BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Weakly Quasi-First-Countable Spaces and Box Products

¹Rongxin Shen and ²Fucai Lin

¹Department of Mathematics, Taizhou University, Taizhou 225300, P. R. China
¹Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
²Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China
¹srx20212021@163.com, ¹rxshen@yahoo.cn, ²linfucai2008@yahoo.com.cn

Abstract. A space *X* is said to be weakly quasi-first-countable if and only if for all $x \in X$, there exists countably many countable families of decreasing subsets containing *x* such that a set *O* is open if and only if for any $x \in O$, *O* contains a member of each family associated to *x*. For a space *X*, we denote the countable σ -product of *X* endowed with the box topology by $\sigma B(X)$. We prove that if *X* is first-countable and locally compact, then $\sigma B(X)$ is weakly quasi-first-countable, which gives a general method to construct weakly quasi-first-countable.

2010 Mathematics Subject Classification: 54A05, 54D15

Keywords and phrases: Weakly quasi-first-countable spaces, box products, semi-stratifiable spaces, σ -spaces, \aleph -spaces.

1. Introduction

In [23], Sirois-Dumais introduced the quasi-first-countable spaces and weakly quasi-firstcountable spaces, which are natural generalizations of first-countable spaces and weakly first-countable spaces, respectively. It has been found that the weakly quasi-first-countable spaces play an interesting role in the theory of generalized metric spaces and topological groups, see [15, 21–24]. In [15], Liu and Lin introduced the notion of \aleph_0 -weak bases, and revealed the elementary character of weakly quasi-first-countable spaces. In fact, every weakly quasi-first-countable space can be seen as the space each point in which has a countable locally \aleph_0 -weak base. For canonical examples, the Aren's space S_2 is a weaklyfirst-countable space but not quasi-first-countable. So the topological sum $S_2 \oplus S_{\omega}$ is a weakly quasi-first-countable space which is neither weakly first-countable nor quasi-firstcountable. However, this space is quite trivial and we are seeking abundant weakly quasifirst-countable spaces which are neither weakly first-countable nor quasi-firstcountable. So we are interested in the following question.

Communicated by Rosihan M. Ali, Dato'.

Received: April 11, 2012; Revised: July 27, 2012.

Question 1.1. Is there a general method of constructing weakly quasi-first-countable spaces which are neither weakly first-countable nor quasi-first-countable?

In the section 2 of this paper, we prove that for each first-countable, locally compact space X, the countable σ -product $\sigma B(X)$ of X endowed with the box topology is weakly quasi-first-countable, by which we obtain a general method of constructing weakly quasi-first-countable spaces which are neither weakly first-countable nor quasi-first-countable. In [22], Shen and Lin proved that a topological group is metrizable if and only if it is weakly quasi-first-countable and contains no closed copies of S_{ω} . We also give a general method of constructing weakly quasi-first-countable, non-metrizable topological groups. Some further results on $\sigma B(X)$ are given in section 3.

In this paper all spaces are regular T_1 and ω denotes the first infinite ordinal. We recall some basic definitions.

A space X is called a *sequential space* [10] if for each subset U of X, U is open if and only if every sequence L converging to $x \in U$ is eventually in U (that is, L - U is finite). X is called *Fréchet* [10] if for each $x \in \overline{A} \subset X$, there is a sequence in A converging to x. Obviously, every Fréchet space is sequential. The *sequential fan space* S_{ω} [4] is obtained by identifying all the limit points of ω many convergent sequences; A space X is called an S_2 -space (Arens' space) [1] if $X = \{\infty\} \cup \{x_n : n < \omega\} \cup \{x_n(m) : m, n < \omega\}$ and the topology is defined as follows: Each $x_n(m)$ is isolated; a basic neighborhood of x_n is $\{x_n\} \cup \{x_n(m) :$ m > k, for some $k < \omega\}$; a basic neighborhood of ∞ is $\{\infty\} \cup (\cup\{V_n : n > k \text{ for some } k < \omega\})$, where V_n is a neighborhood of x_n . Note that S_2 is not Fréchet.

