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Abstract. A space X is said to be weakly quasi-first-countable if and only if for all x ∈ X ,
there exists countably many countable families of decreasing subsets containing x such that
a set O is open if and only if for any x ∈ O, O contains a member of each family associated
to x. For a space X , we denote the countable σ -product of X endowed with the box topol-
ogy by σB(X). We prove that if X is first-countable and locally compact, then σB(X) is
weakly quasi-first-countable, which gives a general method to construct weakly quasi-first-
countable spaces which are neither weakly first-countable nor quasi-first-countable.
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1. Introduction

In [23], Sirois-Dumais introduced the quasi-first-countable spaces and weakly quasi-first-
countable spaces, which are natural generalizations of first-countable spaces and weakly
first-countable spaces, respectively. It has been found that the weakly quasi-first-countable
spaces play an interesting role in the theory of generalized metric spaces and topological
groups, see [15, 21–24]. In [15], Liu and Lin introduced the notion of ℵ0-weak bases,
and revealed the elementary character of weakly quasi-first-countable spaces. In fact, ev-
ery weakly quasi-first-countable space can be seen as the space each point in which has a
countable locally ℵ0-weak base. For canonical examples, the Aren’s space S2 is a weakly-
first-countable space but not quasi-first-countable, the sequential fan space Sω is a quasi-
first-countable space but not weakly first-countable. So the topological sum S2⊕ Sω is a
weakly quasi-first-countable space which is neither weakly first-countable nor quasi-first-
countable. However, this space is quite trivial and we are seeking abundant weakly quasi-
first-countable spaces which are neither weakly first-countable nor quasi-first-countable. So
we are interested in the following question.
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Question 1.1. Is there a general method of constructing weakly quasi-first-countable spaces
which are neither weakly first-countable nor quasi-first-countable?

In the section 2 of this paper, we prove that for each first-countable, locally compact
space X , the countable σ -product σB(X) of X endowed with the box topology is weakly
quasi-first-countable, by which we obtain a general method of constructing weakly quasi-
first-countable spaces which are neither weakly first-countable nor quasi-first-countable.
In [22], Shen and Lin proved that a topological group is metrizable if and only if it is weakly
quasi-first-countable and contains no closed copies of Sω . We also give a general method of
constructing weakly quasi-first-countable, non-metrizable topological groups. Some further
results on σB(X) are given in section 3.

In this paper all spaces are regular T1 and ω denotes the first infinite ordinal. We recall
some basic definitions.

A space X is called a sequential space [10] if for each subset U of X , U is open if and
only if every sequence L converging to x ∈U is eventually in U (that is, L−U is finite).
X is called Fréchet [10] if for each x ∈ A ⊂ X , there is a sequence in A converging to x.
Obviously, every Fréchet space is sequential. The sequential fan space Sω [4] is obtained
by identifying all the limit points of ω many convergent sequences; A space X is called an
S2-space (Arens’ space) [1] if X = {∞}∪{xn : n < ω}∪{xn(m) : m,n < ω} and the topology
is defined as follows: Each xn(m) is isolated; a basic neighborhood of xn is {xn}∪{xn(m) :
m > k, for some k < ω}; a basic neighborhood of ∞ is {∞}∪(∪{Vn : n > k for some k < ω}),
where Vn is a neighborhood of xn. Note that S2 is not Fréchet.

For a space X , Let Xω be the countable box product of X , that is, the topology of Xω

is generated by the base {∏i<ω Ui : Ui is open in X for each i < ω }. For p ∈ Xω , we
denote the n-th coordinate of p by p(n) for each n < ω . Define the σ -Box product of X at
a point p as the subspace {x ∈ Xω : x(n) 6= p(n) for at most finitely many n < ω} of Xω ,
which we denote by σB(p,X). Note that in the literature, the σ -Box product of a space X
is sometimes called the direct sum of X .

2. On weakly quasi-first-countable spaces

Definition 2.1. Let B = ∪{Bx(n) : x ∈ X ,n < ω} be a family of subsets of a space X. For
each x ∈ X ,n < ω , Bx(n) is a network at x and closed under finite intersections.

(1) B is said to be an ℵ0-weak base [15] for X if for every subset U ⊂ X, U is open
whenever there exists a Bx(n) ∈ Bx(n) such that Bx(n) ⊂ U for each x ∈ U and
n < ω . If also, Bx(n) is countable for each x ∈ X ,n < ω , then we call X weakly
quasi-first-countable [23].

