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Abstract. Let R be a commutative ring. We associate a digraph to the ideals of R whose
vertex set is the set of all nontrivial ideals of R and, for every two distinct vertices I and J,
there is an arc from I to J, denoted by I → J, whenever there exists a nontrivial ideal L such
that J = IL. We call this graph the ideal digraph of R and denote it by

−→
IΓ(R). Also, for a

semigroup H and a subset S of H, the Cayley graph Cay(H,S) of H relative to S is defined
as the digraph with vertex set H and edge set E(H,S) consisting of those ordered pairs
(x,y) such that y = sx for some s ∈ S. In fact the ideal digraph

−→
IΓ(R) is isomorphic to the

Cayley graph Cay(I∗,I∗), where I is the set of all ideals of R and I∗ consists of nontrivial
ideals. The undirected ideal (simple) graph of R, denoted by IΓ(R), has an edge joining I
and J whenever either J = IL or I = JL, for some nontrivial ideal L of R. In this paper,
we study some basic properties of graphs

−→
IΓ(R) and IΓ(R) such as connectivity, diameter,

graph height, Wiener index and clique number. Moreover, we study the Hasse ideal digraph−→
HΓ(R), which is a spanning subgraph of

−→
IΓ(R) such that for each two distinct vertices I and

J, there is an arc from I to J in
−→
HΓ(R) whenever I → J in

−→
IΓ(R), and there is no vertex L

such that I → L and L→ J in
−→
IΓ(R).
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1. Introduction

The investigation of graphs associated to algebraic structures is very important. Many fun-
damental papers devoted to graphs assigned to a ring have appeared recently, see for exam-
ple [1–4, 6, 9, 23, 27]. Most properties of a ring are connected to a behavior of its ideals.
Besides, ideals play crucial roles in the study of ring constructions, see [15] and [16]. This
is why it is useful and interesting to associate graphs to ideals of a ring, as for example
in [11] and [24].

Among all types of graphs related to various algebraic structures, Cayley graphs have
attracted serious attention in the literature, since they have many useful applications, see
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[17–19, 21, 22, 25, 26, 28] for examples of recent results and further references. Also, for a
semigroup H and a subset S of H, the Cayley graph Cay(H,S) of H relative to S is defined
as the digraph with vertex set H and edge set E(H,S) consisting of those ordered pairs (x,y)
such that y = sx for some s ∈ S (cf. [20]). By the ordered pair (x,y), we mean that x → y.
In this note we introduce a digraph which can be considered as a generalization of Cayley
graphs of semigroups.

In this paper, we associate a digraph to the ideals of a commutative ring. Let I be the
set of all ideals of R and I∗ be the set of all nontrivial ideals of R. The ideal digraph of
R, denoted by

−→
IΓ(R), is a digraph whose vertex set is the set I∗ and, for every two distinct

vertices I and J, there is an arc from I to J whenever there exists a nontrivial ideal L such
that J = IL. In fact the ideal digraph

−→
IΓ(R) is the Cayley graph Cay(I∗,I∗). The ideal graph

of R, denoted by IΓ(R), is a simple graph whose vertex set is the set of all nontrivial ideals
of R and two distinct vertices I and J are adjacent if and only if either J = IL or I = JL, for
some nontrivial ideal L of R.

In sections two and three, we study some basic properties of graphs
−→
IΓ(R) and IΓ(R)

such as connectivity, diameter, graph height, Wiener index and clique number. In the last
section, we study the Hasse ideal digraph

−→
HΓ(R), which is a spanning subgraph of

−→
IΓ(R)

that, for each two distinct vertices I and J, there is an arc from I to J in
−→
HΓ(R) whenever

I → J in
−→
IΓ(R), and there is no vertex L such that I → L and L→ J in

−→
IΓ(R).

Throughout this paper, all rings are assumed to be commutative with non-zero identity.
By Max(R), U(R), Nil(R) and Z(R), we denote the set of maximal ideals, unit elements,
nilpotent elements and zero-divisors of R, respectively. A non-zero ideal I of R is said to
be minimal if there is no nontrivial ideal of R properly contained in I. We denote the set of
all minimal ideals of R by Min(R). Also, RP stands for the localization of the ring R in the
prime ideal P (cf. [14]).