For a space X, Let X^{ω} be the countable box product of X, that is, the topology of X^{ω} is generated by the base $\{\prod_{i < \omega} U_i : U_i \text{ is open in } X \text{ for each } i < \omega \}$. For $p \in X^{\omega}$, we denote the n-th coordinate of p by p(n) for each $n < \omega$. Define the σ -Box product of X at a point p as the subspace $\{x \in X^{\omega} : x(n) \neq p(n) \text{ for at most finitely many } n < \omega\}$ of X^{ω} , which we denote by $\sigma B(p, X)$. Note that in the literature, the σ -Box product of a space X is sometimes called the direct sum of X.

2. On weakly quasi-first-countable spaces

Definition 2.1. Let $\mathscr{B} = \bigcup \{\mathscr{B}_x(n) : x \in X, n < \omega\}$ be a family of subsets of a space X. For each $x \in X, n < \omega$, $\mathscr{B}_x(n)$ is a network at x and closed under finite intersections.

- (1) \mathscr{B} is said to be an \mathfrak{K}_0 -weak base [15] for X if for every subset $U \subset X$, U is open whenever there exists a $B_x(n) \in \mathscr{B}_x(n)$ such that $B_x(n) \subset U$ for each $x \in U$ and $n < \omega$. If also, $\mathscr{B}_x(n)$ is countable for each $x \in X, n < \omega$, then we call X weakly quasi-first-countable [23].
- (2) \mathscr{B} is said to be a weak base [3] for X if $\mathscr{B}_x(n) = \mathscr{B}_x(1)$ for each $n < \omega$ in the definition of \aleph_0 -weak bases. X is called weakly first-countable [3] if $B_x(1)$ is also countable for each $x \in X$.
- (3) \mathscr{B} is said to be an \aleph_0 -base for X if for each $x \in X, n < \omega$ and $B_n \in \mathscr{B}_x(n), \bigcup_{n < \omega} B_n$ is a neighborhood of x. X is called quasi-first-countable [23] if $\mathscr{B}_x(n)$ is also countable for each $x \in X, n < \omega$.

It is easy to see the following implications [3,23].

$$\begin{array}{ccc} \text{first-countable} & \Rightarrow & \text{quasi-first-countable} & \Rightarrow & \text{Fréchet} \\ & & \downarrow & & \downarrow \\ \text{weakly first-countable} & \Rightarrow & \text{weakly quasi-first-countable} & \Rightarrow & \text{sequential} \end{array}$$

For canonical examples, S_2 is a weakly first-countable space but not quasi-first-countable, S_{ω} is a quasi-first-countable space but not weakly first-countable. Moreover, the closed subspaces of a weakly first-countable space (a quasi-first-countable space) are still weakly first-countable (quasi-first-countable). Therefore, any weakly first-countable space (quasifirst-countable space) contains no closed copies of $S_{\omega}(S_2)$.

Lemma 2.1. [21] Let X be a space. $\mathscr{B} = \bigcup \{\mathscr{B}_x(n) : x \in X, n < \omega\}$ is a family of subsets of X, here each $\mathscr{B}_x(n)$ is a network at x in X and $\mathscr{B}_x(n)$ is closed under finite intersections for each $x \in X, n < \omega$. Consider the following two conditions:

- (1) \mathscr{B} is an \aleph_0 -weak base for X.
- (2) For any sequence L converging to x in X, there exist a subsequence L' of L and $n_0 < \omega$ such that L' is eventually in B for each $B \in \mathscr{B}_x(n_0)$.

We have $(1) \Rightarrow (2)$. Moreover, if X is sequential, then $(2) \Rightarrow (1)$.

Lemma 2.2. Let X be a Fréchet, locally compact space. Then $\sigma B(p,X)$ is a sequential space for each $p \in X^{\omega}$.

Proof. Let *A* be a sequentially closed subset of $\sigma B(p,X)$. It is sufficient to show *A* is a closed subset of $\sigma B(p,X)$. Fix $r \in \sigma B(p,X) - A$, put $A_n = \{x \in A : x(k) = r(k) \text{ for } k > n\}$, then $A = \bigcup_{n < \omega} A_n$.

