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Abstract. A space X is said to be weakly quasi-first-countable if and only if for all x € X,
there exists countably many countable families of decreasing subsets containing x such that
a set O is open if and only if for any x € O, O contains a member of each family associated
to x. For a space X, we denote the countable o-product of X endowed with the box topol-
ogy by 6B(X). We prove that if X is first-countable and locally compact, then oB(X) is
weakly quasi-first-countable, which gives a general method to construct weakly quasi-first-
countable spaces which are neither weakly first-countable nor quasi-first-countable.
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1. Introduction

In [23], Sirois-Dumais introduced the quasi-first-countable spaces and weakly quasi-first-
countable spaces, which are natural generalizations of first-countable spaces and weakly
first-countable spaces, respectively. It has been found that the weakly quasi-first-countable
spaces play an interesting role in the theory of generalized metric spaces and topological
groups, see [15,21-24]. In [15], Liu and Lin introduced the notion of X(-weak bases,
and revealed the elementary character of weakly quasi-first-countable spaces. In fact, ev-
ery weakly quasi-first-countable space can be seen as the space each point in which has a
countable locally X(-weak base. For canonical examples, the Aren’s space S, is a weakly-
first-countable space but not quasi-first-countable, the sequential fan space S, is a quasi-
first-countable space but not weakly first-countable. So the topological sum S, G Sy is a
weakly quasi-first-countable space which is neither weakly first-countable nor quasi-first-
countable. However, this space is quite trivial and we are seeking abundant weakly quasi-
first-countable spaces which are neither weakly first-countable nor quasi-first-countable. So
we are interested in the following question.

Communicated by Rosihan M. Ali, Dato’.
Received: April 11, 2012; Revised: July 27, 2012.



846 R. Shen and F. Lin

Question 1.1. Is there a general method of constructing weakly quasi-first-countable spaces
which are neither weakly first-countable nor quasi-first-countable?

In the section 2 of this paper, we prove that for each first-countable, locally compact
space X, the countable o-product cB(X) of X endowed with the box topology is weakly
quasi-first-countable, by which we obtain a general method of constructing weakly quasi-
first-countable spaces which are neither weakly first-countable nor quasi-first-countable.
In [22], Shen and Lin proved that a topological group is metrizable if and only if it is weakly
quasi-first-countable and contains no closed copies of S,. We also give a general method of
constructing weakly quasi-first-countable, non-metrizable topological groups. Some further
results on cB(X) are given in section 3.

In this paper all spaces are regular T and @ denotes the first infinite ordinal. We recall
some basic definitions.

A space X is called a sequential space [10] if for each subset U of X, U is open if and
only if every sequence L converging to x € U is eventually in U (that is, L — U is finite).
X is called Fréchet [10] if for each x € A C X, there is a sequence in A converging to x.
Obviously, every Fréchet space is sequential. The sequential fan space Sy, [4] is obtained
by identifying all the limit points of @ many convergent sequences; A space X is called an
Sa-space (Arens’ space) [11if X = {eo} U{x, :n < @} U{x,(m) : m,n < ®} and the topology
is defined as follows: Each x,(m) is isolated; a basic neighborhood of x;, is {x, } U {x,(m) :
m >k, for some k < @}; a basic neighborhood of ee is {eo} U (U{V}, : n > k for some k < @}),
where V), is a neighborhood of x,,. Note that S, is not Fréchet.

For a space X, Let X® be the countable box product of X, that is, the topology of X®
is generated by the base {[];«, U : U; is open in X for each i < @ }. For p € X?, we
denote the n-th coordinate of p by p(n) for each n < @. Define the 6-Box product of X at
a point p as the subspace {x € X® : x(n) # p(n) for at most finitely many n < @} of X®,
which we denote by 6B(p,X). Note that in the literature, the 6-Box product of a space X
is sometimes called the direct sum of X.

2. On weakly quasi-first-countable spaces

Definition 2.1. Let = U{%B,(n) :x € X,n < @} be a family of subsets of a space X. For
eachx € X,n < 0, By(n) is a network at x and closed under finite intersections.

