Cayley Graphs of Ideals in a Commutative Ring

${ }^{1}$ M. Afkhami, ${ }^{2}$ M. R. Ahmadi, ${ }^{3}$ R. Jahani-NeZhad and ${ }^{4}$ K. Khashyarmanesh
${ }^{1}$ Department of Mathematics, University of Neyshabur, P. O. Box 91136-899, Neyshabur, Iran
${ }^{2,3}$, Department of Mathematics, Statistics and Computer Science, University of Kashan, P. O. Box 87317-51167, Kashan, Iran
${ }^{4}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran
${ }^{1}$ mojgan.afkhami@yahoo.com, ${ }^{2}$ ahmadi@grad.kashanu.ac.ir, ${ }^{3}$ jahanian@kashanu.ac.ir, ${ }^{4}$ khashyar@ipm.ir

Abstract

Let R be a commutative ring. We associate a digraph to the ideals of R whose vertex set is the set of all nontrivial ideals of R and, for every two distinct vertices I and J, there is an arc from I to J, denoted by $I \rightarrow J$, whenever there exists a nontrivial ideal L such that $J=I L$. We call this graph the ideal digraph of R and denote it by $\overrightarrow{I \Gamma}(R)$. Also, for a semigroup H and a subset S of H, the Cayley graph $\operatorname{Cay}(H, S)$ of H relative to S is defined as the digraph with vertex set H and edge set $E(H, S)$ consisting of those ordered pairs (x, y) such that $y=s x$ for some $s \in S$. In fact the ideal digraph $\overrightarrow{I \Gamma}(R)$ is isomorphic to the Cayley graph $\operatorname{Cay}\left(\mathfrak{I}^{*}, \mathfrak{J}^{*}\right)$, where \mathfrak{I} is the set of all ideals of R and \mathfrak{I}^{*} consists of nontrivial ideals. The undirected ideal (simple) graph of R, denoted by $I \Gamma(R)$, has an edge joining I and J whenever either $J=I L$ or $I=J L$, for some nontrivial ideal L of R. In this paper, we study some basic properties of graphs $\overrightarrow{I \Gamma}(R)$ and $I \Gamma(R)$ such as connectivity, diameter, graph height, Wiener index and clique number. Moreover, we study the Hasse ideal digraph $\overrightarrow{H \Gamma}(R)$, which is a spanning subgraph of $\overrightarrow{I \Gamma}(R)$ such that for each two distinct vertices I and J, there is an arc from I to J in $\overrightarrow{H \Gamma}(R)$ whenever $I \rightarrow J$ in $\overrightarrow{I \Gamma}(R)$, and there is no vertex L such that $I \rightarrow L$ and $L \rightarrow J$ in $\overrightarrow{I \Gamma}(R)$.

2010 Mathematics Subject Classification: 05C20, 05C69, 13A15
Keywords and phrases: Cayley graph, ideal graph, clique number, Wiener index.

1. Introduction

The investigation of graphs associated to algebraic structures is very important. Many fundamental papers devoted to graphs assigned to a ring have appeared recently, see for example $[1-4,6,9,23,27]$. Most properties of a ring are connected to a behavior of its ideals. Besides, ideals play crucial roles in the study of ring constructions, see [15] and [16]. This is why it is useful and interesting to associate graphs to ideals of a ring, as for example in [11] and [24].

Among all types of graphs related to various algebraic structures, Cayley graphs have attracted serious attention in the literature, since they have many useful applications, see

[^0][17-19, 21, 22, 25, 26, 28] for examples of recent results and further references. Also, for a semigroup H and a subset S of H, the Cayley graph Cay (H, S) of H relative to S is defined as the digraph with vertex set H and edge set $E(H, S)$ consisting of those ordered pairs (x, y) such that $y=s x$ for some $s \in S$ (cf. [20]). By the ordered pair (x, y), we mean that $x \rightarrow y$. In this note we introduce a digraph which can be considered as a generalization of Cayley graphs of semigroups.

In this paper, we associate a digraph to the ideals of a commutative ring. Let \mathfrak{I} be the set of all ideals of R and \mathfrak{I}^{*} be the set of all nontrivial ideals of R. The ideal digraph of R, denoted by $\overrightarrow{I \Gamma}(R)$, is a digraph whose vertex set is the set \mathfrak{I}^{*} and, for every two distinct vertices I and J, there is an arc from I to J whenever there exists a nontrivial ideal L such that $J=I L$. In fact the ideal digraph $\overrightarrow{I \Gamma}(R)$ is the Cayley graph Cay $\left(\mathfrak{I}^{*}, \mathfrak{I}^{*}\right)$. The ideal graph of R, denoted by $I \Gamma(R)$, is a simple graph whose vertex set is the set of all nontrivial ideals of R and two distinct vertices I and J are adjacent if and only if either $J=I L$ or $I=J L$, for some nontrivial ideal L of R.

In sections two and three, we study some basic properties of graphs $\overrightarrow{I \Gamma}(R)$ and $I \Gamma(R)$ such as connectivity, diameter, graph height, Wiener index and clique number. In the last section, we study the Hasse ideal digraph $\overrightarrow{H \Gamma}(R)$, which is a spanning subgraph of $\overrightarrow{I \Gamma}(R)$ that, for each two distinct vertices I and J, there is an arc from I to J in $\overrightarrow{H \Gamma}(R)$ whenever $I \rightarrow J$ in $\vec{\Gamma}(R)$, and there is no vertex L such that $I \rightarrow L$ and $L \rightarrow J$ in $\overrightarrow{\Gamma \Gamma}(R)$.