First we claim that $r(1) \notin \overline{\{x(1) : x \in A_1\}}$. Otherwise we can find a sequence $\{x_m\}_{m < \omega} \subset A_1$ such that $\{x_m(1)\}_{m < \omega}$ converges to r(1) by the Fréchet property of X. Thus $\{x_m\}_{m < \omega}$ converges to r, which is a contradiction with A is sequentially closed. Therefore there is a compact neighborhood U_1 of r(1) such that $U_1 \cap \{x(1) : x \in A_1\} = \emptyset$.

Second, we suppose that for k < n+1, we have picked a compact neighborhood U_k of r(k) satisfying that for each $x \in A_n$, $x(k) \notin U_k$ for some k < n+1.

Put $B = \{x \in A_{n+1} : x(k) \in U_k \text{ for each } k < n+1\}$. If $r(n+1) \in \overline{\{x(n+1) : x \in B\}}$, then there is a sequence $\{x_m\}_{m < \omega} \subset B$ such that $\{x_m(n+1)\}_{m < \omega}$ converges to r(n+1). Since $\{x_m(n) : m < \omega\} \subset U_n$ and U_n is compact, $\{x_m(n) : m < \omega\}$ has a cluster point $q(n) \in U_n$. So we can find a subsequence $\{x_m\}_{i < \omega}$ of $\{x_m\}_{m < \omega}$ such that $\{x_m(n)\}_{i < \omega}$ converges to q(n). Inductively, we can get a subsequence $\{y_m\}_{m < \omega}$ of $\{x_m\}_{m < \omega}$ and $(q(1), q(2), \dots, q(n)) \in$ $U_1 \times U_2 \times \dots \times U_n$ such that $\{y_m(n+1)\}_{m < \omega}$ converges to r(n+1) and $\{y_m(k)\}_{m < \omega}$ converges to q(k) for each k < n+1. Let $y = (q(1), q(2), \dots, q(n), r(n+1), r(n+2), \dots)$, then the sequence $\{y_m\}_{m < \omega}$ converges to y. Since A is sequentially closed, $y \in A_n$. This is a contradiction with the induction hypothesis. So $r(n+1) \notin \overline{\{x(n+1) : x \in B\}}$, and thus we can take a compact neighborhood U_{n+1} of r(n+1) such that for each $x \in A_{n+1}, x(k) \notin U_k$ for some k < n+2.

Now we have constructed the compact neighborhood U_n of r(n) for each $n < \omega$ satisfying that for each $x \in A_n$, $x(k) \notin U_k$ for some k < n + 1. So $\prod_{n < \omega} U_n$ is a neighborhood of r and $\prod_{n < \omega} U_n \cap A = \emptyset$. Thus $r \notin \overline{A}$, which implies that A is closed in $\sigma B(p, X)$. Therefore, $\sigma B(p, X)$ is a sequential space.

Lemma 2.3. Let $\{x_i\}_{i < \omega}$ be a sequence in $\sigma B(p, X)$ for a space X and a point $p \in X^{\omega}$. If $\{x_i\}_{i < \omega}$ converges to a point $x \in \sigma B(p, X)$, then there are an $i_0 < \omega$ and an $n_0 < \omega$ such that for each $i > i_0$ and $n > n_0$, $x_i(n) = x(n)$.

Proof. Suppose not, then we can find two subsequences $\{n_k\}_{k<\omega}$ and $\{i_k\}_{k<\omega}$ of ω such that $x_{i_k}(n_k) \neq x(n_k)$ for each $k < \omega$. Now we pick an open neighborhood U_{n_k} of $x(n_k)$ such

that $x_{i_k}(n_k) \notin U_{n_k}$ for each $k < \omega$ and let $U_n = X$ for $n \notin \{n_k : k < \omega\}$. It is easy to verify that $U = \prod_{n < \omega} U_n \cap \sigma B(p, X)$ is an open neighborhood of x in $\sigma B(p, X)$ and $U \cap \{x_{i_k} : k < \omega\} = \emptyset$, which is a contradiction with $\{x_i\}_{i < \omega}$ converging to x. Thus, there are an $i_0 < \omega$ and an $n_0 < \omega$ such that for each $i > i_0$ and $n > n_0, x_i(n) = x(n)$.