(1) A is said to be an Ry-weak base [15] for X if for every subset U C X, U is open
whenever there exists a By(n) € Bx(n) such that By(n) C U for each x € U and
n < o. If also, By(n) is countable for each x € X,n < o, then we call X weakly
quasi-first-countable [23].

(2) A is said to be a weak base [3] for X if B(n) = B(1) for each n < @ in the
definition of Ro-weak bases. X is called weakly first-countable [3] if By(1) is also
countable for each x € X.

(3) A is saidto be an Xy-base for X if for each x € X,n < ® and B, € $:(n), Up<e Bn
is a neighborhood of x. X is called quasi-first-countable [23] if PB.(n) is also
countable for each x € X ,n < o.

It is easy to see the following implications [3,23].
first-countable =~ = quasi-first-countable = = Fréchet

¢ ¢ 4

weakly first-countable = weakly quasi-first-countable = sequential
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For canonical examples, $; is a weakly first-countable space but not quasi-first-countable,
Sw 1s a quasi-first-countable space but not weakly first-countable. Moreover, the closed
subspaces of a weakly first-countable space (a quasi-first-countable space) are still weakly
first-countable (quasi-first-countable). Therefore, any weakly first-countable space (quasi-
first-countable space) contains no closed copies of S4(52).

Lemma 2.1. [21] Let X be a space. = U{%B,(n) :x € X,n < ®} is a family of subsets of
X, here each By (n) is a network at x in X and %, (n) is closed under finite intersections for
each x € X,n < @. Consider the following two conditions:

(1) A is an Ro-weak base for X.
(2) For any sequence L converging to x in X, there exist a subsequence L' of L and
ny < @ such that L' is eventually in B for each B € %, (ny).

We have (1)=-(2). Moreover, if X is sequential, then (2)=(1).

Lemma 2.2. Let X be a Fréchet, locally compact space. Then oB(p,X) is a sequential
space for each p € X°.

Proof. Let A be a sequentially closed subset of 6B(p,X). It is sufficient to show A is a
closed subset of 6B(p,X). Fix r € 6B(p,X) — A, put A, = {x € A: x(k) = r(k) for k > n},
then A = U, o An-

First we claim that 7(1) ¢ {x(1) : x € A; }. Otherwise we can find a sequence {x; }m<w C
Ay such that {x,,(1)}n<e converges to r(1) by the Fréchet property of X. Thus {x, }m<e
converges to r, which is a contradiction with A is sequentially closed. Therefore there is a
compact neighborhood U of r(1) such that Uy N{x(1) :x € A1} = 0.

Second, we suppose that for kK < n+ 1, we have picked a compact neighborhood Uy, of
r(k) satisfying that for each x € A, x(k) ¢ Uy for some k < n+1.

Put B={x € Apy1 :x(k) €Uy foreachk <n+1}. If r(n+1) € {x(n+1) : x € B}, then
there is a sequence {X; }m<e C B such that {x,(n+ 1)}m<e converges to r(n+1). Since
{xm(n) :m < 0} C U, and U, is compact, {x,,(n) : m < @} has a cluster point g(n) € U,. So
we can find a subsequence {x;, }ico Of {Xm }m<w such that {x,, (n)}i<» converges to g(n).
Inductively, we can get a subsequence {ym }m<w Of {Xm}m<w and (¢(1),q(2),...,q(n)) €
Uy x Uy X ... x Uy such that {y,;(n+ 1) };y<e converges to r(n+ 1) and {yu (k) }m<w con-
verges to g(k) for each k <n+1. Lety = (¢(1),4(2),...,q(n),r(n+1),r(n+2),...), then
the sequence {y,;}m<w converges to y. Since A is sequentially closed, y € A,. This is a
contradiction with the induction hypothesis. So r(n+1) ¢ {x(n+1) : x € B}, and thus we
can take a compact neighborhood U, of r(n+ 1) such that for each x € A1 1, x(k) ¢ Uy
for some k < n+2.

