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Abstract. We consider analytic bi-univalent functions whose derivatives have positive real
part on the unit disk. Using the Faber polynomial expansions, we obtain upper bounds for
the coefficients of such functions. In certain cases, our estimates improve some of those
existing coefficient bounds.
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1. Introduction

Let A denote the class of functions f which are analytic on the open unit disk D := {z ∈
C : |z|< 1} and normalized by

(1.1) f (z) = z+
∞

∑
n=2

anzn.

Let P be the class of functions φ(z) = 1 + ∑
∞
n=1 φnzn that are analytic on D and satisfy

the condition Re(φ(z)) > 0 on D. By the Caratheodory Lemma (e.g. see [8, p. 41]) we have
|φn| ≤ 2.

It is well known that every univalent function f ∈A has an inverse f−1 satisfying

f−1( f (z)) = z, (z ∈ D),

and
f ( f−1(w)) = w, (|w|< 1/4),

according to Koebe One Quarter Theorem, [8, p. 31].
A function f ∈ A is said to be bi-univalent on D if f and its inverse g = f−1 are both

univalent on D.
For 0≤ α < 1 and p ∈ N = {1,2,3, . . .} we let R(p;α) be the class of functions f ∈A

so that f and its inverse map g = f−1 satisfy the following

(1.2) Re( f ′(z))p > α; z ∈ D,
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and

(1.3) Re(g′(w))p > α; w ∈ D.

The functions f ∈A whose derivative f ′ ∈P are known to be univalent and close-to-
convex on D, [8, p. 47].

Finding bounds for the coefficients of classes of bi-univalent functions dates back to
1967 (see Lewin [13]). But the interest on the bounds for the coefficients of classes of
bi-univalent functions picked up by the publications [5, 6, 11, 15]. Srivastava et al. [15]
investigated the bounds for the coefficients |a2| and |a3| of the bi-univalent function f ∈A
if their derivatives are subordinate to some function in P . Ali et al. [5] remarked that
for the bi-univalent functions, finding the bounds for |an| when n ≥ 4 is an open problem.
Here in this paper we use Faber polynomial coefficient techniques to provide bounds for the
general coefficients |an| under certain conditions and also obtain estimates for the first two
coefficients |a2| and |a3| of the bi-univalent functions f ∈ R(p;α). The bounds provided in
this article prove to be better than those estimates determined by Srivastava et al. [15].

2. Main results

Using the Faber polynomial expansion of functions f ∈A of the form (1.1), the coefficients
of its inverse map g = f−1 may be expressed as, [3, Theorem 6.1, p. 209],

(2.1) g(w) = f−1(w) = w+
∞

∑
n=2

1
n

K−n
n−1(a2,a3, . . . ,an)wn,

where

K−n
n−1 =

(−n)!
(−2n+1)!(n−1)!

an−1
2 +

(−n)!
(2(−n+1))!(n−3)!

an−3
2 a3

+
(−n)!

(−2n+3)!(n−4)!
an−4

2 a4

+
(−n)!

(2(−n+2))!(n−5)!
an−5

2
[
a5 +(−n+2)a2

3
]

+
(−n)!

(−2n+5)!(n−6)!
an−6

2 [a6 +(−2n+5)a3a4]+ ∑
j≥7

an− j
2 Vj,

such that Vj with 7≤ j ≤ n is a homogeneous polynomial in the variables a2,a3, . . . ,an [4].
In particular, the first three terms of K−n

n−1 are

1
2

K−2
1 =−a2,

1
3

K−3
2 = 2a2

2−a3,

1
4

K−4
3 =−(5a3

2−5a2a3 +a4).

In general, an expansion of K p
n is as [3, p. 183],

(2.2) K p
n = pan +

p(p−1)
2

D2
n +

p!
(p−3)!3!

D3
n + . . .+

p!
(p−n))!n!

Dn
n,
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where Dp
n = Dp

n(a2,a3, . . .) and by [16] or [2],

Dm
n (a1,a2, . . . ,an) =

∞

∑
m=1

m!(a1)µ1 . . .(an)µn

µ1! . . .µn!
,

where a1 = 1 and the sum is taken over all nonnegative integers µ1, . . . ,µn satisfying{
µ1 + µ2 + . . .+ µn = m,
µ1 +2µ2 + . . .+nµn = n.

Evidently: Dn
n(a1,a2, . . . ,an) = an

1, [1].
Gong [9] and Schiffer [14] demonstrated the significance of the Faber polynomials [7]

in mathematical sciences, especially in geometric function theory. The recent publications
of [1–4, 15] dealing with the Taylor expansions of inverse function g = f−1, beautifully
fits our case for the bi-univalent functions. As a result, we are able to state and prove the
following:

Theorem 2.1. For 0 ≤ α < 1 and p ∈ N let f ∈ R(p;α) be given by (1.1). If ak = 0 for
2≤ k ≤ n−1, then

|an| ≤
2(1−α)

np
; n≥ 3.