(2) B is said to be a weak base [3] for X if Bx(n) = Bx(1) for each n < ω in the
definition of ℵ0-weak bases. X is called weakly first-countable [3] if Bx(1) is also
countable for each x ∈ X.

(3) B is said to be an ℵ0-base for X if for each x∈ X ,n < ω and Bn ∈Bx(n),
⋃

n<ω Bn
is a neighborhood of x. X is called quasi-first-countable [23] if Bx(n) is also
countable for each x ∈ X ,n < ω .

It is easy to see the following implications [3, 23].
first-countable ⇒ quasi-first-countable ⇒ Fréchet

⇓ ⇓ ⇓
weakly first-countable ⇒ weakly quasi-first-countable ⇒ sequential
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For canonical examples, S2 is a weakly first-countable space but not quasi-first-countable,
Sω is a quasi-first-countable space but not weakly first-countable. Moreover, the closed
subspaces of a weakly first-countable space (a quasi-first-countable space) are still weakly
first-countable (quasi-first-countable). Therefore, any weakly first-countable space (quasi-
first-countable space) contains no closed copies of Sω (S2).

Lemma 2.1. [21] Let X be a space. B = ∪{Bx(n) : x ∈ X ,n < ω} is a family of subsets of
X, here each Bx(n) is a network at x in X and Bx(n) is closed under finite intersections for
each x ∈ X ,n < ω . Consider the following two conditions:

(1) B is an ℵ0-weak base for X.
(2) For any sequence L converging to x in X, there exist a subsequence L′ of L and

n0 < ω such that L′ is eventually in B for each B ∈Bx(n0).
We have (1)⇒(2). Moreover, if X is sequential, then (2)⇒(1).

Lemma 2.2. Let X be a Fréchet, locally compact space. Then σB(p,X) is a sequential
space for each p ∈ Xω .

Proof. Let A be a sequentially closed subset of σB(p,X). It is sufficient to show A is a
closed subset of σB(p,X). Fix r ∈ σB(p,X)−A, put An = {x ∈ A : x(k) = r(k) for k > n},
then A =

⋃
n<ω An.

First we claim that r(1) /∈ {x(1) : x ∈ A1}. Otherwise we can find a sequence {xm}m<ω ⊂
A1 such that {xm(1)}m<ω converges to r(1) by the Fréchet property of X . Thus {xm}m<ω

converges to r, which is a contradiction with A is sequentially closed. Therefore there is a
compact neighborhood U1 of r(1) such that U1∩{x(1) : x ∈ A1}= /0.

Second, we suppose that for k < n + 1, we have picked a compact neighborhood Uk of
r(k) satisfying that for each x ∈ An, x(k) /∈Uk for some k < n+1.

Put B = {x ∈ An+1 : x(k) ∈Uk for each k < n+1}. If r(n+1) ∈ {x(n+1) : x ∈ B}, then
there is a sequence {xm}m<ω ⊂ B such that {xm(n + 1)}m<ω converges to r(n + 1). Since
{xm(n) : m < ω}⊂Un and Un is compact, {xm(n) : m < ω} has a cluster point q(n)∈Un. So
we can find a subsequence {xmi}i<ω of {xm}m<ω such that {xmi(n)}i<ω converges to q(n).
Inductively, we can get a subsequence {ym}m<ω of {xm}m<ω and (q(1),q(2), . . . ,q(n)) ∈
U1×U2× . . .×Un such that {ym(n + 1)}m<ω converges to r(n + 1) and {ym(k)}m<ω con-
verges to q(k) for each k < n+1. Let y = (q(1),q(2), . . . ,q(n),r(n+1),r(n+2), . . .), then
the sequence {ym}m<ω converges to y. Since A is sequentially closed, y ∈ An. This is a
contradiction with the induction hypothesis. So r(n + 1) /∈ {x(n+1) : x ∈ B}, and thus we
can take a compact neighborhood Un+1 of r(n + 1) such that for each x ∈ An+1, x(k) /∈Uk
for some k < n+2.

Now we have constructed the compact neighborhood Un of r(n) for each n < ω satisfying
that for each x ∈ An, x(k) /∈Uk for some k < n+1. So ∏n<ω Un is a neighborhood of r and
∏n<ω Un ∩ A = /0. Thus r /∈ A, which implies that A is closed in σB(p,X). Therefore,
σB(p,X) is a sequential space.

Lemma 2.3. Let {xi}i<ω be a sequence in σB(p,X) for a space X and a point p ∈ Xω . If
{xi}i<ω converges to a point x ∈ σB(p,X), then there are an i0 < ω and an n0 < ω such
that for each i > i0 and n > n0, xi(n) = x(n).