Theorem 2.1. Let X be a first-countable, locally compact space. Then $\sigma B(p,X)$ is a weakly quasi-first-countable space for each $p \in X^{\omega}$.

Proof. For $x \in \sigma B(p, X)$ and each $n < \omega$, we take \mathscr{P}_n be the countable neighborhood base at x(n) in X. Put $\mathscr{B}'_x(n) = \{\prod_{k < \omega} P_k : P_k \in \mathscr{P}_k \text{ for } k < n+1 \text{ and } P_k = \{x(k)\} \text{ for } k > n\}$ and $\mathscr{B}_x(n) = \{\cap \mathscr{C} : \mathscr{C} \text{ is a finite subfamily of } \mathscr{B}'_x(n)\}$. Then $\mathscr{B}_x(n)$ is countable and closed under finite intersections. Also it is easy to see that each $\mathscr{B}_x(n)$ is a network at x.

By Lemma 2.2 and Lemma 2.1, it is sufficient to show $\mathscr{B}_x(n)$ satisfies the condition (2) in Lemma 2.1. Now suppose $\{x_i\}_{i < \omega}$ is a sequence converging to x in $\sigma B(p, X)$. By Lemma 2.3, there is an $i_0 < \omega$ and an $n_0 < \omega$ such that for each $i > i_0$ and $n > n_0$, $x_i(n) = x(n)$. So $\{x_i\}_{i < \omega}$ is eventually in B for each $B \in \mathscr{B}_x(n_0)$. Thus $\sigma B(p, X)$ is weakly quasi-first-countable.

Theorem 2.2. Let X be a Fréchet, locally compact space and let p(n) be a non-isolated point of X for each $n < \omega$. Then $\sigma B(p,X)$ contains a closed copy of S_2 and a closed copy of S_{ω} . Consequently, $\sigma B(p,X)$ is neither quasi-first-countable nor weakly first-countable.

Proof. For each $n < \omega$, since X is Fréchet and p(n) is a non-isolated point in X, we can find a non-trivial sequence $\{p_{mn}\}_{m < \omega} \subset X$ converging to p(n). Without loss of generality, we may assume that $p_{mn} \neq p(n)$ for each $m, n < \omega$.

For each $i, j < \omega$, put $x_{ij}(1) = p_{i1}, x_{ij}(i+1) = p_{j(i+1)}$ and $x_{ij}(k) = p(k)$ for $k \notin \{1, i+1\}$, $L_i = \{x_{ij}\}_{j < \omega}$. For each $i < \omega$, pick $y_i \in \sigma B(p, X)$ as $y_i(1) = p_{i1}$ and $y_i(k) = p(k)$ for k > 1, $L_0 = \{y_i\}_{i < \omega}$. Then L_i converges to y_i for each $i < \omega$ and L_0 converges to p. We claim that $L = \{p\} \cup L_0 \cup \bigcup_{i < \omega} L_i$ is a closed copy of S_2 . In fact, it is easy to verify that L is a sequentially closed subset of $\sigma B(p, X)$ by Lemma 2.3. By Lemma 2.2, $\sigma B(p, X)$ is sequential. So L is closed in $\sigma B(p, X)$. For given natural numbers $\{j_i : i < \omega\}$, we can similarly show that $\{x_{ij} : j < j_i, i < \omega\}$ is a sequentially closed subset of $\sigma B(p, X)$. For given natural numbers $\{j_i : i < \omega\}$, thus is a closed subset of L. So L is homeomorphic to S_2 . Therefore $\sigma B(p, X)$ contains a closed copy of S_2 .