Throughout this paper, all rings are assumed to be commutative with non-zero identity. By $\operatorname{Max}(R), U(R), \operatorname{Nil}(R)$ and $Z(R)$, we denote the set of maximal ideals, unit elements, nilpotent elements and zero-divisors of R, respectively. A non-zero ideal I of R is said to be minimal if there is no nontrivial ideal of R properly contained in I. We denote the set of all minimal ideals of R by $\operatorname{Min}(R)$. Also, R_{P} stands for the localization of the ring R in the prime ideal P (cf. [14]).

Now we recall some definitions and notations on graphs. We use the standard terminology of graphs following [10]. Let $G=(V, E)$ be a graph, where V is the set of vertices and E is the set of edges. The graph $H=\left(V_{0}, E_{0}\right)$ is a subgraph of G if $V_{0} \subseteq V$ and $E_{0} \subseteq E$. Moreover, H is called a spanning subgraph of G if its vertex set is V. The distance between two distinct vertices a and b in G, denoted by $\mathrm{d}(a, b)$, is the length of the shortest path connecting a and b, if such a path exists; otherwise, we set $\mathrm{d}(a, b):=\infty$. The diameter of a graph G is $\operatorname{diam}(G)=\sup \{\mathrm{d}(a, b): a$ and b are distinct vertices of $G\}$. The girth of G is the length of the shortest cycle in G, denoted by $\operatorname{gr}(G)(\operatorname{gr}(G):=\infty$ if G has no cycles). Also, for two distinct vertices a and b in G, the notation $a-b$ means that a and b are adjacent. A graph G is said to be connected if there exists a path between any two distinct vertices, and it is complete if it is connected with diameter one. We use K_{n} to denote the complete graph with n vertices. We say that G is empty if no two vertices of G are adjacent. For a vertex x in G, the degree of x is the number of vertices adjacent to x and it is denoted by $\operatorname{deg}(x)$. A vertex x is an isolated vertex, if $\operatorname{deg}(x)=0$. A clique of a graph is a complete subgraph of it and the number of vertices in a largest clique of G is called the clique number of G and is denoted by $\omega(G)$. The chromatic number of a graph G, denoted by $\chi(G)$, is the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. For a positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every
vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m, n}$. The Wiener index of G, denoted by $W(G)$, is the sum of the length of all shortest paths connecting every two distinct vertices of G. In other words, $W(G)=\sum_{a, b \in V(G)} d(a, b)$. (cf. [12], [13]). A graph is Hamiltonian if it contains a cycle which visits each vertex exactly once and also returns to the starting vertex. An Eulerian graph is a graph which has a path that visits each edge exactly once which starts and ends on the same vertex. By [10, Theorem 4.1], a connected non-empty graph is Eulerian if and only if the degree of each vertex is even. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$ (cf. [10, p. 153]).

A digraph Γ is called weakly connected if the undirected underlying simple graph obtained by replacing all directed edges of Γ with undirected edges is a connected graph. A digraph is called strongly connected if it contains a directed path from u to v and a directed path from v to u for every pair of distinct vertices u and v. The indegree of a vertex u is the number of arcs incident to u and is denoted by $\operatorname{deg}^{-}(u)$. Also, the outdegree of u is the number of arcs that u incidents to them and is denoted by $\operatorname{deg}^{+}(u)$. A directed Hamilton cycle of Γ is a directed cycle that includes every vertex of Γ. A directed Euler path is a directed path that traverses each arc of Γ exactly once with starts and ends on the same vertex. Also, for distinct vertices u and v in Γ, we use the notation $u \rightarrow v$ to show that there is an arc from u to v.

Throughout the paper, by a graph we mean a directed graph without multiple edges, but possibly with loops.

2. Graph height of ideal graph

In this section we first study some basic properties of the ideal graph $\overrightarrow{I \Gamma}(R)$. Next we introduce the concept of graph height for $\overrightarrow{I \Gamma}(R)$ and study the graph height of $\overrightarrow{I \Gamma}(R)$.

We begin this section with the following proposition which can be easily gained from the definitions.

Recall that an ideal I of R is multiplicative if, for every ideal J of R with $J \subset I$, there exists an ideal L of R such that $I L=J$.

Proposition 2.1.

(i) Suppose that I and J are distinct vertices in $\overrightarrow{I \Gamma}(R)$. If $I \rightarrow J$, then $J \subset I$.
(ii) In the ideal graph $\overrightarrow{\Gamma \Gamma}(R)$ we have $\operatorname{gr}(\overrightarrow{I \Gamma}(R))=\infty$.
(iii) The ideal graph $\overrightarrow{I \Gamma}(R)$ contains no directed Hamilton cycle or directed Euler path.
(iv) For every maximal ideal \mathfrak{m} and every minimal ideal I of R, we have that

$$
\operatorname{deg}^{-}(M)=\operatorname{deg}^{+}(I)=0
$$

(v) I is a multiplicative ideal if and only if

$$
\operatorname{deg}^{+}(I)=\mid\{J \mid J \text { is a nontrivial ideal of } R \text { with } J \subset I\} \mid .
$$

Note that, for each positive integer n, one can find a ring R such that $|V(\overrightarrow{I \Gamma}(R))|=2^{n}-2$. To do this, consider the ring $R=\mathbb{F}_{1} \times \cdots \times \mathbb{F}_{n}$, where each \mathbb{F}_{i} is a field, for $i=1, \ldots, n$.

