BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Relative Projective Dimensions

¹BAIYU OUYANG, ²LULING DUAN AND ³WEIQING LI

^{1,3}College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
²Department of Mathematics and Computer Science, Guangxi College of Education, Nanning 530023, Guangxi, P. R. China
¹oy@hunnu.edu.cn, ²duanluling2006@163.com, ³sdwg001@163.com

Abstract. In (n,d)-ring and *n*-coherent ring theory, *n*-presented modules plays an important role. In this paper, we firstly give some new characterizations of *n*-presented modules and *n*-coherent rings. Then, we introduce the concept of (n,0)-projective dimension, which measures how far away a finitely generated module is from being *n*-presented and how far away a ring is from being Noetherian, for modules and rings. This dimension has nice properties when the ring in question is *n*-coherent. Some known results are extended or obtained as corollaries.

2010 Mathematics Subject Classification: 16D10, 16E40

Keywords and phrases: Noetherian rings, *n*-coherent rings, (n,0)-projective module (dimension), (n,0)-injective module, *n*-presented module.

1. Introduction

Throughout this paper all rings are associative with identity and modules are unitary. rD(R) stands for the right global dimension of a ring *R*. pd(M), id(M) and fd(M) denote the projective, injective and flat dimension of an *R*-module *M*, respectively.

Let $n \ge 0$ be an integer. Following [2, 3, 15], we call a right *R*-module *P n*-*presented* if there exists an exact sequence of right *R*-modules

$$F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to P \to 0$$

where each F_i is finitely generated free (equivalently projective), $i = 0, 1, \dots, n$. An *R*-module is 0-presented (resp. 1-presented) if and only if it is finitely generated (resp. finitely presented). Every *m*-presented *R*-module is *n*-presented for $m \ge n$. A ring *R* is called *right n-coherent* [3] in case every *n*-presented right *R*-module is (n + 1)-presented. It is easy to see that *R* is right 0-coherent (resp. 1-coherent) if and only if *R* is right Noetherian (resp. coherent), and every *n*-coherent ring is *m*-coherent for $m \ge n$.

Communicated by Ang Miin Huey.

Received: March 15, 2012; Revised: June 26, 2012.

Let *n* and *d* be non-negative integers and *M* a right *R*-module. *M* is called (n,d)-injective [16] if $Ext_R^{d+1}(N,M) = 0$ for any *n*-presented right *R*-module *N*. *M* is said to be (n,d)-projective [11] if $Ext_R^{d+1}(M,N) = 0$ for any (n,d)-injective *R*-module *N*. It is easy to see that both (n,d)-injective modules and (n,d)-projective modules are closed under direct summands and finite direct sums. (1,0)-injective (resp. (1,0)-projective) modules are also called *FP*-injective (resp. *FP*-projective) modules. It is clear that every (n,d)-injective (resp. (m,d)-projective) module is (m,d)-injective (resp. (n,d)-projective) for $m \ge n$.

In (n,d)-ring and *n*-coherent ring theory (see [2,3,11,16]), *n*-presented modules plays an important role. For modules and rings, Mao and Ding [10] defined a dimension, called an *FP*-projective dimension; Ng [12] introduced the concept of finitely presented dimension. In this paper, we introduce a kind of *n*-presented dimension of modules and rings.

Let $n \ge 1$ be a fixed integer. In Section 2, we introduce the concept of (n,0)-projective dimension npd(M) for a right *R*-module *M*, and the concept of right (n,0)-projective dimension for a ring *R*, which measures how far away a finitely generated right *R*-module *M* is from being *n*-presented, and how far away a ring is from being right Noetherian, respectively. It is shown that a finitely generated right *R*-module *M* is *n*-presented if and only if it is (n,0)-projective if and only if npD(M) = 0 (Theorem 2.1); *R* is an *n*-coherent ring if and only if every (n,0)-injective right *R*-module is (n,1)-injective if and only if every (n,1)-projective right *R*-module is (n,0)-projective if and only if ropD(R) = 0 if and only if every right *R*-module is (n,0)-projective if and only if only if for a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules, if both *B* and *C* are finitely generated, then *A* is also finitely generated (Corollary 2.3).