Now we recall some definitions and notations on graphs. We use the standard terminol-
ogy of graphs following [10]. Let G = (V,E) be a graph, where V is the set of vertices and
E is the set of edges. The graph H = (V0,E0) is a subgraph of G if V0 ⊆ V and E0 ⊆ E.
Moreover, H is called a spanning subgraph of G if its vertex set is V . The distance between
two distinct vertices a and b in G, denoted by d(a,b), is the length of the shortest path con-
necting a and b, if such a path exists; otherwise, we set d(a,b) := ∞. The diameter of a
graph G is diam(G) = sup{d(a,b) : a and b are distinct vertices of G}. The girth of G is the
length of the shortest cycle in G, denoted by gr(G) ( gr(G) := ∞ if G has no cycles). Also,
for two distinct vertices a and b in G, the notation a− b means that a and b are adjacent.
A graph G is said to be connected if there exists a path between any two distinct vertices,
and it is complete if it is connected with diameter one. We use Kn to denote the complete
graph with n vertices. We say that G is empty if no two vertices of G are adjacent. For a
vertex x in G, the degree of x is the number of vertices adjacent to x and it is denoted by
deg(x). A vertex x is an isolated vertex, if deg(x) = 0. A clique of a graph is a complete
subgraph of it and the number of vertices in a largest clique of G is called the clique number
of G and is denoted by ω(G). The chromatic number of a graph G, denoted by χ(G), is
the minimal number of colors which can be assigned to the vertices of G in such a way that
every two adjacent vertices have different colors. For a positive integer r, an r-partite graph
is one whose vertex set can be partitioned into r subsets so that no edge has both ends in
any one subset. A complete r-partite graph is one in which each vertex is joined to every
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vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with
part sizes m and n is denoted by Km,n. The Wiener index of G, denoted by W (G), is the
sum of the length of all shortest paths connecting every two distinct vertices of G. In other
words, W (G) = ∑a,b∈V (G) d(a,b). (cf. [12], [13]). A graph is Hamiltonian if it contains a
cycle which visits each vertex exactly once and also returns to the starting vertex. An Euler-
ian graph is a graph which has a path that visits each edge exactly once which starts and
ends on the same vertex. By [10, Theorem 4.1], a connected non-empty graph is Eulerian
if and only if the degree of each vertex is even. A graph is said to be planar if it can be
drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph
is any graph that can be obtained from the original graph by replacing edges by paths. A
remarkable simple characterization of the planar graphs was given by Kuratowski in 1930.
Kuratowski’s Theorem says that a graph is planar if and only if it contains no subdivision
of K5 or K3,3 (cf. [10, p. 153]).

A digraph Γ is called weakly connected if the undirected underlying simple graph ob-
tained by replacing all directed edges of Γ with undirected edges is a connected graph. A
digraph is called strongly connected if it contains a directed path from u to v and a directed
path from v to u for every pair of distinct vertices u and v. The indegree of a vertex u is
the number of arcs incident to u and is denoted by deg−(u). Also, the outdegree of u is the
number of arcs that u incidents to them and is denoted by deg+(u). A directed Hamilton
cycle of Γ is a directed cycle that includes every vertex of Γ. A directed Euler path is a di-
rected path that traverses each arc of Γ exactly once with starts and ends on the same vertex.
Also, for distinct vertices u and v in Γ, we use the notation u → v to show that there is an
arc from u to v.

Throughout the paper, by a graph we mean a directed graph without multiple edges, but
possibly with loops.

2. Graph height of ideal graph

In this section we first study some basic properties of the ideal graph
−→
IΓ(R). Next we

introduce the concept of graph height for
−→
IΓ(R) and study the graph height of

−→
IΓ(R).

We begin this section with the following proposition which can be easily gained from the
definitions.

Recall that an ideal I of R is multiplicative if, for every ideal J of R with J ⊂ I, there
exists an ideal L of R such that IL = J.

Proposition 2.1.
(i) Suppose that I and J are distinct vertices in

−→
IΓ(R). If I → J, then J ⊂ I.

(ii) In the ideal graph
−→
IΓ(R) we have gr(

−→
IΓ(R)) = ∞.

(iii) The ideal graph
−→
IΓ(R) contains no directed Hamilton cycle or directed Euler path.