Let R be a principal ideal domain, PID briefly, and I be a nontrivial ideal of R. Then there exists an element $a \in R$ such that $I=\langle a\rangle$. Since R is a unique factorization domain, UFD briefly, we have $a=u p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}}$, where $u \in U(R), \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}$ and p_{1}, \ldots, p_{n} are irreducible elements in $R \backslash U(R)$. If J is an ideal of R and $I \subset J$, then $J=<p_{1}^{\beta_{1}} \ldots p_{n}^{\beta_{n}}>$ with $0 \leq \beta_{i} \leq \alpha_{i}$, for $i=1, \ldots, n$. So, we have the following Proposition.
Proposition 2.2. Let R be a PID and $a \in R$. If $a=u p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}}$ is a decomposition of a, then we have

$$
\operatorname{deg}^{-}(<a>)=\prod_{i=1}^{n}\left(\alpha_{i}+1\right)-2
$$

Proposition 2.3. Let R be an integral domain that is not a field. Then we have the following statements.
(i) If P is a nontrivial finitely generated prime ideal of R, then $\operatorname{deg}^{-}(P)=0$.
(ii) For every minimal ideal I in \mathfrak{I}^{*}, we have that $J \rightarrow I$ in $\overrightarrow{I \Gamma}(R)$ if and only if $I \subset J$.

Proof. (i) Suppose that P is nonzero prime ideal of an integral domain R. If the ideal J is adjacent to P, then there exists an ideal L of R such that $P=L J$. Since P is prime and $P \subset J$, we have that $L \subseteq P=L J \subseteq L$, and so $P=P J$.

If P is finitely generated, then there exist $a_{1}, \ldots, a_{n} \in P$ such that $P=<a_{1}, \ldots, a_{n}>$. Since $P=P J$, for $i=1,2, \ldots, n, a_{i}$ has an expansion $a_{i}=\sum_{j=1}^{n} r_{i j} a_{j}$, for some $r_{i j} \in J$. This can be rewritten $\sum_{j=1}^{n}\left(\delta_{i j}-r_{i j}\right) a_{j}=0$, for $1 \leq i \leq n$, where $\delta_{i j}$ is the kronecker delta. The coefficients of this system of linear equations can be viewed as a square matrix ($\delta_{i j}-r_{i j}$) of elements of R. Let $b_{i j}$ denote its (i, j) th cofactor, and d its determinate. By multiplying the above equation through by $b_{i k}$ and summing over i, we get $d a_{k}=0$ for all $1 \leq k \leq n$. Since R is an integral domain, we have that $d=0$. On the other hand, it is easy to see that $d=1+j$ for some $j \in J$, and so $1 \in J$. This means that $J=R$ which is impossible.
(ii) Let I be a nonzero minimal ideal of R. Suppose that $I \subset J$. Then we have $I=I J$. This implies that $J \rightarrow I$.

The converse statement is clear.
Now, we introduce the concept of graph height of a graph.
Definition 2.1. In a non-empty graph G, the maximum length of the paths in G is called graph height of G. We denote the graph height of the ideal graph $\overrightarrow{I \Gamma}(R)$, by $h_{\vec{\Gamma}}(R)$, and the graph height of the ideal graph $I \Gamma(R)$, by $h_{\Gamma}(R)$.

Example 2.1.

(i) Let $R=\mathbb{Z}_{n}$ and $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$, where p_{i} is a prime number and α_{i} is a natural number, for $i=1, \ldots, r$. Then one can easily see that the path

$$
\left(p_{1}\right) \rightarrow\left(p_{1}^{2}\right) \rightarrow \cdots \rightarrow\left(p_{1}^{\alpha_{1}}\right) \rightarrow\left(p_{1}^{\alpha_{1}} p_{2}\right) \rightarrow \cdots \rightarrow\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r-1}^{\alpha_{r-1}} p_{r}^{\alpha_{r}-1}\right)
$$

has the maximum length among all paths in $\overrightarrow{I \Gamma}(R)$. Hence we have that $h_{\vec{\Gamma}}(R)=$ $\sum_{i=1}^{r} \alpha_{i}-1$.
(ii) Suppose that K is a field and $R=K[x] /\left(x^{n}\right)$, where $n \geq 2$. Clearly

$$
(x) \rightarrow\left(x^{2}\right) \rightarrow \cdots \rightarrow\left(x^{n-1}\right)
$$

is one of the paths in $\overrightarrow{I(\Gamma}(R))$ of maximum length. Therefore $h_{\vec{\Gamma}}(R)=n-2$.

Proposition 2.4. Assume that $h_{\vec{\Gamma}}(R)=0$. Then, for every non-zero proper ideal I of R, we have either $I^{2}=I$ or $I^{2}=0$.