Let $n \ge 1$ be a fixed integer and R a right *n*-coherent ring. In Section 3, we prove that $rnpD(R) = \sup\{npd(M): M \text{ is a cyclic right } R \text{-module}\} = \sup\{id(M): M \text{ is an } (n,0)\text{-injective right } R \text{-module}\}$ (Theorem 3.1). As corollaries we obtain that R is right Noetherian if and only if $rnpD(R) < \infty$ and every injective right R-module is (n,0)-projective if and only if every (n,0)-injective right R-module has an $(n,0)\text{-projective over with the unique mapping property if and only if every <math>(n,0)\text{-injective right } R$ -module has an injective envelope with the unique mapping property (Corollary 3.3). If $rnpD(R) \le m$, then we have that R is a right *m*-coherent ring (Proposition 3.5). Let S and T be rings. If $S \oplus T$ is an right *n*-coherent ring, then we get that $rnpD(S \oplus T) = \sup\{rnpD(S), rnpD(T)\}$ (Theorem 3.2). Let R be a commutative *n*-coherent ring and P any prime ideal of R, then $npD(R_P) \le npD(R)$, where R_P is the localization of R at P (Theorem 3.3).

2. Definition and general results

Let *R* be a ring and $m \ge 0$ an integer. Mao and Ding [10] defined the *FP-projective* dimension fpd(M) of a right *R*-module *M* as $\inf\{m: Ext_R^{m+1}(M,N) = 0 \text{ for any } FP\text{-injective}$ right *R*-module *N*}, if no such *m* exists, set $fpd(M) = \infty$; and the right *FP-projective* dimension rfpD(R) of *R* as $\sup\{fpd(M): M \text{ is a finitely generated right } R\text{-module}\}$. We generalize it as follows.

Definition 2.1. Let $m \ge 0$, $n \ge 1$ be integers, and R a ring. For a right R-module M, set $npd(M) = inf\{m: Ext_R^{m+1}(M, N) = 0 \text{ for any } (n, 0)\text{-injective right } R\text{-module } N\}$, called the (n, 0)-projective dimension of M. If no such m exists, set $npd(M) = \infty$.

Put $rnpD(R) = \sup\{npd(M): M \text{ is a finitely generated right } R \text{-module}\}$, and call rnpD(R) the right (n,0)-projective dimension of R. The left (n,0)-projective dimension lnpD(R) of

R may be defined similarly. If *R* is a commutative ring, we drop the unneeded letters *r* and *l*.

We list the following lemma proved in [11, Lemma 3.3] for convenient using.

Lemma 2.1. [11, Lemma 3.3] Let R be a ring, $n \ge 0$ an integer and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of right R-modules. If C is (n+1,0)-projective and B is (n,0)projective, then A is (n,0)-projective.

It is clear that an *n*-presented right *R*-module is (n, 0)-projective. In general, the converse is not true. Glaz (see [8, Theorem 2.1.10]) proved that a finitely generated right *R*-module is finitely presented if and only if it is *FP*-projective. We generalize it as the following.

Theorem 2.1. Let $n \ge 0$ be a fixed integer and R a ring. Then the following are equivalent for a finitely generated right R-module P.

- (1) *P* is *n*-presented.
- (2) P is (n, 0)-projective.
- (3) npd(P) = 0.

Proof. $(1) \Rightarrow (2)$ is obvious, and $(2) \Leftrightarrow (3)$ holds by definition.

