our main
results.

Example 5.1. Consider the following four-point boundary value problem

(5.1)


−u′′ =

1√
t(1− t)

F(t,u)−
√

2
4
√

t3(1− t)
, 0 < t < 1,

u(0) =
1
2

u
(1

8

)
, u(1) =

1
2

u
(7

8

)
,

where

F(t,u) =



1
675

u2, 0≤ u≤ 225,

14269
15

u−213960, 225≤ u≤ 300,

u+71120, 300≤ u≤ 3200,

929
√

2u, u≥ 3200,

Then the BVP (5.1) has at least two positive solutions.

Proof. Let

h(t) =
1√

t(1− t)
, p(t) =

√
2

4
√

t3(1− t)
,

then h, p are singular at t = 0 and t = 1. BVP (5.1) can be regard as a boundary value
problem of the form of (1.1). In this situation, α = γ = 1,β = δ = 0 and

ξ (s) =


0, s ∈

[
0,

1
8

)
,

1
2
, s ∈

[1
8
,1
]
,

η(s) =


0, s ∈

[
0,

7
8

)
,

1
2
, s ∈

[7
8
,1
]
.

Take [ 1
4 , 3

4 ]⊂ [0,1], by direct calculation, we have∫ 1

0
h(t)dt =

∫ 1

0

1√
t(1− t)

dt = π,
∫ 1

0
p(t)dt =

∫ 1

0

√
2

4
√

t3(1− t)
dt = 2π,

ρ = σ = 1, φ1(t) = 1− t, φ2(t) = t, e(t) = t(1− t), t ∈ [0,1],
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Γ =
3

16
, k1 =

9
16

, k2 =
1

16
, k3 =

1
16

, k4 =
9
16

, k =
5
16

, Λ = 3,

l = Γ

∫ 3
4

1
4

e(s)h(s)ds =
2π +3

√
3

256
, L = Λ

∫ 1

0
e(s)h(s)ds =

5π

16
.

Clearly, the conditions (H1)–(H3) hold. Choose R0 = 225, then

R0 = 225 > max
{

L,Λσ
−1

Γ
−1
∫ 1

0
p(s)ds

}
= 64π,

and for any (t,u) ∈ [0,1]× [0,225],

F(t,u) =
u2

675
≤ 75≤ R0

L
.

So the condition (S1) is satisfied.
On the other hand, we take R = 3200, then R > 2R0. For any (t,u) ∈ [ 1

4 , 3
4 ]×

[
Γ

2 R,R
]
=

[ 1
4 , 3

4 ]× [300,3200], we have

F(t,u) = u+71120≥ 71420 >
R
l
,

so the condition (C1) holds. Next, we have

lim
u→+∞

max
t∈[0,1]

F(t,u)
u

= 0.

Thus (S4) also holds. Consequently, by Theorem 4.1, we infer that singular BVP (5.1) has
at least two positive solutions.

Example 5.2. Let F1(t,u) = 1
675 u2,(t,u) ∈ [0,1]× [0,+∞). It is easy to verify that the

conditions of Theorem 3.1 are satisfied when the function F replaced by F1 in Example 5.1.
By Theorem 3.1 we know that BVP (5.1) with F1 has at least one positive solution u(t) such
that u(t)≥ (225−12π)t(1− t), t ∈ [0,1].

Example 5.3. Consider the following 4-point boundary value problem

(5.2)



−u′′ =
F(t,u)√
t(1− t)

− 105
512+384 3√4

 1√
t
+

1√
1− t

+
1

3
√

(t− 1
2 )2

 , 0 < t < 1,

u(0)−u′(0) =
1
4

u
(1

3

)
+

1
9

u
(2

3

)
,

u(1)+u′(1) =
3
8

u
(1

3

)
+u
(2

3

)
,

where

F(t,u) =


40
√

2u, 0≤ u≤ 128,

640, 128≤ u≤ 21153,

10(u−21145)2, u≥ 21153,

Then the BVP (5.2) has at least two positive solutions.
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Proof. Let

h(t) =
1√

t(1− t)
, p(t) =

105
512+384 3√4

 1√
t
+

1√
1− t

+
1

3
√

(t− 1
2 )2

 .

BVP (5.2) can be regard as a boundary value problem of the form of (1.1). In this situation,
α = β = γ = δ = 1 and

ξ (s) =


0, s ∈

[
0,

1
3

)
,

1
4
, s ∈

[1
3
,

2
3

)
,

13
36

, s ∈
[2

3
,1
]
,

η(s) =


0, s ∈

[
0,

1
3

)
,

3
8
, s ∈

[1
3
,

2
3

)
,

11
8

, s ∈
[2

3
,1
]
.

Take [ 1
4 , 3

4 ]⊂ [0,1], by direct calculation, we have

∫ 1

0
h(t)dt = π,

∫ 1

0
p(t)dt =

105
512+384 3√4

∫ 1

0

 1√
t
+

1√
1− t

+
1

3
√

(t− 1
2 )2

dt =
105
128

,

ρ = 3, σ =
3
4
, φ1(t) =

2− t
3

, φ2(t) =
1+ t

3
, e(t) =

1
3
(2− t)(1+ t), t ∈ [0,1],

Γ =
35
64

, k1 =
263
324

, k2 =
14
81

, k3 =
47
72

, k4 =
5

18
, k =

73
648

, Λ = 11,

l = Γ

∫ 3
4

1
4

e(s)h(s)ds =
595π

4608
+

35
√

3
3072

, L = Λ

∫ 1

0
e(s)h(s)ds < 33.

Clearly, the conditions (H1)–(H3) hold. Set r = 128, then

r = 128 > 2Λσ
−1

Γ
−1
∫ 1

0
p(s)ds = 44,

and for any (t,u) ∈ [ 1
4 , 3

4 ]×
[

Γ

2 r,r
]
= [ 1

4 , 3
4 ]× [35,128],

F(t,u) = 40
√

2u≥ 40
√

70 >
r
l
.

So the condition (S3) is satisfied.
On the other hand, we take R = 21153, then R > max{r, Lr

l }. For any (t,u) ∈ [0,1]×
[0,21153], we have

F(t,u)≤ 640≤ R
L

,

so the condition (C2) holds. Finally, we have

lim
u→+∞

min
t∈[ 1

4 , 3
4 ]

F(t,u)
u

= +∞.

Thus (S2) also holds. Consequently, by Theorem 4.2, we infer that singular BVP (5.2) has
at least two positive solutions.
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Example 5.4. Let F2(t,u) = 40
√

2u,(t,u) ∈ [0,1]× [0,+∞). It is easy to verify that the
conditions of Theorem 3.2 are satisfied if the function F replaced by F2 in Example 5.3. By
Theorem 3.2 we know that BVP (5.2) with F2 has at least one positive solution u(t) such
that u(t)≥ 16(2− t)(1+ t), t ∈ [0,1].
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