Proof. Suppose not, then we can find two subsequences {nk}k<ω and {ik}k<ω of ω such
that xik(nk) 6= x(nk) for each k < ω . Now we pick an open neighborhood Unk of x(nk) such
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that xik(nk) 6∈Unk for each k < ω and let Un = X for n 6∈ {nk : k < ω}. It is easy to verify
that U = ∏n<ω Un∩σB(p,X) is an open neighborhood of x in σB(p,X) and U ∩{xik : k <
ω} = /0, which is a contradiction with {xi}i<ω converging to x. Thus, there are an i0 < ω

and an n0 < ω such that for each i > i0 and n > n0, xi(n) = x(n).

Theorem 2.1. Let X be a first-countable, locally compact space. Then σB(p,X) is a weakly
quasi-first-countable space for each p ∈ Xω .

Proof. For x ∈ σB(p,X) and each n < ω , we take Pn be the countable neighborhood base
at x(n) in X . Put B′x(n) = {∏k<ω Pk : Pk ∈Pk for k < n + 1 and Pk = {x(k)} for k > n}
and Bx(n) = {∩C : C is a finite subfamily of B′x(n)}. Then Bx(n) is countable and closed
under finite intersections. Also it is easy to see that each Bx(n) is a network at x.

By Lemma 2.2 and Lemma 2.1, it is sufficient to show Bx(n) satisfies the condition (2)
in Lemma 2.1. Now suppose {xi}i<ω is a sequence converging to x in σB(p,X). By Lemma
2.3, there is an i0 < ω and an n0 < ω such that for each i > i0 and n > n0, xi(n) = x(n).
So {xi}i<ω is eventually in B for each B ∈Bx(n0). Thus σB(p,X) is weakly quasi-first-
countable.

Theorem 2.2. Let X be a Fréchet, locally compact space and let p(n) be a non-isolated
point of X for each n < ω . Then σB(p,X) contains a closed copy of S2 and a closed copy
of Sω . Consequently, σB(p,X) is neither quasi-first-countable nor weakly first-countable.

Proof. For each n < ω , since X is Fréchet and p(n) is a non-isolated point in X , we can find
a non-trivial sequence {pmn}m<ω ⊂ X converging to p(n). Without loss of generality, we
may assume that pmn 6= p(n) for each m,n < ω .

For each i, j < ω , put xi j(1) = pi1,xi j(i+1) = p j(i+1) and xi j(k) = p(k) for k /∈ {1, i+1},
Li = {xi j} j<ω . For each i < ω , pick yi ∈ σB(p,X) as yi(1) = pi1 and yi(k) = p(k) for
k > 1, L0 = {yi}i<ω . Then Li converges to yi for each i < ω and L0 converges to p. We
claim that L = {p}∪L0 ∪

⋃
i<ω Li is a closed copy of S2. In fact, it is easy to verify that

L is a sequentially closed subset of σB(p,X) by Lemma 2.3. By Lemma 2.2, σB(p,X) is
sequential. So L is closed in σB(p,X). For given natural numbers { ji : i < ω}, we can
similarly show that {xi j : j < ji, i < ω} is a sequentially closed subset of σB(p,X), thus is
a closed subset of L. So L is homeomorphic to S2. Therefore σB(p,X) contains a closed
copy of S2.

Now for each i, j < ω , we put xi j(i) = p ji and xnk(k) = p(k) for k 6= i, Si = {xi j} j<ω .
Then Si converges to p for each i < ω . Similar to the above proof, we can prove that
S = {p}∪

⋃
i<ω Si is a closed copy of Sω in σB(p,X).

Corollary 2.1. Let X be a Fréchet, locally compact homogeneous space, and p∈ Xω . Then
the following are equivalent:

(1) X is discrete;
(2) σB(p,X) contains no closed copies of S2;
(3) σB(p,X) contains no closed copies of Sω .

Corollary 2.2. Let X be a first-countable, locally compact space and let p(n) be a non-
isolated point of X for each n < ω . Then σB(p,X) is a weakly quasi-first-countable space
which is neither quasi-first-countable nor weakly first-countable. In particular, let X=R be
the real line with the Euclidean topology and 0 = (0,0, · · · ,) ∈ Rω . Then σB(0,R) is a
weakly quasi-first-countable space which is neither quasi-first-countable nor weakly first-
countable..
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In [22], Shen and Lin proved that a topological group is metrizable if and only if it is
weakly quasi-first-countable and contains no closed copies of Sω . Svetlichny [24] proved
that every quasi-first-countable topological group is metrizable and gave a weakly quasi-
first-countable, non-metrizable topological group. The following corollary gives a general
method to construct the weakly quasi-first-countable, non-metrizable topological groups.