 $(2) \Rightarrow (1)$. We use induction on *n*. The case n = 0 is clear, and the case n = 1 has been proven in [8, Theorem 2.1.10]. Assume n > 1, and *P* is (n,0)-projective. Then *P* is (n-1,0)-projective. So *P* is (n-1,0)-presented by the induction hypothesis. Therefore there exists an exact sequence of right *R*-modules

$$F_{n-1} \to F_{n-2} \to \cdots \to F_1 \to F_0 \to P \to 0$$

where each F_i is finitely generated projective (hence (m, 0)-projective, for any non-negative integer m), i = 0, 1, ..., n-1. Write $K_1 = \ker(F_0 \rightarrow P)$, $K_m = \ker(F_{m-1} \rightarrow F_{m-2})$, m = 2, 3, ..., n-1. Then we have the following short exact sequences

$$0 \longrightarrow K_1 \longrightarrow F_0 \longrightarrow P \longrightarrow 0,$$

$$0 \longrightarrow K_2 \longrightarrow F_1 \longrightarrow K_1 \longrightarrow 0,$$

$$\vdots$$

$$0 \longrightarrow K_{n-1} \longrightarrow F_{n-2} \longrightarrow K_{n-2} \longrightarrow 0$$

Note that *P* is (n,0)-projective and F_0 is (n-1,0)-projective, we obtain K_1 is (n-1,0)-projective by Lemma 2.1. It follows that K_2 is (n-2,0)-projective again by Lemma 2.1. Continuing this way, we see that K_{n-1} is (1,0)-projective. Clearly, K_{n-1} is finitely generated. Thus K_{n-1} is finitely presented by [8, Theorem 2.1.10], and hence there exists an exact sequence $F'_n \rightarrow F'_{n-1} \rightarrow K_{n-1} \rightarrow 0$ with F'_n and F'_{n-1} finitely generated projective. So we get an exact sequence

$$F_n^{\prime} \to F_{n-1}^{\prime} \to F_{n-2} \to \cdots \to F_1 \to F_0 \to P \to 0$$

It follows that *P* is *n*-presented, as required.

The following corollary is well-known.

Corollary 2.1. Let $n \ge 0$ be a fixed integer and R a ring. Then the following statements *hold:*

(1) Every finitely generated projective right *R*-module is *n*-presented.

- (2) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules, if both *A* and *C* are *n*-presented, then *B* is also *n*-presented.
- (3) If $B \cong A \oplus C$, then B is n-presented if and only if both A and C are n-presented.

Proof.

- (1) Note that every projective right *R*-module is (n, 0)-projective. Thus (1) follows from Theorem 2.1.
- (2) Since A and C are n-presented, we have both A and C are finitely generated and (n,0)-projective. Hence B is also finitely generated and (n,0)-projective. Therefore B is n-presented by Theorem 2.1.
- (3) If B ≅ A ⊕ C, then it is easy to see that B is finitely generated and (n,0)-projective if and only if both A and C are finitely generated and (n,0)-projective. Thus (3) holds by Theorem 2.1, and we complete the proof.

Corollary 2.2. Let *R* be a ring, $n \ge 0$ an integer and $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ a short exact sequence of right *R*-modules, where *P* is finitely generated projective. Then *K* is *n*-presented if and only if *M* is (n+1,0)-presented.

Proof. If *K* is *n*-presented, then clearly *M* is (n + 1)-presented. Conversely, if *M* is (n + 1)-presented (hence (n + 1, 0)-projective), then it is easy to see that *K* is finitely generated. On the other hand, *K* is (n, 0)-projective by Lemma 2.1. It follows that *K* is *n*-presented from Theorem 2.1.

Theorem 2.2. *Let R be a ring, and* $n \ge 0$ *a fixed integer. Then the following are equivalent:*

- (1) *R* is a right n-coherent ring.
- (2) Every (n+1,0)-injective right *R*-module is (n,0)-injective.
- (3) Every (n,0)-projective right *R*-module is (n+1,0)-projective.
- (4) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules with *B* finitely generated projective, if *C* is *n*-presented, then *A* is also *n*-presented.
- (5) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules, if both *B* and *C* are *n*-presented, then *A* is also *n*-presented.

If $n \ge 1$, then the above conditions are also equivalent to:

- (6) Every (n,0)-injective right *R*-module is (n,1)-injective
- (7) Every (n, 1)-projective right *R*-module is (n, 0)-projective.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. are obvious.

