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Abstract. Let [, ; be the multilinear commutator generalized by fiq, the n-dimensional
expL? (R™) functions for 7 > 1, where OsC,ypr (R")is a
space of Orlicz type satisfying that Osc,, ;= (R")=BMO(R")if t=1and Oscyyyr (R") C
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when Q satisfies a kind of Dini conditions.
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1. Introduction and main result

Denote by §"~! the unit sphere in R” (n > 2) equipped with the normalized Lebesgue
measure dx' = do(¥'). Let Q(x) € L' (5"~!) be homogeneous function of degree zero in R”
satisfying

(1.1) Q) =0,
N

where X' = x/|x| (x # 0). The n-dimensional Marcinkiewicz integral introduced by Stein
[11] is defined by

: Ofx— 24 3
/l Mf(y)dy 73; , xeR™

oyl =y

pal0 = | [

A weight will always means a positive locally integrable function. As usual, we denote by
Ap (1 < p < o) the Muckenhoupt weights classes (see [4, 12] for details). For a weight @

on R", we write || f{|;7 gn) = (Jgn |£(x)|P@(x)dx)/? and @(E) = [, o(x)dx.
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In 2004, Ding, Lu and Zhang [1] studied the weighted weak LlogL-type estimates for
the commutators of the Marcinkiewicz integral, which is defined by

W) () = (/: foge T

o=yt
when the kernel Q satisfies the Lip, (0 < a < 1) condition, that is, there exists a constant
C > 0 such that

(1.2) Q) - Q)| <Cl —y|%, Vi,y es L

In 2008, Zhang [13] established the weighted weak L(logL)l/ "-type estimates for the
multilinear commutators of the Marcinkiewicz integral when w € A, and Q satisfies (1.1)
and (1.2). Let Q € L"(S"~!) (r > 1), the integral modulus of continuity of order r of Q is
defined by

2dr

2
) , meZ", b€ BMO(R"),

f(y)dy

13

0.6)= swp ([ 10(p) -ayrac)

lo|<8
where p is a rotation in R” with [p| = supy g1 |pxX —x/|. We say Q € L(S"!) (r > 1)
satisfies the L"-Dini condition if fol ®,(8)571d5 < . Recently, Zhang [14] also considered
the following result.

Theorem 1.1. [14] Let b € BMO(R"),Q € L (8" for some r > 1, and ®" € A;. If Q
satisfies (1.1) and

L w,(8) 1\"
(1.3) N (log 5) dd < oo,
then for all A > 0, there has

o({x R 1, (f)(x) > A}) < C/R" V;%” <1 +log" Viy)') o(y)dy,

where C is a positive constant independent of f and A.

In this paper, by applying the calderén-Zygmund decomposition theory, we will study
the weighted weak Llog L-type estimates for the multilinear commutators generated by ug
and Osc,,,,,~ (R") functions, in analogy with the results established by Pérez and Trujillo-
Gonziélez in [7] for the multilinear commutators of Calderén-Zygmund operators. Before
stating our results, we first recall some notation.

Let m be a positive integer and b= (b1,b2,...,by), we define the multilinear commuta-

tors g, 7 by

2
Q m

d —

/\Xﬂ'\<t |x— Y\"l H N

Jj=1

bos (N = | [

It is easy to see, when m = 1, U, 7 is the commutator of Marcinkiewicz integral and when
by = -+ = bm, U, 3 is the higher commutator of Marcinkiewicz integral.
To state the weak type estimate for the multilinear commutator U, 7, we need to introduce

the following notation. As in [7], given any positive integer m, for all 1 < j < m, we
denote by ¢7" the family of all finite subsets 0 = {0(1),0(2),...,0(j)} of {1,2,...,m}
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with j different elements. For any ¢ € %}”, we define the complementary sequence ¢’ =
{1,2,...,m}\ 0.
In the following, we will always assume that Q be homogeneous function of degree
0, and let b = (by,by,...,b,) be a finite family of locally integrable functions. For all
1<j<mand 6 ={0(1),0(2),...,0(j)} € ¢}, we write for any i-tuple (7,,7,,...,7,)
with 7, > 1for 1 < j<m, 1/7, = 1/72(1) +--+1/1,, and 1/7, =1/7—1/7,, where
1/t=1/t,+--+1/1,, we will denote bs = (bs(1),b5(2);- - - ,bo(j)) and the product bg =
bs(1)bs(2) - bs(j)- With this notation, we write
||bf7||Osc () (R™)-