(iv) For every maximal ideal m and every minimal ideal I of R, we have that

deg−(M) = deg+(I) = 0.

(v) I is a multiplicative ideal if and only if

deg+(I) = |{J | J is a nontrivial ideal of R with J ⊂ I}|.
Note that, for each positive integer n, one can find a ring R such that |V (

−→
IΓ(R))|= 2n−2.

To do this, consider the ring R = F1×·· ·×Fn, where each Fi is a field, for i = 1, . . . ,n.
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Let R be a principal ideal domain, PID briefly, and I be a nontrivial ideal of R. Then
there exists an element a ∈ R such that I =< a >. Since R is a unique factorization domain,
UFD briefly, we have a = upα1

1 · · · pαn
n , where u ∈U(R), α1, . . . ,αn ∈ N and p1, . . . , pn are

irreducible elements in R \U(R). If J is an ideal of R and I ⊂ J, then J =< pβ1
1 . . . pβn

n >
with 0≤ βi ≤ αi, for i = 1, . . . ,n. So, we have the following Proposition.

Proposition 2.2. Let R be a PID and a∈ R. If a = upα1
1 · · · pαn

n is a decomposition of a, then
we have

deg−(< a >) =
n

∏
i=1

(αi +1)−2.

Proposition 2.3. Let R be an integral domain that is not a field. Then we have the following
statements.

(i) If P is a nontrivial finitely generated prime ideal of R, then deg−(P) = 0.

(ii) For every minimal ideal I in I∗, we have that J → I in
−→
IΓ(R) if and only if I ⊂ J.

Proof. (i) Suppose that P is nonzero prime ideal of an integral domain R. If the ideal J is
adjacent to P, then there exists an ideal L of R such that P = LJ. Since P is prime and P⊂ J,
we have that L⊆ P = LJ ⊆ L, and so P = PJ.

If P is finitely generated, then there exist a1, . . . ,an ∈ P such that P =< a1, . . . ,an >.
Since P = PJ, for i = 1,2, . . . ,n, ai has an expansion ai = ∑n

j=1 ri ja j, for some ri j ∈ J. This
can be rewritten ∑n

j=1(δi j− ri j)a j = 0, for 1≤ i≤ n, where δi j is the kronecker delta. The
coefficients of this system of linear equations can be viewed as a square matrix (δi j − ri j)
of elements of R. Let bi j denote its (i, j)th cofactor, and d its determinate. By multiplying
the above equation through by bik and summing over i, we get dak = 0 for all 1 ≤ k ≤ n.
Since R is an integral domain, we have that d = 0. On the other hand, it is easy to see that
d = 1+ j for some j ∈ J, and so 1 ∈ J. This means that J = R which is impossible.

(ii) Let I be a nonzero minimal ideal of R. Suppose that I ⊂ J. Then we have I = IJ.
This implies that J → I.

The converse statement is clear.
Now, we introduce the concept of graph height of a graph.

Definition 2.1. In a non-empty graph G, the maximum length of the paths in G is called
graph height of G. We denote the graph height of the ideal graph

−→
IΓ(R), by h−→Γ (R), and the

graph height of the ideal graph IΓ(R), by hΓ(R).

Example 2.1.
(i) Let R = Zn and n = pα1

1 . . . pαr
r , where pi is a prime number and αi is a natural

number, for i = 1, . . . ,r. Then one can easily see that the path

(p1)→ (p2
1)→ ··· → (pα1

1 )→ (pα1
1 p2)→ ··· → (pα1

1 pα2
2 . . . pαr−1

r−1 pαr−1
r )

has the maximum length among all paths in
−→
IΓ(R). Hence we have that h−→Γ (R) =

∑r
i=1 αi−1.

(ii) Suppose that K is a field and R = K[x]/(xn), where n≥ 2. Clearly

(x)→ (x2)→ ··· → (xn−1)

is one of the paths in
−→
I(Γ(R)) of maximum length. Therefore h−→Γ (R) = n−2.
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Proposition 2.4. Assume that h−→Γ (R) = 0. Then, for every non-zero proper ideal I of R, we
have either I2 = I or I2 = 0.