 $(3) \Rightarrow (1)$. Let *M* be an *n*-presented right *R*-modules. Then *M* is finitely generated and (n,0)-projective by Theorem 2.1. Note that *M* is (n+1,0)-projective by (3). Thus *M* is (n+1)-presented again by Theorem 2.1.

 $(4) \Rightarrow (1)$. Let *M* be any *n*-presented right *R*-module. Then there exists a short exact sequence $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ of right *R*-modules with *P* finitely generated projective and *K n*-presented by (4). Hence *M* is (n+1)-presented by Corollary 2.2, and (1) follows.

 $(1) \Rightarrow (5)$. If *C* is *n*-presented, then *C* is (n+1)-presented by (1). The rest proof is similar to that of Corollary 2.2.

 $(5) \Rightarrow (4)$. By (5), it suffices to show that *B* is *n*-presented. But this follows from Corollary 2.1.

Now suppose $n \ge 1$.

 $(4) \Rightarrow (6)$. Let *M* be an (n,0)-injective right *R*-module and *C* any *n*-presented right *R*-module. Then we get a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules with *B* finitely generated projective. By (4), *A* is *n*-presented. Thus,

$$Ext_R^2(C,M) \cong Ext_R^1(A,M) = 0.$$

Therefore, M is (n, 1)-injective.

 $(6) \Rightarrow (7)$ is easy.

 $(7) \Rightarrow (1)$. Let *P* be an *n*-presented right *R*-module. We get a short exact sequence $0 \rightarrow K \rightarrow F \rightarrow P \rightarrow 0$ of right *R*-modules with *F* finitely generated projective and *K* finitely generated. For any (n, 1)-injective right *R*-module *M*, we have

$$Ext_R^1(K,M) \cong Ext_R^2(P,M) = 0.$$

So K is (n, 1)-projective and hence (n, 0)-projective by (7). Thus, K is n-presented by Theorem 2.1. Therefore, P is (n + 1)-presented and (1) holds.

It is well known that a ring *R* is right Noetherian if and only if every right *R*-module is *FP*-projective if and only if rfpD(R) = 0 (see [10, Proposition 2.6]). Now, we have the following.

Corollary 2.3. Let $n \ge 1$ be a fixed integer. Then the following are equivalent for a ring R:

- (1) *R* is right Noetherian.
- (2) rnpD(R) = 0.
- (3) Every finitely generated right *R*-module is *n*-presented.
- (4) Every (n,0)-injective right *R*-module is injective.
- (5) Every right *R*-module is (n,0)-projective.
- (6) Every finitely generated right *R*-module is (n, 0)-projective.
- (7) Every cyclic right *R*-module is (n,0)-projective.
- (8) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules, if both *B* and *C* are finitely generated, then *A* is also finitely generated.

If R is right n-coherent, then the above conditions are also equivalent to:

(9) Every (n,0)-injective right *R*-module is (n,0)-projective.

Proof. $(1) \Leftrightarrow (3) \Rightarrow (4)$ and $(5) \Rightarrow (6) \Rightarrow (7)$ are trivial.

 $(4) \Rightarrow (5)$ Let *M* be any right *R*-module and *N* any (n,0)-injective right *R*-module. Then $Ext_R^1(M,N) = 0$ since *N* is injective by (4). Hence *M* is (n,0)-projective.

 $(7) \Rightarrow (4)$. Let *N* be any (n,0)-injective right *R*-module, and *I* any right ideal of *R*. By (7), R/I is (n,0)-projective. So $Ext_R^1(R/I,N) = 0$. That is, *N* is injective.

 $(2) \Leftrightarrow (6)$ holds by definition, $(3) \Leftrightarrow (6)$ holds by Theorem 2.1, $(1) \Leftrightarrow (8)$ holds by Theorem 2.2, and $(4) \Leftrightarrow (9)$ has been proven in [11, Proposition 4.10].

Corollary 2.4. Let $n \ge 1$ be an integer and R a ring. If $rnpD(R) \le 1$, then rnpD(R) = rfpD(R).