exp L'o

@) = 1bs(1)llose am ®) " [1bo(j)llose

expL pL

In particular, we write

(b(x) =b() 5 = (bo(1)(X) = bo1)()) - (bo() (¥) = bo(jy (V)
and
(b —b(y) s = ((bs(1))B — b)) -+ ((bo(j))B —bs(j () »
where B is any ball in R”, x,y € R”, and f5 = |B|~! [ f(y)dy . For any ¢ € 7", we set
1
2 2
dr
)

oz, 00 = | 7] BRI 0~ )

If 6 ={1,2,...,m}, then ¢’ is an empty set, we understand B, = Mo and gz = Hg.

Our main result can be stated as follows.
Theorem 1.2. Let bj € Oscexerj,‘cj >1(1<j<m),QelL (S ") for some r > 1, and

o' € Ay If Q satisfies (1.1) and (1.3), then for all A > 0, there has
1f )] O
1 1+1log 1 o(y)dy,

where C is a positive constant independent of f and A.

w({xeR" g 5 () ) >x}) <c

Rr

Remark 1.1. Noting that Osc,;1 = BMO and Oscexprz € BMO for 7 > 1. For more

information on Orlicz space see [10].

Obviously, condition (1.3) is slightly stronger than the L"-Dini condition, but much more
weaker than the Lip, condition. Noting that u, ; coincides with pg, when b; = b for
j=1,2,....m. So, Theorem 1.2 improves the main results in [13, 14].

Throughout this paper, C denotes a constant that is independent of the main parameters
involved but whose value may differ from line to line. For any index p € [1, 0], we denote
by p’ its conjugate index, namely, 1/p+1/p’ = 1. For A ~ B, we mean that there is a
constant C > 0 such that C"!B < A < CB.

2. Preliminaries and lemmas

In this section, we will formulate some lemmas and preliminaries.
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Lemma 2.1. [2] Suppose that 0 < o < n,r > 1 and Q satisfies the L"-Dini condition. If
there is a constant Co with 0 < Cy < 1/2 such that |y| < CoK, then

( / ’dx> T cxntrna ( bl (8) 5) .
K<|x|<2K -

K ~/\>'\/(2K><5<\>'\/K o
Lemma 2.2. [3] Suppose Q € L"(S"~') for some r > 1 and o’ € Ay. Then for any A > 0,
there is a constant C > 0 independent of f and A, such that

O({xeR": pa(£)(x) > A1) < CA™ £l

Lemma2.3. Let @ €A, 1 <p <o, bj€0sc 5, T, >1(1<j<m),Qe L' (5" ) for
some r > 1 and satisfies (1.1) and (1.3). Then, there is a constant C > 0 independent of f,
such that

Qx—y) Q)

e e

1805 ()22, eny < CllBlloseysype 11l gy

The idea of the proof of Lemma 2.3 comes from the [13, corollary 1.3]. We omit the
details. We also need a few facts of Orlicz spaces, see [10] for more information. A function
@ : [0,400) — [0, +o0) is called a Young function if ¢ is continuous, convex and increasing
with @(0) =0 and @(t) — +oo as r — 4oco. We defined the @-average of a function f over
a ball B by means of the Luxemburg norm

||f|¢3—mf{/1>o |B|/ ( )>d <1}

which satisfies the following inequalities (see [10, p. 69] or [8, formula (7)])

@ I#lon<int{n+ L [ o (L2 )ay <1} <ol

The Young function that we are going to be using is ¢ (1) =1(1+1log™ )% (a > 0) with
its complementary Young function ®(r) &~ exp(t'/%). Denote by £l Laogr)e.8 = | fll@q.B
and ||fHexpL]/°‘ 5= Ifllg, 5. When a =1, we simply denote by ®(t) = ¢(1 +log" ) and