Now for each $i, j < \omega$, we put $x_{ij}(i) = p_{ji}$ and $x_{nk}(k) = p(k)$ for $k \neq i$, $S_i = \{x_{ij}\}_{j < \omega}$. Then S_i converges to p for each $i < \omega$. Similar to the above proof, we can prove that $S = \{p\} \cup \bigcup_{i < \omega} S_i$ is a closed copy of S_{ω} in $\sigma B(p, X)$.

Corollary 2.1. Let X be a Fréchet, locally compact homogeneous space, and $p \in X^{\omega}$. Then the following are equivalent:

- (1) X is discrete;
- (2) $\sigma B(p,X)$ contains no closed copies of S_2 ;
- (3) $\sigma B(p,X)$ contains no closed copies of S_{ω} .

Corollary 2.2. Let X be a first-countable, locally compact space and let p(n) be a nonisolated point of X for each $n < \omega$. Then $\sigma B(p, X)$ is a weakly quasi-first-countable space which is neither quasi-first-countable nor weakly first-countable. In particular, let $X = \mathbb{R}$ be the real line with the Euclidean topology and $0 = (0, 0, \dots,) \in \mathbb{R}^{\omega}$. Then $\sigma B(0, \mathbb{R})$ is a weakly quasi-first-countable space which is neither quasi-first-countable nor weakly firstcountable. In [22], Shen and Lin proved that a topological group is metrizable if and only if it is weakly quasi-first-countable and contains no closed copies of S_{ω} . Svetlichny [24] proved that every quasi-first-countable topological group is metrizable and gave a weakly quasi-first-countable, non-metrizable topological group. The following corollary gives a general method to construct the weakly quasi-first-countable, non-metrizable topological groups.

Corollary 2.3. Let G be a first-countable, locally compact topological group, p(n) be a non-isolated point of X for each $n < \omega$. Then $\sigma B(p,G)$ is a weakly quasi-first-countable, non-metrizable topological group.

3. Generalized metric properties of $\sigma B(p,X)$

In [6], Borges proved that $\sigma B(p, X)$ is stratifiable for each $p \in X^{\omega}$ if X is stratifiable. Naturally, we are interested in the question that whether the similar results hold for other classical generalized metric properties. We recall some definitions.

Let \mathscr{P} be a cover of a space X. Then \mathscr{P} is called a *network* [2] for X if for any open set U and any $x \in U$, $x \in P \subset U$ for some $P \in \mathscr{P}$; \mathscr{P} is called a *k-network* [11] for X if for any compact set K and for any open set U such that $K \subset U$, $K \subset \cup \mathscr{P}' \subset U$ for some finite $\mathscr{P}' \subset \mathscr{P}$; \mathscr{P} is called a *cs-network* [11] for X if for any convergent sequence L and for any open set U such that $L \subset U$, there exists a $P \in \mathscr{P}$ such that $P \subset U$ and L is eventually in P. X is called a σ -space [19] (\aleph -space [20]) if it has a σ -locally finite network (*k*-network). Xis called a *cosmic space* [18] (\aleph_0 -space [18]) if it has a countable network (*k*-network). It is well-known to all that a space X is an \aleph -space (\aleph_0 -space) if and only if X has a σ -locally finite (countable) *cs*-network [9, 12].

Lemma 3.1. Let \mathscr{P} be a cover of a space X and $p \in X^{\omega}$. Put $\mathscr{B}_i = \{\prod_{k < \omega} P_k : P_k \in \mathscr{P} \text{for } k < i + 1 \text{ and } P_k = \{p(k)\} \text{ for } k > i\} \text{ for each } i < \omega \text{ and } \mathscr{B} = \bigcup_{i < \omega} \mathscr{B}_i.$ Then we have the following claims.

- (1) If \mathcal{P} is countable, then \mathcal{B} is countable.
- (2) If \mathscr{P} is σ -locally finite in X, then \mathscr{B} is σ -locally finite in $\sigma B(p, X)$.
- (3) If \mathscr{P} is a network for X, then \mathscr{B} is a network for $\sigma B(p, X)$.
- (4) If \mathcal{P} is a cs-network for X, then \mathcal{B} is a cs-network for $\sigma B(p, X)$.

Proof. (1) is obvious.