Proof. This follows from the fact that rnpD(R) = 0 if and only if rfpD(R) = 0 by Corollary 2.3 and [10, Proposition 2.6].

Remark 2.1.

(1) From Theorem 2.1 and Corollary 2.3, we see that npd(M) measures how far away a finitely generated right *R*-module *M* is from being *n*-presented, and rnpD(R) measures how far away a ring is from being right Noetherian.

- (2) It is clear that $fpd(M) \le npd(M) \le pd(M)$, and $rfpD(R) \le rnpD(R) \le rD(R)$. Since rfpD(R) = rD(R) if and only if *R* is von Neumann regular [10, Remarks 2.2], we have rfpD(R) = rnpD(R) = rD(R) if and only if *R* is von Neumann regular. It is also easy to see that rnpD(R) = rD(R) if and only if *R* is a right (n, 0)-ring (see [16, Definition 2.5]).
- (3) It is known that a right Noetherian ring need not be left Noetherian, so $rnpD(R) \neq lnpD(R)$ in general.
- (4) The equivalence of (1) through (3) in Theorem 2.2 has been proven in [11, Theorem 4.1]. Here we prove the equivalence in a different way.
- (5) If n = 1, then Theorem 2.2 is just some characterizations of coherent rings.

Recall that a ring *R* is called right self-(n, 0)-injective in case R_R is (n, 0)-injective. Stenström proved that if *R* is right coherent and right self-*FP*-injective, then every flat right *R*-module is *FP*-injective (see [14, Lemma 4.1]). We generalize it as the following

Proposition 2.1. Let $n \ge 1$ be a fixed integer. If *R* is a right *n*-coherent and right self-(n, 0)-injective ring, then every flat right *R*-module is (n, 0)-injective.

Proof. Let *M* be a flat right *R*-module. Then, by [9, Theorem 4.85], we get a pure short exact sequence $0 \to K \to F \to M \to 0$ where $F \cong \bigoplus_I R$ for a set *I*. Since *R* is right *n*-coherent and right self-(n, 0)-injective, we have *F* is (n, 0)-injective by [16, Lemma 2.9]. Hence we obtain the following exact sequence

$$0 \to Hom_R(N,K) \to Hom_R(N,F) \to Hom_R(N,M) \to Ext_R^1(N,K) \to Ext_R^1(N,F) = 0$$

for any *n*-presented (hence finitely presented) right *R*-module *N*. It follows that $Ext_R^1(N, K) = 0$, and so *K* is (n, 0)-injective. Note that *R* is right *n*-coherent, we have *M* is (n, 0)-injective by [11, Theorem 4.1], as desired.

3. (*n*,0)-projective dimensions over *n*-coherent rings

Proposition 3.1. Let $n \ge 1$, $m \ge 0$ be integers. If *R* is a right *n*-coherent ring, then the following are equivalent for a right *R*-module *M*:

- (1) $npd(M) \leq m$.
- (2) $Ext_R^{m+1}(\overline{M}, N) = 0$ for any (n, 0)-injective right R-module N.
- (3) $Ext_R^{m+j}(M,N) = 0$ for any (n,0)-injective right *R*-module *N* and $j \ge 1$.
- (4) There exists an exact sequence $0 \to P_m \to P_{m-1} \to \cdots \to P_1 \to P_0 \to M \to 0$, where each P_i is (n,0)-projective.
- (5) If $\dots \to P_{m-1} \to P_{m-2} \to \dots \to P_1 \to P_0 \to M \to 0$ is a projective resolution of M, then $ker(P_{m-1} \to P_{m-2})$ is (n, 0)-projective.

Proof. (1) \Rightarrow (2). We use induction on *m*. The case m = 0 is clear. Let $m \ge 1$. If npd(M) = m, then (2) holds by definition. Suppose $npd(M) \le m - 1$. For any (n, 0)-injective right *R*-module *N*, the short exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with *E* injective induces an exact sequence

$$Ext_R^m(M,L) \to Ext_R^{m+1}(M,N) \to Ext_R^{m+1}(M,E) = 0.$$

Since *R* is *n*-coherent, we get *L* is (n,0)-injective by [11, Theorem 4.1]. So $Ext_R^m(M,L) = 0$ by the induction hypothesis. It follows that $Ext_R^{m+1}(M,N) = 0$, as desired.