Proof. Suppose that hΓ(R) = 0 and I is a nonzero proper ideal of R. If I2 6= I and I2 6= 0,
then we have the path I → I2 in

−→
IΓ(R). This means that h−→Γ (R)≥ 1, which is impossible.

We say that R is a multiplicative ring if all nontrivial ideals of R are multiplicative.

Proposition 2.5. Let R be a multiplicative ring. Then h−→Γ (R) < ∞ if and only if R is Artinian.

Proof. First suppose that h−→Γ (R) < ∞. Since R is multiplicative, every chain of ideals in R

with respect to inclusion induces a path in
−→
IΓ(R). This implies that R is Artinian.

The converse statement is clear.

Proposition 2.6. Assume that h−→Γ (R) < ∞. If a ∈ R \Nil(R), then there exists r ∈ R such
that 1− ra ∈ Z(R).

Proof. If a ∈ U(R), then by setting r := a−1 the result holds. Now suppose that a is a
non-unit element in R \Nil(R) and consider the path (a) → (a2) → ·· · in

−→
IΓ(R). Since

hΓ(R) < ∞, we have (an) = (an+1), for some positive integer n. Hence an(1− ra) = 0, for
some r ∈ R. Now, one can easily see that 1− ra ∈ Z(R).

The following corollaries immediately follow from Proposition 2.6.

Corollary 2.1. If R is a ring with h−→Γ (R) < ∞, then we have that R = Z(R)∪U(R).

Corollary 2.2. For every integral domain R that is not a field, h−→Γ (R) = ∞.

Proposition 2.7. If h−→Γ (R) < ∞, then, for each nontrivial ideal I of R, we have either I is
nilpotent or In is idempotent, for some positive integer n.

Proof. Suppose that h−→Γ (R) < ∞ and that I is a nontrivial ideal of R. Consider the path
I → I2 → ··· . Since h−→Γ (R) < ∞, for some positive integer n, we have In = 0 or In = In+r,
for all positive integers r. So the result holds.

We end this section with the following corollary.

Proposition 2.8. Let R be a ring with finite number of maximal ideals. Then h−→Γ (R) < ∞ if
and only if, for every maximal ideal m of R, h−→Γ (Rm) < ∞.

Proof. First suppose that h−→Γ (R) < ∞. Let m be a maximal ideal of R such that h−→Γ (Rm) = ∞.

So there exists an infinite path in
−→
IΓ(Rm). This implies that

−→
IΓ(R) contains a path of length

infinity, which is a contradiction.
Conversely, suppose that, for every maximal ideal m, h−→Γ (Rm) < ∞. Since the number of

maximal ideals of R is finite, we have the following inequality

h−→Γ (R) = max{h−→Γ (Rm) |m ∈Max(R)}< ∞.

3. Connectedness, clique number and the Wiener index of IΓ(R)

In this section we study some basic properties of the undirected ideal graph IΓ(R). We begin
this section with the following proposition.
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Proposition 3.1. If R is an integral domain that is not a field, then IΓ(R) is connected with

diam(IΓ(R))≤ 2.

In particular IΓ(R) is complete if and only if R is a multiplicative ring and the set of non-
trivial ideals of R is totally ordered with respect to the inclusion.

Proof. Suppose that I and J are two distinct nontrivial ideals of R. Since R is an integral
domain, we have IJ 6= 0. Therefore we have the path I− IJ−J in IΓ(R). So diam(IΓ(R))≤
2. Moreover, one can easily see that IΓ(R) is complete if and only if R is multiplicative and
the set of nontrivial ideals of R is totally ordered with respect to the inclusion.

Corollary 3.1. If the ideal graph IΓ(R) is complete, then R is a local ring.

Note that if R is not an integral domain, then we may have that the graph IΓ(R) is con-
nected. For example, Z4 is not an integral domain and IΓ(Z4) is connected.

In the following theorem, we find a lower bound for the clique number of IΓ(R).

Theorem 3.1. In the ideal graph IΓ(R) we have the following inequality.

ω(IΓ(R))≥ h−→Γ (R)+1

Proof. Let I1 → I2 →···→ In+1 be a path of length n in
−→
IΓ(R), where n = h−→Γ (R). Then one

can easily see that, for each i with 1 ≤ i ≤ n− 1, we have Ii → Ii+2. This implies that, for
each i, j with 1≤ i < j ≤ n, we have Ii → I j. Hence the vertices in the set {I1, I2, · · · , In+1}
form a clique for IΓ(R). Therefore ω(IΓ(R))≥ h−→Γ (R)+1.