Proof. Suppose that $h_{\Gamma}(R)=0$ and I is a nonzero proper ideal of R. If $I^{2} \neq I$ and $I^{2} \neq 0$, then we have the path $I \rightarrow I^{2}$ in $\vec{\Gamma}(R)$. This means that $h_{\vec{\Gamma}}(R) \geq 1$, which is impossible.

We say that R is a multiplicative ring if all nontrivial ideals of R are multiplicative.
Proposition 2.5. Let R be a multiplicative ring. Then $h_{\vec{\Gamma}}(R)<\infty$ if and only if R is Artinian. Proof. First suppose that $h_{\vec{\Gamma}}(R)<\infty$. Since R is multiplicative, every chain of ideals in R with respect to inclusion induces a path in $\vec{I}(R)$. This implies that R is Artinian.

The converse statement is clear.
Proposition 2.6. Assume that $h_{\vec{\Gamma}}(R)<\infty$. If $a \in R \backslash \operatorname{Nil}(R)$, then there exists $r \in R$ such that $1-r a \in Z(R)$.

Proof. If $a \in U(R)$, then by setting $r:=a^{-1}$ the result holds. Now suppose that a is a non-unit element in $R \backslash \operatorname{Nil}(R)$ and consider the path $(a) \rightarrow\left(a^{2}\right) \rightarrow \cdots$ in $\overrightarrow{I \Gamma}(R)$. Since $h_{\Gamma}(R)<\infty$, we have $\left(a^{n}\right)=\left(a^{n+1}\right)$, for some positive integer n. Hence $a^{n}(1-r a)=0$, for some $r \in R$. Now, one can easily see that $1-r a \in Z(R)$.

The following corollaries immediately follow from Proposition 2.6.
Corollary 2.1. If R is a ring with $h_{\vec{\Gamma}}(R)<\infty$, then we have that $R=Z(R) \cup U(R)$.
Corollary 2.2. For every integral domain R that is not a field, $h_{\vec{\Gamma}}(R)=\infty$.
Proposition 2.7. If $h_{\vec{\Gamma}}(R)<\infty$, then, for each nontrivial ideal I of R, we have either I is nilpotent or I^{n} is idempotent, for some positive integer n.

Proof. Suppose that $h_{\vec{\Gamma}}(R)<\infty$ and that I is a nontrivial ideal of R. Consider the path $I \rightarrow I^{2} \rightarrow \cdots$. Since $h_{\vec{\Gamma}}(R)<\infty$, for some positive integer n, we have $I^{n}=0$ or $I^{n}=I^{n+r}$, for all positive integers r. So the result holds.

We end this section with the following corollary.
Proposition 2.8. Let R be a ring with finite number of maximal ideals. Then $h_{\vec{\Gamma}}(R)<\infty$ if and only if, for every maximal ideal \mathfrak{m} of $R, h_{\vec{\Gamma}}\left(R_{\mathfrak{m}}\right)<\infty$.

Proof. First suppose that $h_{\vec{\Gamma}}(R)<\infty$. Let \mathfrak{m} be a maximal ideal of R such that $h_{\vec{\Gamma}}\left(R_{\mathfrak{m}}\right)=\infty$. So there exists an infinite path in $\overrightarrow{\Gamma \Gamma}\left(R_{\mathfrak{m}}\right)$. This implies that $\overrightarrow{I \Gamma}(R)$ contains a path of length infinity, which is a contradiction.

Conversely, suppose that, for every maximal ideal $\mathfrak{m}, h_{\vec{\Gamma}}\left(R_{\mathfrak{m}}\right)<\infty$. Since the number of maximal ideals of R is finite, we have the following inequality

$$
h_{\vec{\Gamma}}(R)=\max \left\{h_{\vec{\Gamma}}\left(R_{\mathfrak{m}}\right) \mid \mathfrak{m} \in \operatorname{Max}(R)\right\}<\infty .
$$

3. Connectedness, clique number and the Wiener index of $I \Gamma(R)$

In this section we study some basic properties of the undirected ideal graph $I \Gamma(R)$. We begin this section with the following proposition.

Proposition 3.1. If R is an integral domain that is not a field, then $\Gamma \Gamma(R)$ is connected with

$$
\operatorname{diam}(I \Gamma(R)) \leq 2
$$

In particular $I \Gamma(R)$ is complete if and only if R is a multiplicative ring and the set of nontrivial ideals of R is totally ordered with respect to the inclusion.
Proof. Suppose that I and J are two distinct nontrivial ideals of R. Since R is an integral domain, we have $I J \neq 0$. Therefore we have the path $I-I J-J$ in $I \Gamma(R)$. So $\operatorname{diam}(I \Gamma(R)) \leq$ 2. Moreover, one can easily see that $I \Gamma(R)$ is complete if and only if R is multiplicative and the set of nontrivial ideals of R is totally ordered with respect to the inclusion.

Corollary 3.1. If the ideal graph $I \Gamma(R)$ is complete, then R is a local ring.
Note that if R is not an integral domain, then we may have that the graph $I \Gamma(R)$ is connected. For example, \mathbb{Z}_{4} is not an integral domain and $I \Gamma\left(\mathbb{Z}_{4}\right)$ is connected.

