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Abstract. There are many results about the structures of the tame kernels of the number
fields. In this paper, we study the structure of those fields F , which are the composition of
some cyclic number fields, whose degrees over Q are the same prime number q. Then, for
any odd prime p 6= q, we prove that the p-primary part of K2OF is the direct sum of the
p-primary part of the tame kernels of all the cyclic intermediate fields of F/Q. Moreover,
by the approach we developed, we can extend the results to any abelian totally real base field
K with trivial p-primary tame kernel.
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1. Introduction

Let L be an algebraic number field and OL the ring of integers of L. It is well-known that
K2OL is the tame kernel of L. The structure of K2OL has been extensively investigated by
many authors (see e.g., [2, 5, 11], and the references therein). In particular, in [8–10], some
results about the tame kernels of quadratic number fields have been obtained. In [2, 4, 13],
structures on the tame kernels of cubic cyclic number fields have been studied. Recently,
in [14], Zhou studied the structure of multi-quadratic fields and found that, for any odd
prime p, (K2ON)p =

⊕
(K2OH)p, where N is a multi-quadratic field and H runs over all

quadratic subfields of N.
In this paper, we develop a new approach and extend Zhou’s results to multi-cyclic num-

ber fields when all the fields involved are totally real. Specifically, let F be a multi-cyclic
number field, for any odd prime p 6= q, we prove that (K2OF)p =

⊕
(K2OE)p, where E runs

over all the cyclic subfields of F and q is the degree of E over Q. Moreover, by the approach
we developed, we can extend the results to any abelian totally real base field K with trivial
p-primary tame kernel. Based on Browkin’s and Zhou’s numerical results in [2,13], we can
determine the structure of the odd part of the tame kernels of multi-cyclic number fields
with two ramified primes p1, p2, where 7≤ p1, p2 ≤ 100.
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2. The odd part of the tame kernel K2OF

Theorem 2.1. Let p1, ..., pt be odd primes, and gi be a primitive root modulo pi, i =
1,2, . . . , t. If there is an odd prime q satisfying q|(pi−1), let αi = ∑ j∈<gq

i > ζ
j
pi , i = 1,2, . . . , t.

Let F = Q(α1, ...,αt). Then for any odd prime p 6= q, (K2OF)p =
⊕

(K2OE)p, where E runs
over all the cyclic subfields of F.

Prior to proving Theorem 2.1, we first introduce some preliminary results. Let Γ be a
finite group and S be a finite Γ-set, with Γ acting on the right. Then S can be written as a
disjoint union of Γ-orbits Si. Furthermore, if si ∈ Si has stabilizer Λi, Si is isomorphic as a
Γ-set to the right coset space Λi\Γ. Thus, we have an isomorphism of Γ-sets S ∼=

.⋃
i

Λi\Γ

(disjoint union).
Suppose that two Γ-sets, S and T , have the property that C(S) and C(T ) are isomorphic

CΓ-modules, where C(S) and C(T ) are the C-vector spaces on S and T . Suppose that S and
T have orbit decompositions:

S∼=
.⋃
a

Λa\Γ, T ∼=
.⋃
b

ϒb\Γ.

In the following part, we set Γ=Gal(F/Q), where F is defined in Theorem 2.1. Then,
in [3], the following result is obtained.

Lemma 2.1. [3, Theorem 73] Let Na (resp. Nb) denote the subfield of F fixed by Λa (resp.
ϒb). Then

∏
a

ζNa(x) = ∏
b

ζNb(x).

By the definition of Γ, we know that Γ is an elementary group of order qt , and can be
written as the direct product of t cyclic groups of order q. Let S and T denote Γ-sets with
orbit decompositions:

S = (Γ\Γ)(k)
·⋃

Γ, where k = qt−1 +qt−2 + · · ·+q,

T =
·⋃
∆

∆\Γ,

where Γ\Γ is a singleton with a trivial Γ-action, and (Γ\Γ)(k) denotes the disjoint union of k
copies of this Γ-set, and the union in the definition of T extends over the qt−1 +qt−2 + · · ·+1
distinct subgroups of ∆ of order qt−1 in Γ.

The trace of γ ∈ Γ on C(S) is given by the number of γ-fixed elements in S, denoted
|S<γ>|. Thus to show C(S)∼= C(T ), it suffices to prove the following lemma.

Lemma 2.2. For each γ ∈ Γ, |S<γ>|= |T <γ>|.

Proof. The result is clear when γ = 1, since |S<γ>| = qt + qt−1 + · · ·+ q = |T <γ>|. So let
γ ∈ Γ, γ 6= 1. We note that

(Γ\Γ)<γ> = Γ\Γ and Γ
<γ> = /0,

(∆\Γ)<γ> =

{
∆\Γ, if γ ∈ ∆;
/0, otherwise.
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For each γ 6= 1, there are qt−2 + qt−3 + · · ·+ 1 distinct ∆ containing γ . Therefore |S<γ>| =
(qt−2 +qt−3 + · · ·+1) ·q = |T <γ>|.