Example 3.1. Suppose that R = K[x]/(xn), where K is a field and n ≥ 2. Then, in view of
Theorem 3.1 in conjunction with Example 2.1(ii), we have ω(IΓ(R))≥ n−1.

The following corollary immediately follows from Theorem 3.1.

Corollary 3.2. If IΓ(R) is planar, then we have that h−→Γ (R)≤ 3.

Now we have the question that if h−→Γ (R)≤ 3, then is it true that the graph IΓ(R) is planar?
Recall that an independent set of an undirected graph G is a subset of the vertices of G

such that no two vertices in the subset represent an edge of G. The independence number
of G, denoted by α(G), is the cardinality of the largest independent set.

Now suppose that the vertices I and J are adjacent in IΓ(R). Then I ⊂ J or J ⊂ I. Thus
the set of all maximal ideals and the set of all minimal ideals form independent sets for
IΓ(R). Therefore we have the following proposition.

Proposition 3.2. In the ideal graph IΓ(R) we have the following inequality.

α(IΓ(R))≥max{|Max(R)|, |Min(R)|}
Proposition 3.3. If all ideals of R are multiplicative and prime, then IΓ(R) is complete.

Proof. Suppose that P and Q are two nontrivial ideals of R. Clearly PQ is a prime ideal.
Hence we have P ⊆ PQ or Q ⊆ PQ. Thus P ⊆ Q or Q ⊆ P. Therefore, by Proposition 3.1,
IΓ(R) is complete.

Recall that an undirected graph is called a forest if it contains no cycle.

Proposition 3.4. Assume that IΓ(R) is a forest. Then we have that R = Z(R)∪U(R).
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Proof. Suppose that a∈ R and consider the set of ideals A = {< ai >| i≥ 1} of R. If |A| ≥ 3,
then one can easily find a triangle in IΓ(R) which is impossible. So we have that |A| ≤ 2.
Thus there exists r ∈ R such that ai = rai+1, and so ai(1− ra) = 0. Suppose that a /∈U(R).
Hence 1− ra 6= 0, and it is not hard to see that a is a zero-divisor.

In the following theorem, we study the cases where IΓ(Zn) is Eulerian.

Theorem 3.2. Assume that n = pr1
1 . . . prm

m , where pi’s are prime numbers, m≥ 1 and ri > 0,
for i = 1, . . . ,m. Then IΓ(Zn) is Eulerian if and only if, for every integer pt1

1 pt2
2 . . . pts

s , with
1≤ s≤ m and 1≤ ti ≤ ri, one of the following conditions hold.

(i) m≥ 3. In this situation one of the following holds:
(a) For all 1≤ i≤ m either ri = 1 or ri is even.
(b) If there exists an odd ri with s+1≤ i≤m, then there exists an odd ti such that

1≤ i≤ s.
(c) If there exist some odd integers ri and tk, with 1 ≤ i,k ≤ s, and for all j with

s + 1 ≤ j ≤ m, r j is even, then there exists 1 ≤ k′ ≤ s such that rk′ is odd and
tk′ is even, or rk′ is even and tk′ is odd.

(ii) m = 2 and, r1 and r2 are even.
(iii) m = 1 and, r1 is an even number with r1 ≥ 4.

Proof. Let I be a nontrivial ideal of Zn. Without loss of generality, we may assume that
I =< pt1

1 pt2
2 . . . pts

s >, where 1≤ s≤ m and 1≤ ti ≤ ri. One can easily check that the degree
of I satisfy in the following equality.

deg(I) =
s

∏
i=1

(ri− ti +1)
m

∏
i=s+1

(ri +1)−2+
s

∏
i=1

(ti +1)−2

Now one can easily check that deg(I) is an even number if and only if one of the condi-
tions (i), (ii) or (iii) happens. Hence the result holds.

In the rest of this section, we calculate the Wiener index W (IΓ(R)), where R is a finite
direct product of fields. To this end, the following lemma is useful.