In the following theorem, we find a lower bound for the clique number of $I \Gamma(R)$.
Theorem 3.1. In the ideal graph $I \Gamma(R)$ we have the following inequality.

$$
\omega(I \Gamma(R)) \geq h_{\vec{\Gamma}}(R)+1
$$

Proof. Let $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{n+1}$ be a path of length n in $\overrightarrow{I \Gamma}(R)$, where $n=h_{\vec{\Gamma}}(R)$. Then one can easily see that, for each i with $1 \leq i \leq n-1$, we have $I_{i} \rightarrow I_{i+2}$. This implies that, for each i, j with $1 \leq i<j \leq n$, we have $I_{i} \rightarrow I_{j}$. Hence the vertices in the set $\left\{I_{1}, I_{2}, \cdots, I_{n+1}\right\}$ form a clique for $I \Gamma(R)$. Therefore $\omega(I \Gamma(R)) \geq h_{\vec{\Gamma}}(R)+1$.

Example 3.1. Suppose that $R=K[x] /\left(x^{n}\right)$, where K is a field and $n \geq 2$. Then, in view of Theorem 3.1 in conjunction with Example 2.1(ii), we have $\omega(I \Gamma(R)) \geq n-1$.

The following corollary immediately follows from Theorem 3.1.
Corollary 3.2. If $I \Gamma(R)$ is planar, then we have that $h_{\vec{\Gamma}}(R) \leq 3$.
Now we have the question that if $h_{\vec{\Gamma}}(R) \leq 3$, then is it true that the graph $I \Gamma(R)$ is planar?
Recall that an independent set of an undirected graph G is a subset of the vertices of G such that no two vertices in the subset represent an edge of G. The independence number of G, denoted by $\alpha(G)$, is the cardinality of the largest independent set.

Now suppose that the vertices I and J are adjacent in $I \Gamma(R)$. Then $I \subset J$ or $J \subset I$. Thus the set of all maximal ideals and the set of all minimal ideals form independent sets for $I \Gamma(R)$. Therefore we have the following proposition.

Proposition 3.2. In the ideal graph $I \Gamma(R)$ we have the following inequality.

$$
\alpha(I \Gamma(R)) \geq \max \{|\operatorname{Max}(R)|,|\operatorname{Min}(R)|\}
$$

Proposition 3.3. If all ideals of R are multiplicative and prime, then $I \Gamma(R)$ is complete.
Proof. Suppose that P and Q are two nontrivial ideals of R. Clearly $P Q$ is a prime ideal. Hence we have $P \subseteq P Q$ or $Q \subseteq P Q$. Thus $P \subseteq Q$ or $Q \subseteq P$. Therefore, by Proposition 3.1, $I \Gamma(R)$ is complete.

Recall that an undirected graph is called a forest if it contains no cycle.
Proposition 3.4. Assume that $I \Gamma(R)$ is a forest. Then we have that $R=Z(R) \cup U(R)$.

Proof. Suppose that $a \in R$ and consider the set of ideals $A=\left\{\left\langle a^{i}\right\rangle \mid i \geq 1\right\}$ of R. If $|A| \geq 3$, then one can easily find a triangle in $I \Gamma(R)$ which is impossible. So we have that $|A| \leq 2$. Thus there exists $r \in R$ such that $a^{i}=r a^{i+1}$, and so $a^{i}(1-r a)=0$. Suppose that $a \notin U(R)$. Hence $1-r a \neq 0$, and it is not hard to see that a is a zero-divisor.

In the following theorem, we study the cases where $I \Gamma\left(\mathbb{Z}_{n}\right)$ is Eulerian.
Theorem 3.2. Assume that $n=p_{1}^{r_{1}} \ldots p_{m}^{r_{m}}$, where p_{i} 's are prime numbers, $m \geq 1$ and $r_{i}>0$, for $i=1, \ldots, m$. Then $I \Gamma\left(\mathbb{Z}_{n}\right)$ is Eulerian if and only if, for every integer $p_{1}^{t_{1}} p_{2}^{t_{2}} \ldots p_{s}^{t_{s}}$, with $1 \leq s \leq m$ and $1 \leq t_{i} \leq r_{i}$, one of the following conditions hold.
(i) $m \geq 3$. In this situation one of the following holds:
(a) For all $1 \leq i \leq m$ either $r_{i}=1$ or r_{i} is even.
(b) If there exists an odd r_{i} with $s+1 \leq i \leq m$, then there exists an odd t_{i} such that $1 \leq i \leq s$.
(c) If there exist some odd integers r_{i} and t_{k}, with $1 \leq i, k \leq s$, and for all j with $s+1 \leq j \leq m, r_{j}$ is even, then there exists $1 \leq k^{\prime} \leq s$ such that $r_{k^{\prime}}$ is odd and $t_{k^{\prime}}$ is even, or $r_{k^{\prime}}$ is even and $t_{k^{\prime}}$ is odd.
(ii) $m=2$ and, r_{1} and r_{2} are even.
(iii) $m=1$ and, r_{1} is an even number with $r_{1} \geq 4$.