Corollary 2.3. Let G be a first-countable, locally compact topological group, p(n) be a
non-isolated point of X for each n < ω . Then σB(p,G) is a weakly quasi-first-countable,
non-metrizable topological group.

3. Generalized metric properties of σB(p,X)

In [6], Borges proved that σB(p,X) is stratifiable for each p ∈ Xω if X is stratifiable. Natu-
rally, we are interested in the question that whether the similar results hold for other classical
generalized metric properties. We recall some definitions.

Let P be a cover of a space X . Then P is called a network [2] for X if for any open
set U and any x ∈U , x ∈ P⊂U for some P ∈P; P is called a k-network [11] for X if for
any compact set K and for any open set U such that K ⊂U , K ⊂ ∪P ′ ⊂U for some finite
P ′ ⊂P; P is called a cs-network [11] for X if for any convergent sequence L and for any
open set U such that L⊂U , there exists a P ∈P such that P⊂U and L is eventually in P.
X is called a σ -space [19] (ℵ-space [20]) if it has a σ -locally finite network (k-network). X
is called a cosmic space [18] (ℵ0-space [18]) if it has a countable network (k-network). It is
well-known to all that a space X is an ℵ-space (ℵ0-space) if and only if X has a σ -locally
finite (countable) cs-network [9, 12].

Lemma 3.1. Let P be a cover of a space X and p ∈ Xω . Put Bi = {∏k<ω Pk : Pk ∈
Pfor k < i+1 and Pk = {p(k)} for k > i} for each i < ω and B =

⋃
i<ω Bi. Then we have

the following claims.
(1) If P is countable, then B is countable.
(2) If P is σ -locally finite in X, then B is σ -locally finite in σB(p,X).
(3) If P is a network for X, then B is a network for σB(p,X).
(4) If P is a cs-network for X, then B is a cs-network for σB(p,X).

Proof. (1) is obvious.
(2) Suppose that P =

⋃
n<ω Pn and each Pn is locally finite in X , then we have Bi =⋃

n1,n2,··· ,ni<ω Pn1 ×Pn2 ×·· ·×Pni ×∏k>i{p(k)} is σ -locally finite in σB(p,X) for each
i < ω . Therefore, B is σ -locally finite in σB(p,X).

(3) For each open subset U of σB(p,X) and x ∈U , there is an i0 < ω such that x(k) =
p(k) for each k > i0. Now we pick open subsets U1, U2,· · · ,Ui0 of X such that x∈∏k<i0+1 Uk
×∏k>i0{p(k)}⊂U . Since P is a network for X , there is a Pk ∈P such that x(k)∈ Pk ⊂Uk
for each k < ω . Put B = ∏k<i0+1 Pk×∏k>i{p(k)}. Then B ∈Bi0 ⊂B and x ∈ B⊂U .

(4) Let {xm}m<ω be a sequence converging to x and U be an open neighborhood of x
in σB(p,X). By Lemma 2.3, there is an i0 < ω such that for each m > i0 and k > i0,
xm(k) = x(k) = p(k). Similar to the proof of Claim 3, we pick open subsets U1, U2,· · · ,Ui0
of X such that x ∈∏k<i0+1 Uk×∏k>i0{p(k)} ⊂U .

For each k < i0 +1, {xm(k)}m<ω converges to x(k), so there is a Pk ∈P such that Pk ⊂Uk
and {xm(k)}m<ω is eventually in Pk. Put B = ∏k<i0+1 Pk×∏k>i{p(k)} ∈B. Then B ⊂U
and {xm}m<ω is eventually in B. Therefore

⋃
n<ω Pn is a cs-network for σB(p,X).
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Theorem 3.1. Let X be a σ -space (resp. ℵ-space, cosmic space, ℵ0-space). Then σB(p,X)
is a σ -space (resp. ℵ-space, cosmic space, ℵ0-space) for each p ∈ Xω .

Definition 3.1. A space is called semi-stratifiable [7] if there is a function G which assigns
to each n < ω and closed set H ⊂ X, an open set G(n,H) containing H such that

(i) H =
⋂

n<ω G(n,H);
(ii) H ⊂ K implies G(n,H)⊂ G(n,K).