Proof. The main crux of the proof relies on the observation that if φ(z) = 1 + ∑
∞
n=1 φnzn is

analytic in D and p ∈ N then

(φ(z))p = 1+
∞

∑
n=1

K p
n (φ1,φ2, . . . ,φn)zn

(see [1, Equation (4), p. 449]). If f is of the form (1.1), then

f ′(z) = 1+
∞

∑
n=1

(n+1)an+1zn.

Therefore, for ( f ′(z))p, we have (see [1, Equation (4)] )

(2.3) ( f ′(z))p = 1+
∞

∑
n=1

K p
n (2a2,3a3, . . . ,(n+1)an+1)zn.

Similarly, for g = f−1 given by (2.1) we have

(2.4) g′(w) = 1+
∞

∑
n=2

K−n
n−1(a2,a3, . . . ,an)wn−1 = 1+

∞

∑
n=1

bnwn.

Consequently, for (g′(w))p we have

(2.5) (g′(w))p = 1+
∞

∑
n=1

K p
n (b1,b2, . . . ,bn)wn.

On the other hand, the inequalities (1.2) and (1.3) imply the existence of two positive
real part functions p(z) = 1+∑

∞
n=1 cnzn ∈P and q(w) = 1+∑

∞
n=1 dnwn ∈P so that

( f ′(z))p = α +(1−α)p(z)

= 1+(1−α)c1z+(1−α)c2z2 + . . .(2.6)

and

(g′(w))p = α +(1−α)q(w)



636 J. M. Jahangiri, S. G. Hamidi and S. A. Halim

= 1+(1−α)d1w+(1−α)d2w2 + . . . .(2.7)

Now, comparing the corresponding coefficients of the Equations (2.3) and (2.6) yield

(2.8) K p
n−1(2a2,3a3, . . . ,nan) = (1−α)cn−1.

Similarly, from (2.5) and (2.7) we obtain

(2.9) K p
n−1(b1,b2, . . . ,bn−1) = (1−α)dn−1.

If ak = 0 for 2 ≤ k ≤ n− 1, then the Equations (2.8) and (2.9) in conjunction with the
relation (2.2) yield

npan = (1−α)cn−1,

and
pbn−1 =−npan = (1−α)dn−1.

Taking the absolute values of either of the above two equations and using the Caratheodory
Lemma we obtain

|an| ≤
(1−α)|cn−1|

np
=

(1−α)|dn−1|
np

≤ 2(1−α)
np

, n≥ 3.

Relaxing the coefficient restrictions imposed in Theorem 2.1, we see the unpredictable
behavior of the early coefficients of functions f in R(p;α) illustrated in the following two
theorems.

Theorem 2.2. For 0≤ α < 1 and p≥ 2 let f ∈ R(p;α) be given by (1.1). Then
(i) |a2| ≤ 1−α

p ,

(ii) |a3−a2
2| ≤

2(1−α)
3p .

Proof. Substituting n = 2 in Equations (2.8) and (2.9), we obtain 2pa2 = (1−α)c1 and
−2pa2 = (1−α)d1. From either one of the two equations, it follows that

|a2|=
(1−α)|c1|

2p
=

(1−α)|d1|
2p

≤ 1−α

p
.

Next, from Equations (2.8), (2.9) and (2.2) for n = 3, we obtain

(2.10) 2p(p−1)a2
2 +3pa3 = (1−α)c2,

and

(2.11)
p(p−1)

2
b2

1 + pb2 = 2p(p+2)a2
2−3pa3 = (1−α)d2.

Subtracting (2.11) from (2.10), we deduce

6p(a3−a2
2) = (1−α)(c2−d2).

By taking absolute values of both sides and applying the Caratheodory Lemma, we obtain

|a3−a2
2| ≤

2(1−α)
3p

.

Theorem 2.3. For 0≤ α < 1 let f ∈ R(1;α) be given by (1.1). Then
(i)

|a2| ≤

{ √
2(1−α)

3 , 0≤ α < 1
3 ;

(1−α), 1
3 ≤ α < 1,
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(ii)

|a3| ≤

 4
3 (1−α),

1
3 (1−α)(5−3α),
2
3 (1−α−3|a2|2),

0≤ α < 1
3 ,

1
3 ≤ α < 2

3 ,
2
3 ≤ α < 1.

(iii)

|a3−a2
2| ≤

2
3
(1−α)−|a2|2 if

1
3
≤ α < 1.

Proof. To verify the estimate for |a2|, it is sufficient to substitute n = 2 and n = 3 in Equa-
tions (2.8) and (2.9) with p = 1, which respectively yield

(2.12)
{

2a2 = (1−α)c1,
−2a2 = (1−α)d1,

and

(2.13)
{

3a3 = (1−α)c2,
3(2a2

2−a3) = (1−α)d2.

From either one of the relations in (2.12) we obtain

(2.14) |a2|=
(1−α)|c1|

2
=

(1−α)|d1|
2

≤ (1−α).

On the other hand, adding the two relations in (2.13) gives

6a2
2 = (1−α)(c2 +d2)

or

(2.15) |a2|=
√

(1−α)|c2 +d2|
6

≤
√

2(1−α)
3

.