Thus we get C(S)∼= C(T ). This result in conjunction with Lemma 2.1 yields the follow-
ing relation

(2.1)
(
− 1

12

)k

ζF(−1) = ζQ(−1)k
ζF(−1) = ∏ζE(−1),

where F and E are defined in Theorem 2.1, k = qt−1 +qt−2 + · · ·+q.
The argument we use to derive (2.1) is similar with that in [3], which is used to prove

(7.21), except that in [3] only the case t = 2 is considered. In fact, (2.1) can also be obtained
by Satz 3 in [1]. In [14], Zhou gives the following result.

Lemma 2.3. [14, Theorem 5] Let N/K be an abelian extension with Galois group G of
order n and p - n. Then (K2ON)p = ∑(K2OH)p, where H runs over all intermediate fields
cyclic over K.

Now we introduce the Birch-Tate conjecture, which can be used to compute the order of
K2OF . The conjecture states that whenever M is a totally real number field,

(2.2) #K2OM = ω2(M)|ζM(−1)|,
where ζM is the Dedekind zeta function of the field M, and

ω2(M) = 2 ∏
l prime

lnl ,

where nl is the largest integer n such that M contains Q(ζln +ζ
−1
ln ), the maximal real subfield

of Q(ζln). The conjecture is known to be true when M is abelian over Q and is known to be
true in general up to a power of 2. (See [6, 7, 12].)

We now give a proof of Theorem 2.1.
Proof. By the Birch-Tate conjecture, we have

#K2OF = ω2(F)|ζF(−1)|,(2.3)

#K2OE = ω2(E)|ζE(−1)|.(2.4)

In almost all cases, ω2(E) = 24, however, there are some special cases, in which ω2(E) =
p ·24 for some odd primes p. In those cases, the corresponding ω2(F) also equals to p ·24.
For any n∈N and prime p, we denote np := pvp(n), where vp(n) is the p-adic valuation of n.
Then, combining (2.1), (2.2), (2.3) and (2.4), we get the following result, for any odd prime
p,

(2.5) (#K2OF)p = ∏(#K2OE)p,

where E runs over all the cyclic subfields of F .
For example, when p = 3,

(#K2OF)3 = ω2(F)3 · |ζF(−1)|3 = 3 · (12k)3 ·∏ |ζE(−1)|3

= 3qt−1+qt−2+...+q+1 ·∏ |ζE(−1)|3,

∏(#K2OE)3 = ∏ω2(E)3 ·∏ |ζE(−1)|3 = 3
qt−1
q−1 ·∏ |ζE(−1)|3

= 3qt−1+qt−2+...+q+1 ·∏ |ζE(−1)|3.
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Thus we get
(#K2OF)3 = ∏(#K2OE)3.

By Lemma 2.3, it is easy to see that

(2.6) (K2OF)p = ∑(K2OE)p,

where p 6= q and E runs over all the cyclic subfields of F . Then by (2.5) and (2.6), for any
odd prime p 6= q, we can get

(K2OF)p =
⊕

(K2OE)p,

where E runs over all the cyclic subfields of F . This completes the proof.
In fact, our approach in Theorem 2.1 also gives a more general result for any abelian

totally real base field K with trivial p-primary tame kernel.
With the notation of Theorem 2.1, we can get the following Corollary.

Corollary 2.1. Let F = Q(α1, ...,αt). For any odd prime p 6= q, we can get

pi-rank K2OF = ∑ pi-rank K2OE ,

where i > 0, E runs over all the cyclic subfields of F.

In particular, when q = 3, F is the composition of some cubic cyclic fields. Then we can
get the following theorem.

Theorem 2.2. If p is a prime number and p≡ 5 (mod 6), then the pi-rank of K2OF is even,
where i > 0. Moreover, if ki is the largest integer n such that 2n|pi-rank K2OE , where E runs
over all the cyclic subfields of F, then 2∑ki |pi-rank K2OF .

Proof. By [13, Theorem 3.13] we know that pi-rank of K2OE is even, for i > 0. Thus the
result follows from Corollary 2.1.

3. Applications

Let F be a bicubic field with exactly two ramified primes p1, p2. For 7≤ p1, p2 < 100, by
the results of Browkin and Haiyan Zhou (see [2, 13]), as an application of Theorem 2.1, it
is straightforward to get the structure of the p-primary part of K2OF , p > 3. For example,
when p1 = 7 and p2 = 31, for p > 3, the p-primary part of K2OF is Z/7×Z/13×Z/37×
Z/37×Z/61.

Acknowledgement. The author would like to express her sincere gratitude to the referees
for their careful reading of the manuscript and helpful suggestions on this paper. This
work was supported by NSFC (Nos. 11301071, 11326052, 11171141, 11271177), Jiangsu
Planned Projects for Postdoctoral Research Funds (No. 1202101c) and China Postdoctoral
Science Foundation (No. 2013M531244).

References
[1] R. Brauer, Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoisschen Körpers, Math. Nachr. 4

(1951), 158–174.
[2] J. Browkin, Tame kernels of cubic cyclic fields, Math. Comp. 74 (2005), no. 250, 967–999 (electronic).
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