Proof. Let I be a nontrivial ideal of \mathbb{Z}_{n}. Without loss of generality, we may assume that $I=<p_{1}^{t_{1}} p_{2}^{t_{2}} \ldots p_{s}^{t_{s}}>$, where $1 \leq s \leq m$ and $1 \leq t_{i} \leq r_{i}$. One can easily check that the degree of I satisfy in the following equality.

$$
\operatorname{deg}(I)=\prod_{i=1}^{s}\left(r_{i}-t_{i}+1\right) \prod_{i=s+1}^{m}\left(r_{i}+1\right)-2+\prod_{i=1}^{s}\left(t_{i}+1\right)-2
$$

Now one can easily check that $\operatorname{deg}(I)$ is an even number if and only if one of the conditions (i), (ii) or (iii) happens. Hence the result holds.

In the rest of this section, we calculate the Wiener index $W(I \Gamma(R))$, where R is a finite direct product of fields. To this end, the following lemma is useful.
Lemma 3.1. Let $R=\mathbb{F}_{1} \times \cdots \times \mathbb{F}_{n}$, where \mathbb{F}_{i} is a field for $i=1, \ldots, n$. Then there is a classification of $|V(I \Gamma(R))|$ to $n-1$ classes such that, for each ideal I in the $i^{\text {th }}$ class, $\operatorname{deg}^{-}(I)=2^{n-i}-2$ and $\operatorname{deg}^{+}(I)=2^{i}-2$.
Proof. It is well known that every ideal of R has the form $\overline{\mathbb{F}}_{1} \times \cdots \times \overline{\mathbb{F}}_{n}$, where $\overline{\mathbb{F}}_{i}=0$ or \mathbb{F}_{i}, for all $i=1, \ldots, n$. Let V_{i} be the set of all nontrivial ideals of R with i nonzero components. Now suppose that $I=\overline{\mathbb{F}}_{1} \times \cdots \times \overline{\mathbb{F}}_{n}$ is an arbitrary element in V_{i}. Then it is clear that, for each ideals J and L with $0 \neq J \subset I$ and $I \subset L \neq R, I$ is adjacent to J and that L is adjacent to I. Thus $\operatorname{deg}^{-}(I)=2^{n-i}-2$ and deg ${ }^{+}(I)=2^{i}-2$.
Theorem 3.3. Let $R=F_{1} \times \cdots \times F_{n}$, where F_{i} is a field for $i=1, \ldots, n$. If $n \geq 3$, then

$$
W(I \Gamma(R))=2\left(4^{n}-3^{n}\right)+2^{n}-4
$$

Proof. According to Lemma 3.1, we classified the set of vertices and we have $V(I \Gamma(R))=$ $\bigcup_{i=1}^{n-1} V_{i}$ such that $\left|V_{i}\right|=\binom{n}{r}$. Suppose that I is an arbitrary element in V_{r}. Without loss of generality, we may assume that $I=F_{1} \times \cdots \times F_{r} \times 0 \times \cdots \times 0$. In view of Lemma 3.1, $\operatorname{deg}(I)=\operatorname{deg}^{-}(I)+\operatorname{deg}^{+}(I)=2^{n-r}+2^{r}-4$. Now suppose that $J \in V(I \Gamma(R))$ such that I and J are not adjacent. So we have the following two cases:

Case 1. $J=0 \times \cdots \times 0 \times F_{r+1} \times \cdots \times F_{n}$. Hence there is no vertex L in $I \Gamma(R)$ which is adjacent to I and J. Thus $d(I, J) \geq 3$. On the other hand, if $L_{1}:=0 \times \cdots \times 0 \times F_{r} \times \cdots \times F_{n}$ and $L_{2}:=0 \times \cdots \times 0 \times F_{r} \times 0 \times \cdots \times 0$, then there exists a path $I-L_{2}-L_{1}-J$ in $I \Gamma(R)$. This implies that $d(I, J)=3$.
Case 2. $J \neq 0 \times \cdots \times 0 \times F_{r+1} \times \cdots \times F_{n}$. Since $I \cap J \neq 0$, there is a path $I-I \cap J-J$ in $I \Gamma(R)$. This means that $d(I, J)=2$. Hence

$$
\begin{aligned}
W(I) & =2^{n-r}+2^{r}-4+3+2\left(2^{n}-2-\left(2^{n-r}+2^{r}-4\right)-1\right) \\
& =2^{n+1}-2^{n-r}-2^{r}+3 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
W(I \Gamma(R)) & =\sum_{r=1}^{n-1}\binom{n}{r}\left(2^{n+1}-2^{n-r}-2^{r}+3\right) \\
& =\left(2^{n+1}+3\right) \sum_{r=1}^{n-1}\binom{n}{r}-\sum_{r=1}^{n-1}\binom{n}{r}\left(2^{n-r}+2^{r}\right) \\
& =\left(2^{n+1}+3\right)\left(2^{n}-2\right)-2\left(3^{n}-2^{n}-1\right) \\
& =2\left(4^{n}-3^{n}\right)+2^{n}-4 .
\end{aligned}
$$

4. Hasse ideal graph

The Hasse ideal graph, which is denoted by $\overrightarrow{H \Gamma}(R)$, is a spanning subgraph of $\overrightarrow{I \Gamma}(R)$ that, for each two distinct vertices I and J, there is an arc from I to J in $\overrightarrow{H \Gamma}(R)$ whenever $I \rightarrow J$ in $\overrightarrow{I \Gamma}(R)$, and there is no vertex L such that $I \rightarrow L$ and $L \rightarrow J$ in $\overrightarrow{I \Gamma}(R)$. We denote the undirected Hasse ideal graph by $H \Gamma(R)$.
Example 4.1. In the following figures, we present the graphs $\overrightarrow{H \Gamma}\left(\mathbb{Z}_{p^{r}}\right)$ and $\vec{I}\left(\mathbb{Z}_{p^{r}}\right)$, where p is a prime number and $r=4,5$.