Lemma 3.1. Let R = F1 × ·· · ×Fn, where Fi is a field for i = 1, . . . ,n. Then there is a
classification of |V (IΓ(R))| to n− 1 classes such that, for each ideal I in the ith class,
deg−(I) = 2n−i−2 and deg+(I) = 2i−2.

Proof. It is well known that every ideal of R has the form F̄1×·· ·× F̄n, where F̄i = 0 or Fi,
for all i = 1, . . . ,n. Let Vi be the set of all nontrivial ideals of R with i nonzero components.
Now suppose that I = F̄1×·· ·× F̄n is an arbitrary element in Vi. Then it is clear that, for
each ideals J and L with 0 6= J ⊂ I and I ⊂ L 6= R, I is adjacent to J and that L is adjacent to
I. Thus deg−(I) = 2n−i−2 and deg+(I) = 2i−2.

Theorem 3.3. Let R = F1×·· ·×Fn, where Fi is a field for i = 1, . . . ,n. If n≥ 3, then

W (IΓ(R)) = 2(4n−3n)+2n−4.

Proof. According to Lemma 3.1, we classified the set of vertices and we have V (IΓ(R)) =
⋃n−1

i=1 Vi such that |Vi| =
(

n
r

)
. Suppose that I is an arbitrary element in Vr. Without loss

of generality, we may assume that I = F1× ·· ·×Fr × 0× ·· ·× 0. In view of Lemma 3.1,
deg(I) = deg−(I)+ deg+(I) = 2n−r + 2r − 4. Now suppose that J ∈ V (IΓ(R)) such that I
and J are not adjacent. So we have the following two cases:
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Case 1. J = 0× ·· · × 0×Fr+1 × ·· · ×Fn. Hence there is no vertex L in IΓ(R) which is
adjacent to I and J. Thus d(I,J)≥ 3. On the other hand, if L1 := 0×·· ·×0×Fr×·· ·×Fn
and L2 := 0× ·· ·× 0×Fr × 0× ·· ·× 0, then there exists a path I−L2−L1− J in IΓ(R).
This implies that d(I,J) = 3.
Case 2. J 6= 0× ·· ·× 0×Fr+1× ·· ·×Fn. Since I ∩ J 6= 0, there is a path I− I ∩ J− J in
IΓ(R). This means that d(I,J) = 2. Hence

W (I) = 2n−r +2r−4+3+2 (2n−2− (2n−r +2r−4)−1)

= 2n+1−2n−r−2r +3.

Thus

W (IΓ(R)) =
n−1

∑
r=1

(
n
r

)
(2n+1−2n−r−2r +3)

= (2n+1 +3)
n−1

∑
r=1

(
n
r

)
−

n−1

∑
r=1

(
n
r

)
(2n−r +2r)

= (2n+1 +3)(2n−2)−2(3n−2n−1)

= 2(4n−3n)+2n−4.

4. Hasse ideal graph

The Hasse ideal graph, which is denoted by
−→
HΓ(R), is a spanning subgraph of

−→
IΓ(R) that,

for each two distinct vertices I and J, there is an arc from I to J in
−→
HΓ(R) whenever I → J

in
−→
IΓ(R), and there is no vertex L such that I → L and L → J in

−→
IΓ(R). We denote the

undirected Hasse ideal graph by HΓ(R).

Example 4.1. In the following figures, we present the graphs
−→
HΓ(Zpr) and

−→
IΓ(Zpr), where

p is a prime number and r = 4,5.

Figure 1.
−→
IΓ(Zp4) Figure 2.

−→
HΓ(Zp4)

Figure 3.
−→
IΓ(Zp5) Figure 4.

−→
HΓ(Zp5)
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Proposition 4.1. In the Hasse ideal graph HΓ(R) we have gr(HΓ(R))≥ 4.

Proof. Suppose to the contrary that HΓ(R) contains a cycle I− J−K− I. Clearly, if there
exists a directed path I → J → K in

−→
HΓ(R), then we have I → K. This means that I and K

are not adjacent in HΓ(R), which is impossible. Hence we have I → J ← K in
−→
HΓ(R). In

this situation we have that either I and J, or J and K are not adjacent in HΓ(R), which is a
contradiction. Thus we have gr(HΓ(R))≥ 4.