&(1) ~ e, and by || f|lLiogr. = || f |05 and || f|lexpr. = |1l 5- By the generalized Holder’s
inequality (see [6]), we have

(2.2) 3] / |fF(e)Idy < 2(|f | Laogr)e B||gHeXle/a B

As usual, for a locally integrable function f and a ball B, we denote f5 = |B| ™! [ f(v)dy.
Let b € BMO(R"), for any ball B and integer k > 0, there has (see [12, p.141])
(23) |b2k+1B_bB| SC(k-‘rl)HbH*,

where /B denotes the ¢-times concentric expansion of B and ||b||. denotes the BMO norm
of b. By the John-Nirenberg’s inequality, it is not difficult to see that (c.f. [9, p.169])

(2.4) 16— bg|lexpr,z < C||B||+.

Let My 1og 1) (f)(x) = supps, || £l L(10g )2 8- Denote by M the Hardy-Littlewood maximal
function and M* the k-times iterations of M, then ML(logL)k ~M fork=0,1,2,.... We
also need the following estimates in the proof of Theorem 1.2.
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Lemma 2.4. [13] Let 1 < p < oo,w” € A| and B be a ball. Then for any y € B and any
positive integer m, there has

1 1/p
Eml —bp|" " <C|p|lr " =

Lemma 2.5. Let 1 < p <oo,w” € Ay and B be a ball. Then for any y € B and any positive
integer m, there has

1/p
1 » o )
i < " =
<2k3| s ® H!b — (b))s| dx) < CIB|(k+1)" inf o(y),  k=0,1,2,

Proof. By the Holder’s inequality and Lemma 2.4, we obtain

I/p
1 m
<2k3| szwp(x)]I_Il!bj(x)_(bj)B‘pdx>

<11 (5 Lo ”<x>\bj<x>—<b,~>3\””dx) "< (i 17 gge)”
SCIIbH*(kH)"’;ggw(y),

where 1 =1/ +1/9%+---+ 1/%,. This completes the proof of Lemma 2.5. 1
We also need the following notations. For @ € A and a ball B, denote by

oo =int {2 0: o [ (L) oy <1}

P lgureso =it {4 >0: s [ (L) oar<1}.

Similar to (2.1), we have (c.f. [10, p.69])

| f
5) IF1lc0piym 5.0 = mf{n +otg) o (';y)') w(y)dy} .

By (2.2), there also holds the following generalized Holder’s inequality

and

D
RO 0 000 < Cleliirnno T ilentso

Furthermore, for any 5 € BMO(R"), any ball B and any @ € A_, there has

2.7) |6 — bllexpr.B,o < Cl|b]|+,

Indeed, by John-Nirenberg’s inequality, there exist positive constants C; and C,, such that
[{x € B:|b(x) —bp| > t}| < Cy|Ble” /1Pl

Noting that @ € A_, from the proof of [5, Theorem 5], there is a & > 0, such that

o({x € B: |b(x)—bg| >1}) < Cro(B)e 20/ IIbl
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Similar to the proof of [4, Corollary 7.1.7, p. 528], we have

I Ib(x) — byl
2.8) 5B /B exp (C3||b|> o(x)dx < C,

which implies (2.7).

3. Proof of Theorem 1.2

Without loss of generality, we may assume that for j =1,...,m,||b jHOSCexpoi @) =1 In
fact, let b,
Co T P
expL’i

for j =1,...,m. The homogeneity tells us that for any A > 0,

o({xeruy;(n00)>2})
= o ({re B g ()0 > 4/ [Bllowey, e}

Noting that |5 s Lri(Rn):lforj:1,...,m,ifwhen||bj||osc Lfi(Rn):l (j=1,...,m),
expL EXpL
the theorem is true. By (3.1) and the inequality

Dy (1112) < CD(t1)Py(12)
for any s > 0,#;,# > 0, we easily obtain that the theorem still holds for any b; € Osc

(j=1,....m).