Figure 1. $\overrightarrow{I \Gamma}\left(\mathbb{Z}_{p^{4}}\right)$

Figure 3. $\overrightarrow{I \Gamma}\left(\mathbb{Z}_{p^{5}}\right)$

Figure 2. $\overrightarrow{H \Gamma}\left(\mathbb{Z}_{p^{4}}\right)$

Figure 4. $\overrightarrow{H \Gamma}\left(\mathbb{Z}_{p^{5}}\right)$

Proposition 4.1. In the Hasse ideal graph $H \Gamma(R)$ we have $\operatorname{gr}(H \Gamma(R)) \geq 4$.
Proof. Suppose to the contrary that $H \Gamma(R)$ contains a cycle $I-J-K-I$. Clearly, if there exists a directed path $I \rightarrow J \rightarrow K$ in $\overrightarrow{H \Gamma}(R)$, then we have $I \rightarrow K$. This means that I and K are not adjacent in $H \Gamma(R)$, which is impossible. Hence we have $I \rightarrow J \leftarrow K$ in $\overrightarrow{H \Gamma}(R)$. In this situation we have that either I and J, or J and K are not adjacent in $H \Gamma(R)$, which is a contradiction. Thus we have $\operatorname{gr}(H \Gamma(R)) \geq 4$.

Theorem 4.1. The Hasse ideal graph $H \Gamma\left(\mathbb{Z}_{n}\right)$ is a forest if and only if $n=p q, p^{2} q$ or p^{r}, where p and q are prime numbers and $r \geq 1$.

Proof. If $n=p q, p^{2} q$ or p^{r}, then one can easily see that $H \Gamma\left(\mathbb{Z}_{n}\right)$ has no cycle. Thus $H \Gamma\left(Z_{n}\right)$ is a forest.

Conversely, suppose that $H \Gamma\left(\mathbb{Z}_{n}\right)$ is a forest. If $n \notin\left\{p q, p^{2} q, p^{r}\right\}$, then we have the following three cases:
Case 1. $p^{r} q$ divides n, where $r \geq 3$. In this case, we have the cycle $p-p^{2}-p^{2} q-p q-p$ in $H \Gamma\left(\mathbb{Z}_{n}\right)$.
Case 2. $p^{r} q^{s}$ divides n, where $r, s \geq 2$. So we have the cycle $p-p^{2}-p^{2} q-p q-p$.
Case 3. pqt divides n, where t is a prime number distinct from p and q. In this case one can easily find the cycle $t-t q-q-p q-p-t p-t$ in $H \Gamma\left(\mathbb{Z}_{n}\right)$.

Thus if $n \notin\left\{p q, p^{2} q, p^{r}\right\}$, then $H \Gamma\left(\mathbb{Z}_{n}\right)$ is not a forest, which is impossible. Therefore we have that $n=p q, p^{2} q$ or p^{r}.

In the following, we study the Hasse ideal graph $\overrightarrow{H \Gamma}\left(\mathbb{Z}_{n}\right)$. For $a \in \mathbb{Z}_{n}$, we use a to denote the ideal generated by a.

Proposition 4.2. Put $R:=\mathbb{Z}_{n}$. If $n=p^{2}$, for some prime number p, then $H \Gamma(R)=K_{1}$. Otherwise, $H \Gamma(R)$ is a bipartite graph.

Proof. Suppose that $n=p_{1} \cdots p_{r}$, where $r \geq 2$ and p_{i} 's are (not necessarily distinct) prime numbers, for $i=1, \ldots, r$. If $n=p^{2}$, then clearly $H \Gamma\left(Z_{n}\right)=K_{1}$. Now assume that $n \neq p^{2}$. We set

$$
V_{1}:=\left\{\left(p_{i_{1}} \ldots p_{i_{t}}\right) \mid 1 \leq i_{1}, \ldots, i_{t} \leq r, t \text { is odd }\right\}
$$

and

$$
V_{2}:=\left\{\left(p_{i_{1}} \ldots p_{i_{t}}\right) \mid 1 \leq i_{1}, \ldots, i_{t} \leq r, t \text { is even }\right\}
$$

Now one can easily check that $H\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)$ is a bipartite graph with parts V_{1} and V_{2}.
Corollary 4.1. Suppose that $R=\mathbb{Z}_{n}$ and n is not a prime number. Then we have the following statements.
(i) $\operatorname{gr}(H \Gamma(R))$ is an even number or it is infinity.
(ii) If $n=p^{2}$, then $\chi(H \Gamma(R))=1=\omega(H \Gamma(R))$.
(iii) If $n \neq p^{2}$, then $\chi(H \Gamma(R))=2=\omega(H \Gamma(R))$.