Now we have constructed the compact neighborhood U, of r(n) for each n < @ satisfying
that for each x € A, x(k) ¢ Uy, for some k < n+ 1. So [],< Un is a neighborhood of r and
[TycowUnNA = 0. Thus r ¢ A, which implies that A is closed in oB(p,X). Therefore,
o6B(p,X) is a sequential space. 1

Lemma 2.3. Let {x;}i<o be a sequence in cB(p,X) for a space X and a point p € X®. If
{xi}icw converges to a point x € 6B(p,X), then there are an iy < ® and an ny < @ such
that for each i > iy and n > ng, x;(n) = x(n).

Proof. Suppose not, then we can find two subsequences {ny}r<e and {i;}r<e of @ such
that x;, (i) # x(ng) for each k < @. Now we pick an open neighborhood U, of x(n) such
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that x;, (nx) & Uy, for each k < w and let U, = X for n ¢ {n; : k < w}. It is easy to verify
that U = [],<, U, N 6B(p,X) is an open neighborhood of x in 6B(p,X) and U N {x;, 1k <
o} = 0, which is a contradiction with {x;};< converging to x. Thus, there are an iy < ®
and an ng < @ such that for each i > iy and n > ng, x;(n) = x(n). 1

Theorem 2.1. Let X be a first-countable, locally compact space. Then 6B(p,X) is a weakly
quasi-first-countable space for each p € X°.

Proof. Forx € oB(p,X) and each n < ®, we take 22, be the countable neighborhood base
at x(n) in X. Put Z.(n) = {IlkcoPr: P € P fork <n+1and P, = {x(k)} for k > n}
and Z.(n) = {N€ : € is a finite subfamily of %, (n)}. Then %,(n) is countable and closed
under finite intersections. Also it is easy to see that each %, (n) is a network at x.

By Lemma 2.2 and Lemma 2.1, it is sufficient to show %, (n) satisfies the condition (2)
in Lemma 2.1. Now suppose {x; } i< is a sequence converging to x in 6B(p,X). By Lemma
2.3, there is an iy < @ and an ny < ® such that for each i > iy and n > ny, x;(n) = x(n).
So {xi}i<e is eventually in B for each B € %By(ng). Thus oB(p,X) is weakly quasi-first-
countable. 1

Theorem 2.2. Let X be a Fréchet, locally compact space and let p(n) be a non-isolated
point of X for each n < @. Then 6B(p,X) contains a closed copy of Sy and a closed copy
of Sw. Consequently, 6B(p,X) is neither quasi-first-countable nor weakly first-countable.

Proof. For each n < @, since X is Fréchet and p(n) is a non-isolated point in X, we can find
a non-trivial sequence {pun}m<ew C X converging to p(n). Without loss of generality, we
may assume that p,,, # p(n) for each m,n < .

For each i, j < ®, put x;;(1) = pi1,x;j(i+1) = pj(i+1) and x;(k) = p(k) fork ¢ {1,i+1},
L; = {xij}j<o. For each i < m, pick y; € 6B(p,X) as y;(1) = p;1 and y;(k) = p(k) for
k> 1, Lo = {yi}icw- Then L; converges to y; for each i < @ and Ly converges to p. We
claim that L = {p} ULy U ;. Li is a closed copy of S,. In fact, it is easy to verify that
L is a sequentially closed subset of cB(p,X) by Lemma 2.3. By Lemma 2.2, 6B(p,X) is
sequential. So L is closed in 6B(p,X). For given natural numbers {j; : i < @}, we can
similarly show that {x;; : j < ji,i < @} is a sequentially closed subset of 6B(p,X), thus is
a closed subset of L. So L is homeomorphic to S,. Therefore 6B(p,X) contains a closed
copy of S5.

Now for each i, j < w, we put x;;(i) = pj; and x (k) = p(k) for k # i, S; = {xi}j<w-
Then S; converges to p for each i < @. Similar to the above proof, we can prove that
S={p}UUiceSi is a closed copy of S, in 6B(p,X). 1

Corollary 2.1. Let X be a Fréchet, locally compact homogeneous space, and p € X®. Then
the following are equivalent:

(1) X is discrete;

(2) 6B(p,X) contains no closed copies of S;

(3) oB(p,X) contains no closed copies of Se.