If also,
(iii) H =

⋂
n<ω G(n,H) (for each compact C and closed H with C∩H = /0, C∩G(n,H)=

/0 for some n < ω), then X is stratifiable [5] (k-semi-stratifiable [16]).

Let P be a collection of pairs of subsets of X . P is called cushioned [17] if ∪{P1 : (P1,

P2) ∈P ′} ⊂ ∪{P2 : (P1,P2) ∈P ′} for each P ′ ⊂P . P is called a pair-network [13] for
X if for any open set U and any x ∈U , x ∈ P1 ⊂ P2 ⊂U for some (P1,P2) ∈P . Similarly,
we can give the definitions of pair-cs-networks for a space. Kofner proved that a space X
is a semi-stratifiable space if and only if X has a σ -cushioned pair-network [13] ; Foged
proved that a space X is a k-semi-stratifiable space if and only if X has a σ -cushioned
pair-cs-network (pair-cs∗-network) [8, 14].

Theorem 3.2. Let X be a semi-stratifiable space (k-semi-stratifiable space). Then σB(p,X)
is a semi-stratifiable space (k-semi-stratifiable space) for each p ∈ Xω .

Proof. Let P =
⋃

n<ω Pn be a σ -cushioned pair-network (pair-cs-network) for X , where
each Pn is cushioned in X . Put Bi = {(∏k<i+1 Pk1×∏k>i{p(k)},∏k<i+1 Pk2×∏k>i{p(k)}) :
(Pk1,Pk2) ∈P} and B =

⋃
i<ω Bi. Similar to the proof of the claim 3 and claim 4 in theo-

rem 3.1, we can verify that B is a pair-network (pair-cs-network) for σB(p,X).
Now we prove that each Bi is σ -cushioned in σB(p,X). It is sufficient to show that for

each i < ω , {(∏k<i+1 Pk1,∏k<i+1 Pk2) : (Pk1,Pk2)∈P} is a σ -cushioned family in X i. Since
{(∏k<i+1 Pk1,∏k<i+1 Pk2) : (Pk1,Pk2)∈P}=

⋃
(n1,n2,··· ,ni)∈ω i{(∏k<i+1 Pk1,∏k<i+1 Pk2) : (Pk1,

Pk2) ∈Pnk for each k < i + 1}, we only need to show that for each (n1,n2, · · · ,ni) ∈ ω i,
{(∏k<i+1 Pk1,∏k<i+1 Pk2) : (Pk1,Pk2) ∈Pnk for each k < i + 1} is cushioned. Let C be a
subfamily of {(∏k<i+1 Pk1,∏k<i+1 Pk2) : (Pk1,Pk2)∈Pnk for each k < i+1}. We prove that
∪{∏k<i+1 Pk1 : (∏k<i+1 Pk1,∏k<i+1 Pk2) ∈C}⊂ ∪{∏k<i+1 Pk2 : (∏k<i+1 Pk1,∏k<i+1 Pk2) ∈
C}. Suppose x∈X i−∪{∏k<i+1 Pk2 :(∏k<i+1 Pk1,∏k<i+1 Pk2)∈C}. We put Uk = X−∪{Pk2 :
x(k) ∈ X −Pk2,(∏k<i+1 Pk1,∏k<i+1 Pk2) ∈ C}. Since Pnk is cushioned, x(k) ∈Uk ⊂ X −
∪{Pk1 : x(k) ∈ X−Pk2,(∏k<i+1 Pk1,∏k<i+1 Pk2) ∈C} for each k < i + 1. Let Vk = X −
∪{Pk1 : x(k) ∈ X−Pk2,(∏k<i+1 Pk1,∏k<i+1 Pk2) ∈C}. We claim that ∏k<i+1 Vk is an open
neighborhood of x in X i and ∏k<i+1 Vk ∩ (∪{∏k<i+1 Pk1 : (∏k<i+1 Pk1,∏k<i+1 Pk2) ∈C}) =
/0. In fact, for each (∏k<i+1 Pk1,∏k<i+1 Pk2) ∈C, there is a k < i + 1 such that xk 6∈ Pk2. So
Vk ∩Pk1 = /0, thus ∏k<i+1 Vk ∩∏k<i+1 Pk1 = /0. Therefore, x 6∈ ∪{∏k<i+1 Pk1 : (∏k<i+1 Pk1,

∏k<i+1 Pk2) ∈C}. Subsequently, B is a σ -cushioned pair-network (pair-cs-network) for
σB(p,X).
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