Example 4.2. Let $R=\mathbb{Z}_{n}$ and $n=p^{r} q^{s}$, where p, q are two prime numbers and $r, s \geq 2$. We present $H \Gamma\left(Z_{p^{r} q^{s}}\right)$ in Figure 5.

Figure 5. $\overrightarrow{H \Gamma}\left(Z_{p^{r} q^{s}}\right)$
In the rest of this section, we investigate cut vertices in $H \Gamma(R)$. Recall that a vertex x is a cut vertex in a graph G, whenever the number of connected components in $G \backslash\{x\}$ is more than the number of connected components in G.
Proposition 4.3. Let R be a valuation ring. If $h_{\Gamma}(R) \geq 2$, then $H \Gamma(R)$ contains some cut vertices.
Proof. Since ideals of a valuation ring with the inclusion relation form a chain, the graph $H \Gamma(R)$ is a union of paths. It is clear that every path with length more than 2 has some cut vertices. Therefore, since $h_{\Gamma}(R) \geq 2$, the result holds.
Definition 4.1. A prime ideal P of a ring R is said to be a divided prime ideal if $P \subset<x>$ for every $x \in R \backslash P$ (cf. [5, 7, 8]).

Proposition 4.4. Let R be a multiplicative ring and I be a divided prime ideal which is not maximal or minimal. Then I is a cut vertex in $H \Gamma(R)$.

Proof. Since I is not maximal or minimal and R is multiplicative, there are ideals J_{1} and J_{2} such that $J_{1} \rightarrow I \rightarrow J_{2}$. Now suppose that I is not a cut vertex. Then there is an ideal L such that one of the following cases holds:
(i) $J_{2} \leftarrow L \leftarrow J_{1}$
(ii) $J_{2} \leftarrow L, J_{1} \leftarrow L$
(iii) $L \leftarrow J_{2}, L \leftarrow J_{1}$

By using our hypothesis, I is a divided ideal. Hence $I \subset L$ or $I \supset L$. Without loss of generality, we may assume that $I \subset L$, and so $L \rightarrow I$. On the other hand $I \rightarrow J_{2}$. Thus in the Hasse ideal graph, L can not be adjacent to J_{2}. Therefore the situations (i) and (ii) provide contradictions. Now in the case (iii), we have that $J_{1} \rightarrow L$. Also, since $L \rightarrow I, J_{1}$ can not be adjacent to I. On the other hand $J_{1} \rightarrow I$ which is the required contradiction. This means that I is a cut vertex.

Acknowledgement. The authors are deeply grateful to the referees for careful reading of the manuscript and helpful suggestions.

References

[1] O. A. AbuGhneim, E. E. AbdAlJawad and H. Al-Ezeh, The independence number of $\Gamma\left(\mathbb{Z}_{p^{n}}(x)\right)$, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 2, 345-357.
[2] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011), no. 5, 753-762.
[3] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 935-944.
[4] D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra-Noetherian and Non-Noetherian Perspectives, 23-45, Springer, New York.
[5] D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), no. 8, 30733092.
[6] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[7] A. Badawi, On domains which have prime ideals that are linearly ordered, Comm. Algebra 23 (1995), no. 12, 4365-4373.
[8] A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474.
[9] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[10] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[11] I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009), no. 17, 5381-5392.
[12] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001), no. 3, 211-249.
[13] A. A. Dobrynin, I. Gutman, S. Klavžar and P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), no. 3, 247-294.
[14] I. Kaplansky, Commutative Rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
[15] A. V. Kelarev, Directed graphs and nilpotent rings, J. Austral. Math. Soc. Ser. A 65 (1998), no. 3, 326-332.
[16] A. V. Kelarev, Ring Constructions and Applications, Series in Algebra, 9, World Sci. Publishing, River Edge, NJ, 2002.
[17] A. V. Kelarev, Graph Algebras and Automata, Monographs and Textbooks in Pure and Applied Mathematics, 257, Dekker, New York, 2003.
[18] A. V. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30 (2004), 95-101.
[19] A. V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup Forum 72 (2006), no. 3, 411-418.
[20] A. V. Kelarev and C. E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24 (2003), no. 1, 59-72.
[21] A. V. Kelarev, J. Ryan and J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 (2009), no. 17, 5360-5369.
[22] C. H. Li and C. E. Praeger, On the isomorphism problem for finite Cayley graphs of bounded valency, European J. Combin. 20 (1999), no. 4, 279-292.
[23] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008), no. 4, 1801-1808.
[24] M. J. Nikmehr and F. Shaveisi, The regular digraph of ideals of a commutative ring, Acta Math. Hungar. 134 (2012), no. 4, 516-528.
[25] C. E. Praeger, C. H. Li and A. C. Niemeyer, Finite transitive permutation groups and finite vertex-transitive graphs, in Graph Symmetry (Montreal, PQ, 1996), 277-318, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 497, Kluwer Acad. Publ., Dordrecht.
[26] A. Thomson and S. Zhou, Gossiping and routing in undirected triple-loop networks, Networks 55 (2010), no. 4, 341-349.
[27] H.-J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra $\mathbf{3 2 0}$ (2008), no. 7, 2917-2933.
[28] S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, SIAM J. Discrete Math. 23 (2009), no. 2, 694-714.

[^0]: Communicated by Mohammad Sal Moslehian.
 Received: January 14, 2011; Revised: April 19, 2011.