(2) Suppose that $\mathscr{P} = \bigcup_{n < \omega} \mathscr{P}_n$ and each \mathscr{P}_n is locally finite in *X*, then we have $\mathscr{B}_i = \bigcup_{n_1, n_2, \dots, n_i < \omega} \mathscr{P}_{n_1} \times \mathscr{P}_{n_2} \times \dots \times \mathscr{P}_{n_i} \times \prod_{k > i} \{p(k)\}$ is σ -locally finite in $\sigma B(p, X)$ for each $i < \omega$. Therefore, \mathscr{B} is σ -locally finite in $\sigma B(p, X)$.

(3) For each open subset *U* of $\sigma B(p, X)$ and $x \in U$, there is an $i_0 < \omega$ such that x(k) = p(k) for each $k > i_0$. Now we pick open subsets U_1, U_2, \dots, U_{i_0} of *X* such that $x \in \prod_{k < i_0+1} U_k \times \prod_{k > i_0} \{p(k)\} \subset U$. Since \mathscr{P} is a network for *X*, there is a $P_k \in \mathscr{P}$ such that $x(k) \in P_k \subset U_k$ for each $k < \omega$. Put $B = \prod_{k < i_0+1} P_k \times \prod_{k > i} \{p(k)\}$. Then $B \in \mathscr{B}_{i_0} \subset \mathscr{B}$ and $x \in B \subset U$.

(4) Let $\{x_m\}_{m < \omega}$ be a sequence converging to *x* and *U* be an open neighborhood of *x* in $\sigma B(p,X)$. By Lemma 2.3, there is an $i_0 < \omega$ such that for each $m > i_0$ and $k > i_0$, $x_m(k) = x(k) = p(k)$. Similar to the proof of Claim 3, we pick open subsets U_1, U_2, \dots, U_{i_0} of *X* such that $x \in \prod_{k < i_0+1} U_k \times \prod_{k > i_0} \{p(k)\} \subset U$.

For each $k < i_0 + 1$, $\{x_m(k)\}_{m < \omega}$ converges to x(k), so there is a $P_k \in \mathscr{P}$ such that $P_k \subset U_k$ and $\{x_m(k)\}_{m < \omega}$ is eventually in P_k . Put $B = \prod_{k < i_0+1} P_k \times \prod_{k > i} \{p(k)\} \in \mathscr{B}$. Then $B \subset U$ and $\{x_m\}_{m < \omega}$ is eventually in B. Therefore $\bigcup_{n < \omega} \mathscr{P}_n$ is a cs-network for $\sigma B(p, X)$. **Theorem 3.1.** Let X be a σ -space (resp. \aleph -space, cosmic space, \aleph_0 -space). Then $\sigma B(p, X)$ is a σ -space (resp. \aleph -space, cosmic space, \aleph_0 -space) for each $p \in X^{\omega}$.

Definition 3.1. A space is called semi-stratifiable [7] if there is a function *G* which assigns to each $n < \omega$ and closed set $H \subset X$, an open set G(n, H) containing *H* such that

- (i) $H = \bigcap_{n < \omega} G(n, H);$
- (ii) $H \subset K$ implies $G(n, H) \subset G(n, K)$.

If also,

(iii) $H = \bigcap_{n < \omega} G(n, H)$ (for each compact C and closed H with $C \cap H = \emptyset$, $C \cap G(n, H) = \emptyset$ for some $n < \omega$), then X is stratifiable [5] (k-semi-stratifiable [16]).

Let \mathscr{P} be a collection of pairs of subsets of X. \mathscr{P} is called *cushioned* [17] if $\overline{\bigcup\{P_1 : (P_1, P_2) \in \mathscr{P}'\}} \subset \bigcup\{P_2 : (P_1, P_2) \in \mathscr{P}'\}$ for each $\mathscr{P}' \subset \mathscr{P}$. \mathscr{P} is called a *pair-network* [13] for X if for any open set U and any $x \in U$, $x \in P_1 \subset P_2 \subset U$ for some $(P_1, P_2) \in \mathscr{P}$. Similarly, we can give the definitions of pair-*cs*-networks for a space. Kofner proved that a space X is a semi-stratifiable space if and only if X has a σ -cushioned pair-network [13]; Foged proved that a space X is a k-semi-stratifiable space if and only if X has a σ -cushioned pair-*cs*-network (pair-*cs**-network) [8, 14].