For a fixed A, we consider the Calderén-Zygmund decomposition of f at height A and
get a sequence of balls {B;}, where B; is a ball centered at x; with radius r;, such that
|f(x)| <CA for a.e. x € R"\ U;B; and

] n
32) l<@/3i|f(y)|dy§2 A

3.1)

exp L' (R" )

Moreover, there is an integer N > 1, independent of f and A, such that for every point in R"
belongs to at most N balls in {B;}. We decompose f = g+ h, where

. f(x), X e R”\U,Bi,
glx) = {fB,-, X€EB;.

Then h(x) = f(x) —g(x) = ¥;hi(x) with hi(x) = (f(x) — f,) X, (x). Obviously, supph; C
By, hi()dy =0 and

(3.3) lg(x)| <2"A, a.e.xeR™
Noting that if ®" €A, then @ € A;, and then M(o)(x) < Cw(x) for a.e. x € R". By (3.2)
and the fact that |B;| ' @(B:) = |Bi| ' [5 @ (x)dx < Cinf,cp, ®(y), we have

64 0(B) <ClBlinf ob) <CA™" [ 70y inf o) <27 [ 17000

Denote by E = U;(4B;), it follows from (3.4) that

o(E)<CY, [ 0Wdi=CY o(B) < CAfl e,
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Write

® ({xe R": g 5(f) () > /1})

< w({xeR"\E:ugyz(f)(x) >7L}) + o(E)

<o ({xe R'\E : g 5()(x) > ’;}) +o ({xe R'\E : iy 5()(x) > ’;}) +o(E)
<L+ D+ CAT £l ze)-

We consider I; first. For = Aj there has @ € A;. Noting that A| C A; (s > 1), then
for any p > ¥/, we have @ € Ap/p. 1t follows from Lemma 2.3, (3.3) and (3.4) that

h<27 [ (ia(e)) odr <2 [ e otds

<ot [ lewlomarsci ([ fewlomart | lewlotar)

"\U;B; U;B;
<ot ( [ rwlowe+y [ |fBi|w<x>dx>
<A flhgaoy +CA'E [ (1807 [ 1501 ) aoas
<O M ligan + AL [ 1700y (1817 | @iar)
<L gy +CA L [ 1£ )1y inf @)

335) <O Sl +CA L [ 1) 00y < A fl g oy

We remark that the proof of (3.5) implies the following fact, which will be used later.

(.6) Y [ 1oy < Iy e
i i
Now, let us estimate /. By the definition of tgo and U, 7, with the aid of the formula
m m
(bj(x)=b;)) =Y, ¥ (b(x)—bg), (bs, —b(y)) g,
j=1 j=0ceen

we have

.ugj,(h) (x)

2\ 2
= Qx—y)h(y) v dr
= _ b(x)—>b f b f —b y /dy =

IN

(/000 /Ix—y\<t Q|(xx_y)h(ly) ﬁ (b(x) = (b)), ) dy
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m—1

Q(x—y)h(y)
+(/0 -/\x)\<t x— y|n1 j;cr;gjm(b(X)bBi)O-(bBib(y))G/dy 3

n

' Qx—y)h(y) ¥
" (/0 /\ >\<er:1((bf>Bf—bj(y))dy

m m—1
Y I1/pix) (bj)Bi’“Q(hi)(x)+Z Z,

i j=1
+ Ho (ZhiH ((bj)s; —bj)> (x).
i =1
So, we can write I; as

12§(D<{XGRn\E ZHV’ ')B,|M9(hi)(x)>2}>

i j=1

w({xeR"\E:ZZ Y |(b(x) — b,)y | e (i (b, —b)c,)(x)>2})

i j=1cecen
A

+o <{x ER"\E: lig (Zhilnjl((bj)& —bj)> (x) > 6})

f
(3.7 =Dhi+I+Ds.