We note that for 0≤ α < 1/3, √
2(1−α)

3
< (1−α).

Next, subtracting the two relations in (2.13) yields

6a3 = (1−α)(c2−d2)+3(2a2
2)

or

(2.16) 6|a3| ≤ (1−α)(|c2|+ |d2|)+6|a2|2.
Using the Caratheodory Lemma and the estimate (2.15) for 0≤ α < 1/3, from (2.16) we

obtain

|a3| ≤
1
6
(1−α)(2+2)+

(√
2(1−α)

3

)2

=
4(1−α)

3
.

Using the Caratheodory Lemma and the estimate (2.14) for α ≥ 1
3 , from (2.16) we obtain

|a3| ≤
1
6
(1−α)(2+2)+(1−α)2 =

1
3
(1−α)(5−3α).

Now, the second equation in (2.13) can be rewritten as

3a3 = 6a2
2− (1−α)d2,
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which upon substitution of a2 =− 1−α

2 d1 we obtain

3a3 =
3
2
(1−α)2d2

1 − (1−α)d2 =−(1−α)
[

d2−
3
2
(1−α)d2

1

]
.

Taking the absolute values, we obtain

3|a3| ≤ (1−α)
∣∣∣∣d2−

3
2
(1−α)d2

1

∣∣∣∣ .
Applying the fact that |d2 +µd2

1 | ≤ 2+µ|d1|2 if µ ≥− 1
2 , which is due to the first author

[12], and upon noticing that − 3
2 (1−α)≥− 1

2 for α ≥ 2
3 we obtain

3|a3| ≤ (1−α)
[

2− 3
2
(1−α)|d1|2

]
.

Now upon re-substitution of a2 =− 1−α

2 d1 we obtain

3|a3| ≤ (1−α)
[

2−6
|a2|2

1−α

]
= 2

(
1−α−3|a2|2

)
or

|a3| ≤
2(1−α−3|a2|2)

3
;

2
3
≤ α < 1.

Once again, the second equation in (2.13) can be rewritten as

3a3−3a2
2 = 3a2

2− (1−α)d2,

which upon substitution of a2 = − 1−α

2 d1 in its right hand side and taking the absolute
values, we obtain

3
∣∣a3−a2

2
∣∣≤ (1−α)

∣∣∣∣d2−
3
4
(1−α)d2

1

∣∣∣∣ .
Since − 3

4 (1−α)≥− 1
2 if α ≥ 1

3 , we get

3
∣∣a3−a2

2
∣∣≤ (1−α)

(
2− 3

4
(1−α)|d1|2

)
.

Now, upon re-substitution of a2 =− 1−α

2 d1 in the right hand side of the above inequality,
it turns to

3
∣∣a3−a2

2
∣∣≤ (1−α)

(
2− 3

1−α
|a2|2

)
or

|a3−a2
2| ≤

2
3
(1−α)−|a2|2 if

1
3
≤ α < 1.

Remark 2.1. The bounds |a2| ≤ 1−α for 1
3 ≤ α < 1 and |a3| ≤ 4

3 (1−α) for 0 ≤ α < 1
3

given in Theorem 2.3 above are much better than those corresponding bounds given by
Srivastava et al. in [15, p. 1191, Theorem 2].

Finally, we give an example of a function satisfying the conditions (1.2) and (1.3).
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Example 2.1. Let f (z) = z+ 1−α

np zn. Then f ′(z) = 1+ 1−α

p zn−1 and

(
f ′(z)

)p = 1+
p

∑
k=1

(
p
k

)
(1−α)k

pk zk(n−1).

Set(
f ′(z)

)p−α = (1−α)

(
1+

p

∑
k=1

(
p
k

)
(1−α)k−1

pk zk(n−1)

)
= (1−α)

(
1+

p

∑
k=1

Akzk(n−1)

)
.

We note that Ak is a convex null sequence because lim
k→∞

Ak = 0, 1−A1≥ 0 and Ak−Ak+1≥
0. Therefore Re [( f ′(z))p−α] > 0 or Re( f ′(z))p > α.

On the other hand, according to the equations (2.4) and (2.5), for the inverse map g = f−1

we obtain g(w) = w− 1−α

np wn and

(
g′(w)

)p−α = (1−α)

(
1+

p

∑
k=1

(−1)k
(

p
k

)
(1−α)k−1

pk wk(n−1)

)
.

Similarly, Re [(g′(w))p−α] > 0 since (g′(w))p−α

1−α
is dominated by 1+∑

p
k=1 Akwk(n−1) and

Ak is a convex null sequence (e.g. see Goodman [10, Chapter 7]).
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(1986), no. 9, 1140–1144.
[13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
[14] M. Schiffer, Sur un problème d’extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938),

48–55.



640 J. M. Jahangiri, S. G. Hamidi and S. A. Halim

[15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions,
Appl. Math. Lett. 23 (2010), no. 10, 1188–1192.

[16] P. G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162
(1991), no. 1, 268–276.