Theorem 3.2. Let X be a semi-stratifiable space (k-semi-stratifiable space). Then $\sigma B(p,X)$ is a semi-stratifiable space (k-semi-stratifiable space) for each $p \in X^{\omega}$.

Proof. Let $\mathscr{P} = \bigcup_{n < \omega} \mathscr{P}_n$ be a σ -cushioned pair-network (pair-cs-network) for *X*, where each \mathscr{P}_n is cushioned in *X*. Put $\mathscr{B}_i = \{(\prod_{k < i+1} P_{k1} \times \prod_{k > i} \{p(k)\}, \prod_{k < i+1} P_{k2} \times \prod_{k > i} \{p(k)\}) : (P_{k1}, P_{k2}) \in \mathscr{P}\}$ and $\mathscr{B} = \bigcup_{i < \omega} \mathscr{B}_i$. Similar to the proof of the claim 3 and claim 4 in theorem 3.1, we can verify that \mathscr{B} is a pair-network (pair-cs-network) for $\sigma B(p, X)$.

Now we prove that each \mathcal{B}_i is σ -cushioned in $\sigma B(p, X)$. It is sufficient to show that for each $i < \omega$, $\{(\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) : (P_{k1}, P_{k2}) \in \mathscr{P}\}$ is a σ -cushioned family in X^i . Since $\{(\prod_{k< i+1} P_{k1}, \prod_{k< i+1} P_{k2}) : (P_{k1}, P_{k2}) \in \mathscr{P}\} = \bigcup_{(n_1, n_2, \cdots, n_i) \in \mathscr{O}^i} \{(\prod_{k< i+1} P_{k1}, \prod_{k< i+1} P_{k2}) : (P_{k1}, P_{k2}) \in \mathscr{P}\}$ $P_{k2} \in \mathscr{P}_{n_k}$ for each k < i+1, we only need to show that for each $(n_1, n_2, \dots, n_i) \in \omega^i$, $\{(\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) : (P_{k1}, P_{k2}) \in \mathscr{P}_{n_k} \text{ for each } k < i+1\}$ is cushioned. Let C be a subfamily of $\{(\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) : (P_{k1}, P_{k2}) \in \mathscr{P}_{n_k} \text{ for each } k < i+1\}$. We prove that $\overline{\cup\{\prod_{k < i+1} P_{k1} : (\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) \in C\}} \subset \cup\{\prod_{k < i+1} P_{k2} : (\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) \in C\}$ C}. Suppose $x \in X^i - \bigcup \{\prod_{k < i+1} P_{k2} : (\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) \in C\}$. We put $U_k = X - \bigcup \{P_{k2} : (\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) \in C\}$. $x(k) \in X - P_{k2}, (\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) \in C\}$. Since \mathscr{P}_{n_k} is cushioned, $x(k) \in U_k \subset X - C$ $\overline{\bigcup\{P_{k1}: x(k) \in X - P_{k2}, (\prod_{k \le i+1} P_{k1}, \prod_{k \le i+1} P_{k2}) \in C\}}$ for each k < i+1. Let $V_k = X - V_k$ $\overline{\bigcup\{P_{k1}: x(k) \in X - P_{k2}, (\prod_{k \le i+1} P_{k1}, \prod_{k \le i+1} P_{k2}) \in C\}}$. We claim that $\prod_{k \le i+1} V_k$ is an open neighborhood of x in X^i and $\prod_{k < i+1} V_k \cap (\cup \{\prod_{k < i+1} P_{k1} : (\prod_{k < i+1} P_{k1}, \prod_{k < i+1} P_{k2}) \in C\}) =$ Ø. In fact, for each $(\prod_{k \le i+1} P_{k1}, \prod_{k \le i+1} P_{k2}) \in C$, there is a $k \le i+1$ such that $x_k \notin P_{k2}$. So $V_k \cap P_{k1} = \emptyset$, thus $\prod_{k < i+1} V_k \cap \prod_{k < i+1} P_{k1} = \emptyset$. Therefore, $x \notin \bigcup \{\prod_{k < i+1} P_{k1} : (\prod_{k < i+1} P_{k1}, P_{k1}) \}$ $\prod_{k < i+1} P_{k2} \in C$. Subsequently, \mathscr{B} is a σ -cushioned pair-network (pair-cs-network) for $\sigma B(p,X).$