Theorem 4.1. The Hasse ideal graph HΓ(Zn) is a forest if and only if n = pq, p2q or pr,
where p and q are prime numbers and r ≥ 1.

Proof. If n = pq, p2q or pr, then one can easily see that HΓ(Zn) has no cycle. Thus HΓ(Zn)
is a forest.

Conversely, suppose that HΓ(Zn) is a forest. If n /∈ {pq, p2q, pr}, then we have the
following three cases:
Case 1. prq divides n, where r ≥ 3. In this case, we have the cycle p− p2− p2q− pq− p
in HΓ(Zn).
Case 2. prqs divides n, where r,s≥ 2. So we have the cycle p− p2− p2q− pq− p.
Case 3. pqt divides n, where t is a prime number distinct from p and q. In this case one can
easily find the cycle t− tq−q− pq− p− t p− t in HΓ(Zn).

Thus if n /∈ {pq, p2q, pr}, then HΓ(Zn) is not a forest, which is impossible. Therefore
we have that n = pq, p2q or pr.

In the following, we study the Hasse ideal graph
−→
HΓ(Zn). For a∈Zn, we use a to denote

the ideal generated by a.

Proposition 4.2. Put R := Zn. If n = p2, for some prime number p, then HΓ(R) = K1.
Otherwise, HΓ(R) is a bipartite graph.

Proof. Suppose that n = p1 · · · pr, where r ≥ 2 and pi’s are (not necessarily distinct) prime
numbers, for i = 1, . . . ,r. If n = p2, then clearly HΓ(Zn) = K1. Now assume that n 6= p2.
We set

V1 := {(pi1 . . . pit ) | 1≤ i1, . . . , it ≤ r, t is odd}
and

V2 := {(pi1 . . . pit ) | 1≤ i1, . . . , it ≤ r, t is even}.
Now one can easily check that H(Γ(Zn)) is a bipartite graph with parts V1 and V2.

Corollary 4.1. Suppose that R = Zn and n is not a prime number. Then we have the follow-
ing statements.

(i) gr(HΓ(R)) is an even number or it is infinity.
(ii) If n = p2, then χ(HΓ(R)) = 1 = ω(HΓ(R)).

(iii) If n 6= p2, then χ(HΓ(R)) = 2 = ω(HΓ(R)).

Example 4.2. Let R = Zn and n = prqs, where p,q are two prime numbers and r,s≥ 2. We
present HΓ(Zprqs) in Figure 5.
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Figure 5.
−→
HΓ(Zprqs)

In the rest of this section, we investigate cut vertices in HΓ(R). Recall that a vertex x is a
cut vertex in a graph G, whenever the number of connected components in G\{x} is more
than the number of connected components in G.

Proposition 4.3. Let R be a valuation ring. If hΓ(R) ≥ 2, then HΓ(R) contains some cut
vertices.

Proof. Since ideals of a valuation ring with the inclusion relation form a chain, the graph
HΓ(R) is a union of paths. It is clear that every path with length more than 2 has some cut
vertices. Therefore, since hΓ(R)≥ 2, the result holds.

Definition 4.1. A prime ideal P of a ring R is said to be a divided prime ideal if P⊂< x >
for every x ∈ R\P (cf. [5, 7, 8]).

Proposition 4.4. Let R be a multiplicative ring and I be a divided prime ideal which is not
maximal or minimal. Then I is a cut vertex in HΓ(R).

Proof. Since I is not maximal or minimal and R is multiplicative, there are ideals J1 and J2
such that J1 → I → J2. Now suppose that I is not a cut vertex. Then there is an ideal L such
that one of the following cases holds:

(i) J2 ← L← J1
(ii) J2 ← L,J1 ← L

(iii) L← J2,L← J1

By using our hypothesis, I is a divided ideal. Hence I ⊂ L or I ⊃ L. Without loss of
generality, we may assume that I ⊂ L, and so L→ I. On the other hand I → J2. Thus in the
Hasse ideal graph, L can not be adjacent to J2. Therefore the situations (i) and (ii) provide
contradictions. Now in the case (iii), we have that J1 → L. Also, since L→ I, J1 can not be
adjacent to I. On the other hand J1 → I which is the required contradiction. This means that
I is a cut vertex.
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