Corollary 2.2. Let X be a first-countable, locally compact space and let p(n) be a non-
isolated point of X for each n < ®. Then 6B(p,X) is a weakly quasi-first-countable space
which is neither quasi-first-countable nor weakly first-countable. In particular, let X=R be
the real line with the Euclidean topology and 0 = (0,0,---,) € R®. Then 6B(0,R) is a
weakly quasi-first-countable space which is neither quasi-first-countable nor weakly first-
countable..
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n [22], Shen and Lin proved that a topological group is metrizable if and only if it is
weakly quasi-first-countable and contains no closed copies of S,. Svetlichny [24] proved
that every quasi-first-countable topological group is metrizable and gave a weakly quasi-
first-countable, non-metrizable topological group. The following corollary gives a general
method to construct the weakly quasi-first-countable, non-metrizable topological groups.

Corollary 2.3. Let G be a first-countable, locally compact topological group, p(n) be a
non-isolated point of X for each n < ®. Then 6B(p,G) is a weakly quasi-first-countable,
non-metrizable topological group.

3. Generalized metric properties of 6B(p,X)

In [6], Borges proved that B(p,X) is stratifiable for each p € X® if X is stratifiable. Natu-
rally, we are interested in the question that whether the similar results hold for other classical
generalized metric properties. We recall some definitions.

Let & be a cover of a space X. Then & is called a network [2] for X if for any open
set U and any x € U, x € P C U for some P € &2; 2 is called a k-network [11] for X if for
any compact set K and for any open set U such that K C U, K C UZ?' C U for some finite
P C P; P is called a cs-network [11] for X if for any convergent sequence L and for any
open set U such that L C U, there exists a P € & such that P C U and L is eventually in P.
X is called a o-space [19] (X-space [20]) if it has a o-locally finite network (k-network). X
is called a cosmic space [18] (Rg-space [18]) if it has a countable network (k-network). It is
well-known to all that a space X is an X-space (¥ g-space) if and only if X has a o-locally
finite (countable) cs-network [9, 12].

Lemma 3.1. Let & be a cover of a space X and p € X®. Put B; = {[Tico P : P €
Pfork <i+1and P, = {p(k)} for k > i} for each i < 0 and B = J;. o, Bi- Then we have
the following claims.

(1) If & is countable, then A is countable.

(2) If & is o-locally finite in X, then B is c-locally finite in 6B(p,X).
(3) If & is a network for X, then A is a network for 6B(p,X).

4) If & is a cs-network for X, then A is a cs-network for 6B(p,X).

Proof. (1) is obvious.

(2) Suppose that & = J,,., & and each &, is locally finite in X, then we have %; =
Uny iy i< Py X Py X -+ X P X [Ig=i{p(k) } is o-locally finite in 6B(p, X) for each
i < @. Therefore, 4 is o-locally finite in 6B(p,X).

(3) For each open subset U of 6B(p,X) and x € U, there is an iy < o such that x(k) =
p(k) for each k > iy. Now we pick open subsets U, Uy, -,U;, of X such that x € [T +1 Uk
X [Tksigip(k)} CU. Since & is a network for X, there is a P, € & such that x(k) € P, C Uy
for each k < @. Put B = [[i<jy+1 P X [Te=i{p(k)}. Then B € %, C Bandx € BCU.

(4) Let {xu }m<w be a sequence converging to x and U be an open neighborhood of x
in oB(p,X). By Lemma 2.3, there is an iy < @ such that for each m > iy and k > i,
xm (k) = x(k) = p(k). Similar to the proof of Claim 3, we pick open subsets Uy, U, - -,Uj,
of X such that x € [Ty, 41 Uk X [Tesip {p(k)} C U.

For each k < ip+ 1, {xy (k) } m< @ converges to x(k), so there is a P, € & such that P, C Uy,
and {x,; (k) } m<o is eventually in P;. Put B = [Tye;y+1 P X [i=i{p(k)} € B. Then BC U
and {xy; } m<e is eventually in B. Therefore |, &, is a cs-network for cB(p,X). 1
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Theorem 3.1. Let X be a 6-space (resp. X-space, cosmic space, Xg-space). Then 6B(p,X)
is a G-space (resp. X-space, cosmic space, Xg-space) for each p € X®.