For I»1, using Chebyshev’s inequality and Minkowski’s inequality, we have

b= ({x ER"\E: Zﬂ |bj(x) = (b))B; | B (hi) (x) > 2})

e’y /. \4me (b)8,| e (ki)
gcl”;/ Hlb

R"\4B; j

‘X*)C,“Jrzr'
x /
0

+CA™ IZ/ \43 _(bj)B,»‘

>< /
[x—x;|+2r;

(3.3) =Dhi1+ b

(x)o(x)dx

)]

/ Q= hily) | dr
Pe—y|<t

lx —y[r-!

/ Q(x—y)hi(y) dy 2 di
|

< =yt
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Forx € R"\4B; and y € B;, there has |x—y| < |x —x;| 4+ r; and |x —y| ~ |x —x;| ~ |x — x;| +2r3,

and then
/\X*xl'lﬂri dr 1 ( 1 1 ) . Crni
-y £ 2\ x=yP (x—x[+2r)2) 7 x—yP

Noting that supp h; C B;, it follows from the Minkowski’s inequality that

1211§C)v_12,/ H|b |

R7\4B;

[ Bl ([
T /| 5) @)

x—y]

Q(x—y)||h
< Cl_lgr,-l/z/n H Ib;(x 5] < Biny) o(x)dx

\4B;

i [ 20-y)
=CA Z,-"ri /Bi|hl(y)|z</2k+13\zk3 |x — y|”+1/2n‘b ‘ (x)dx)dy

k=1

<Cl_12r-1/2/|h'(y)|i (/ 'Q(x_y)rdx)l/r
o ~ ' JB ' =1 2k+1B;\2kB; |x_)’|n+1/2

3.9
1/r
X (/2k+13\2k3 |x— y\"+1/2 H’ i (bj)B"’ dx) )dy

Noting that 2~ 1r; < |x —y| < 282y, whenever y € B; and x € 251 B;\ 2*B;, we have

(/ m(xy)fdx) v </ de)”
26+ BB, [x —y[rH1/2 =\ 2k trgfey| <2y x—y[rtl/2

k2, nir 1
o Q)"
- </2k1r,‘ P </S”1 pn+1/2 ) de
(3.10) <c@br) > 1] r(sn-1y-

And noting that @” € A; and ||b/||gmo < C||b;lose f,- for 7, > 1 (1 < j<m), by the
expL

Holder’s inequality, Minkowski’s inequality, the properties of BMO(R") functions and
Lemma 2.5, we have

/
(/ymg,\zkg |x — y|”+1/21_II J J7Bi

1/
—(n+ 1y YT Y
§C(2k+1ri) (nt+3)/ </2k+13 0] (x)H|bj(x)7(bj)Bi dJC)
; j=1

/
<C 2k+1 ( + ‘2k+lB| v = b b r'dx ]/
= ( ) ‘2k+lB| > .a) ()C)l_[1| ](x)_( j)Bi

i j:
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-4
3.11) §C(2krl~) > (k1) inf o (y).
YEB;

This, together with (3.9) and (3.10), gives

oo

by < C”Q‘HL’(S"*I))‘71Zrz'l/sz_ |hi ()] <Z(k+1) (2k71)2> o(y)dy

k=1

(3.12) <CA” ‘Z/ iy ( (k+1)"2" "”) w(y)dysca—IZ/B_ [i(v) @ (v)dy
Next, let us consider l1». Write K (x,v,x;) = (Q(x—))/(|x—y[" 1) — (Q(x —x,)) /(|x —

x;|"~1) for simplicity. Noting that for any y € B;, any x € R"\ 4B; and ¢ with |x —x;| +2r; <t,
there has |x —y| < |x —x;| 4+ r; < t, then by the cancellation condition of /;, we have

1212§C17'Z/ H‘b (bj)B;

] (/ K (e.y.) i)

0 dt 2
X / = | dy]o(x)dx
|x—x;|+2r; T

scw;/n TT 15,0~

\4B; j=1

<c,1—1/h mz", / K(x,y,x;
< ; IO ; i) <\| (%, 3,3
< [T |6;(x) = (b))s,] w<x>dx> dy

j=1

By the Holder’s inequality, Lemma 2.1 and Lemma 2.5, there has

A y (O RO

(/ |K (x,y,%7)| i (y )|dy> o(x)dx

|x — x;]