Acknowledgement. The authors would like to thank the referees for their valuable suggestions, which led to a much better presentation of this paper. Supported by NSFC (Nos. 11201414; 11226085; 11301367), Jiangsu Planned Projects for Teachers Overseas Research Funds (No. SJS2011-34) and Taizhou University Research Funds (No. TZXY2013JBJJ003).

850

References

- [1] R. Arens, Note on convergence in topology, Math. Mag. 23 (1950), 229-234.
- [2] A. Arhangel' skiĭ, An addition theorem for the weight of sets lying in bicompacts, *Dokl. Akad. Nauk SSSR* 126 (1959), 239–241.
- [3] A. V. Arhangel' skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162.
- [4] A. V. Arhangel' skiĭ and S. P. Franklin, Ordinal invariants for topological spaces, *Michigan Math. J.* 15 (1968), 313-320; addendum, ibid. 15 (1968), 506.
- [5] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- [6] C. R. Borges, Direct sums of stratifiable spaces, Fund. Math. 100 (1978), no. 2, 97-99.
- [7] G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47-54.
- [8] L. Foged, Sequential coreflections of stratifiable spaces, Proc. Amer. Math. Soc. 92 (1984), no. 3, 470–472.
- [9] L. Foged, Characterizations of X-spaces, Pacific J. Math. 110 (1984), no. 1, 59–63.
- [10] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115.
- [11] G. Gruenhage, Generalized metric spaces, in *Handbook of Set-Theoretic Topology*, 423–501, North-Holland, Amsterdam.
- [12] J. A. Guthrie, Mapping spaces and cs-networks, Pacific J. Math. 47 (1973), 465-471.
- [13] Ja. A. Kofner, A new class of spaces and some problems from symmetrizability theory, Dokl. Akad. Nauk SSSR 187 (1969), 270–273.
- [14] S. Lin, Generalized Metric Spaces and Maps (Chinese), second edition, Kexue Chubanshe (Science Press), Beijing, 2007.
- [15] C. Liu and S. Lin, On countable-to-one maps, Topology Appl. 154 (2007), no. 2, 449-454.
- [16] D. J. Lutzer, Semimetrizable and stratifiable spaces, General Topology and Appl. 1 (1971), no. 1, 43-48.
- [17] E. Michael, Yet another note on paracompact spaces, Proc. Amer. Math. Soc. 10 (1959), 309-314.
- [18] E. Michael, X₀-spaces, J. Math. Mech. 15 (1966), 983–1002.
- [19] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1968), 236–254 (1968).
- [20] P. O'Meara, On paracompactness in function spaces with the compact-open topology, *Proc. Amer. Math. Soc.* 29 (1971), 183–189.
- [21] R. Shen, On R₀-weak bases, Houston J. Math. 35 (2009), no. 2, 501–514.
- [22] R. X. Shen and S. Lin, A note on generalized metrizable properties in topological groups, (Chinese). *Chinese Ann. Math. Ser. A* 30 (2009), no. 5, 697–704; translation in *Chinese J. Contemp. Math.* 30 (2009), no. 4, 415–422.
- [23] R. Sirois-Dumais, Quasi- and weakly-quasi-first-countable spaces, Topology Appl. 11 (1980), no. 2, 223–230.
- [24] S. A. Svetlichnyĭ, Intersection of topologies and metrizability in topological groups, (Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1989, no. 4, 79–81; translation in Moscow Univ. Math. Bull. 44 (1989), no. 4, 78–80.