Definition 3.1. A space is called semi-stratifiable [7] if there is a function G which assigns
to each n < w and closed set H C X, an open set G(n,H) containing H such that
(i) H= ﬂn<a) G(n’H);
(ii) H C K implies G(n,H) C G(n,K).
If also,
(i) H =< G(n,H) (for each compact C and closed H with CNH =0, CNG(n,H) =
0 for some n < w), then X is stratifiable [5] (k-semi-stratifiable [16]).

Let & be a collection of pairs of subsets of X. & is called cushioned [17] if U{P; : (P,
P) e P}y CU{P,: (P,P,) € &'} foreach &' C P. P is called a pair-network [13] for
X if for any open set U and any x € U, x € P, C P, C U for some (P, P,) € &. Similarly,
we can give the definitions of pair-cs-networks for a space. Kofner proved that a space X
is a semi-stratifiable space if and only if X has a o-cushioned pair-network [13] ; Foged
proved that a space X is a k-semi-stratifiable space if and only if X has a o-cushioned
pair-cs-network (pair-cs*-network) [8, 14].

Theorem 3.2. Let X be a semi-stratifiable space (k-semi-stratifiable space). Then 6B(p,X)
is a semi-stratifiable space (k-semi-stratifiable space) for each p € X®.

Proof. Let &2 = J,<q & be a o-cushioned pair-network (pair-cs-network) for X, where
each 7, is cushioned in X. Put #; = { (Tyr1 Pt X e pUO)}, i Peo X Tioi p(K)}) :
(Pe1,P) € 2} and B = ;. %i. Similar to the proof of the claim 3 and claim 4 in theo-
rem 3.1, we can verify that 4 is a pair-network (pair-cs-network) for cB(p,X).

Now we prove that each %; is o-cushioned in oB(p,X). It is sufficient to show that for
eachi < @, {(TTx<it1 Pets[Mkeiv1 Pr2) : (Pr1, Pr2) € &} is a o-cushioned family in X*. Since
{IMk<iv1 P s Mi<iv1 P2) = (Prrs P2) € 2} =U gy, miyeai (ki1 Pets Ti<iv 1 P2) = (P
Pin) € Py, foreachk < i+ 1}, we only need to show that for each (ny,ny,--- ,n;) € o',
{(IMk<it1 P Mk<iv1 Pe2) = (Pra, Po) € Py, foreach k < i+ 1} is cushioned. Let C be a
subfamily of {(TTx<;1 Pet, [Tk<iz1 P2) : (Pe1, Pra) € P, for each k < i+ 1}. We prove that
U{lk<it1 Par = (Tk<it1 Pt Tk<iv1 P2) € CHC U{TTkir Pz = (i1 Pt s Tiwin1 Pr2) €
C}. Suppose x € X' — U{[Tx<is1 Pi2 :(ITk<i1 Pets [Tr<iv1 P2) EC}. We put Uy =X — U{ P2 :
x(k) € X — P, (ITk<iv1 Pe1, Ik<iv1 P2) € C}. Since &, is cushioned, x(k) € Uy C X —
U{Pkl :x(k) e X — Py, (Hk<i+1Pk17Hk<i+1Pk2) € C} for each k <i+ 1. Let V; =X —
U{Pp1 : x(k) € X — Pia, (ITk<i+1 Pet, [T<iv1 Pi2) € C}. We claim that [Ti<; 4 Vi is an open
neighborhood of x in X* and [Te<iy 1 Ve N (U{TTk<iv1 Pet : (Tk<iv1 Par Tk<iv1 Pi2) € CY) =
0. In fact, for each ([Tp<it1 Pe1s[Tx<is1 P2) € C, there is a k < i+ 1 such that x; € Pyp. So
Vie NP = 0, thus [Tg<iy1 Vi VT Tk<iy1 Par = 0. Therefore, x & U{TTx<is1 Per : (Tk<iv1 Pt s
[Ti<ir1 P2) € C}. Subsequently, A is a o-cushioned pair-network (pair-cs-network) for
oB(p,X). i
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