. 1/r . m 1
v /
< K(x, y,x) | dx / bix) — (b))g|” @ (x)dx
N (-/2"“3,'\2"31" (x yXl)| ) ( 2"+le\2ka]1;[1‘ j(X) ( j>Bl (X) )
[y—xi]
<Clk+1)m2kr [ 27F + ‘?k’_j w’(5)d6 inf @(y).
gty O yeBi
Therefore,
o0 \vkx,l
-1 . - 2kr;
bin <CA Z/B_|h,(y)|w k; (k+1)" |2 +/} . dy
i i = 2k+1
> ,(5) 1\"
<! / hi(y k4 1y / "0 (1og=) ds|d
Z |hi(y)|o(y) (1;'1 + + 5 0g5 y
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613 <Y [ )0
i i
Note that &;(y) = f(y) + fp, when y € B;, it follows from (3.6), (3.8), (3.12) and (3.13) that

<O Y [ lee)ay <A Y [ (170)+ 1 Do0)dy < CA Sy e

To estimate I»3, noting that Q € L’(S"_l) for some r > 1 and ®” € A1, using Lemma 2.2,
(2.6), (2.7), Lemma 2.5, (2.5) and (3.4), we have

<o <{x ER": g (thﬁ ((bj)B; —b/)> (x) > 2})

m

<CA™ /Z|h )00 TT1(5)s, —bs()] dx

Jj=

—_

<cr z(/ f@)|o(x ﬁ\( \dx+/ [ fi| o (x ﬁ !dx)
<CA L o) fllogtys wHIIIb = )8l expr.51.0
RN NI |y/w AT 108 b0 o
<1 % (@) srnn.ot / 7010 i @) )
<oa (it {a+ g [ an (V) 00+ [ yoio0ir)

<c;<w(3i) ( ) dy)+C7L oo /0|0 (y)dy

<cy (i [ iroteo+ [ T2 (1ee L0 )y )
! / FOlo0)dy

Now, let us turn to estimate for /»>. Using the Minkowski’s inequality, we have

Izzzw({xeR”\E ZZ Y, |(b(x) —bg,) | o (hi —b)c,)(x)>2}>

i j= ]66‘5’"

< 'Y¥ ¥ Y[ [0 =) 1 (0, ) 1) ()

i j= ]GE%”W
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m—1 [x—x;|+2r; . Qx—y)h
<L T R L, o0l ([ e

i j= 166%"’ R™\4B;

X (bp; = b(y)) o dy

71 m7 oo
+CA Z Z /R \43 b5l (/xxi+2ri

i j= 10'6‘6’”

/ Qx—y)hi(y)
[x—y|<t

x —y[r-t

X (bp; = b(y)) o dy

=CA7 'Y (Io1 + D).

i

For Iy; and ), similar to the estimates for I and I3, we can get

m—1
1/2 |Q(x —y)|[hi(y)]
b <cY Y r /112{"\43,- |(b(x < T ypti2

j=1ceer

% (b5, ~b(»)) dy) o(x)dx

<C ((H(Bi)inf{?L + wé?i) /B,« D, (If;y)l) w(y)dy} +/Bi If(y)lw(y)dy) :

S K Xy Y, Xi hi
bp<c) Y /R \43 ) —bg,) 5| ( A 1K Gy, xi)[[hi(y)]

j=1ocE" |x — x|

X (b; = b(y)) 5 d)’) o (x)dx

<clo@nt{2+ 5o [ o (L) ot} [ 1r0)00).

Thus, we have

Iy < CA™ ‘Z( lnf{MLw(/lIfi)/B,.q)”’('f;y)) } / 0)l00)
¢ angt)'(l—i—log*viy”

\_/

o(y)dy.

From (3.7) and the above estimates for I, I and >3, we have

L< C/Rn ‘fgtiyﬂ (1 +log* |f§Ly)|>ma)(y)dy.

This finishes the proof of Theorem 1.2.
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