 $(2) \Rightarrow (3)$. Using induction on *j*, the proof is similar to that of $(1) \Rightarrow (2)$.

 $(3) \Rightarrow (1)$, and $(2) \Rightarrow (5) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (2). Write $K_1 = \ker(P_0 \rightarrow M)$, $K_i = \ker(P_{i-1} \rightarrow P_{i-2})$, i = 2, 3, ..., m-1. Then we have the following short exact sequences

$$\begin{array}{ccc} 0 \longrightarrow K_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0, \\ 0 \longrightarrow K_2 \longrightarrow P_1 \longrightarrow K_1 \longrightarrow 0, \\ & \vdots \\ 0 \longrightarrow P_m \longrightarrow P_{m-1} \longrightarrow K_{m-1} \longrightarrow 0. \end{array}$$

From the bottom exact sequence, we get the exactness of the sequence

$$0 = Ext_R^1(P_m, N) \to Ext_R^2(K_{m-1}, N) \to Ext_R^2(P_{m-1}, N)$$

for any (n,0)-injective right *R*-module *N*. Since P_{m-1} is (n,0)-projective, using an argument similar to that of $(1) \Rightarrow (2)$, we get $Ext_R^2(P_{m-1},N) = 0$. Hence $Ext_R^2(K_{m-1},N) = 0$. Continuing this way, we obtain $Ext_R^{m+1}(M,N) = 0$. Thus (2) holds.

Proposition 3.2. Let *R* be a right *n*-coherent ring $(n \ge 1)$ and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of right *R*-modules. Then the following are true:

- (1) If two of npd(A), npd(B) and npd(C) are finite, so is the third.
- (2) $npd(A) \leq \sup\{npd(B), npd(C) 1\}.$
- (3) $npd(B) \leq \sup\{npd(A), npd(C)\}.$
- (4) $npd(C) \le \sup\{npd(B), npd(A)+1\}.$
- (5) If B is (n,0)-projective and $0 < npd(A) < \infty$, then npd(C) = npd(A) + 1.

Proof. Easy to verify by Proposition 3.1.

Corollary 3.1. Let *R* be a right n-coherent ring $(n \ge 1)$, *A*, *B* and *C* right *R*-modules. If $B \cong A \oplus C$, then $npd(B) = \sup\{npd(A), npd(C)\}$.

Proof. Since $B \cong A \oplus C$, we get two short exact sequences $0 \to A \to B \to C \to 0$ and $0 \to C \to B \to A \to 0$. By Proposition 3.2 (3), it is enough to show that $npd(B) \ge \sup\{npd(A), npd(C)\}$. Suppose $npd(B) < \sup\{npd(A), npd(C)\}$, then npd(B) < npd(A) or npd(B) < npd(A). By Proposition 3.2 (2), $npd(C) \le \sup\{npd(B), npd(A) - 1\}$. So $npd(C) \le npd(A) - 1$, that is, npd(C) < npd(A). In addition, also by Proposition 3.2 (2), we have $npd(A) \le \sup\{npd(B), npd(C) - 1\}$. Hence $npd(A) \le npd(A)$, and so npd(C) - 1, a contradiction.

Let *M* be a right *R*-module. Recall that a a homomorphism $\phi : M \to F$ where *F* is a right (n,0)-injective *R*-module, is called an (n,0)-injective *preenvelope* [5] of *M* if for any homomorphism $f : M \to F'$ with F' is (n,0)-injective, there is a homomorphism $g : F \to F'$ such that $g\phi = f$. Moreover, if the only such *g* are automorphism of *F* when F' = F and $f = \phi$, then the (n,0)-injective preenvelope ϕ is called an (n,0)-injective *envelope*. A monomorphic (n,0)-injective preenvelope ϕ is said to be *special* [6, Definition 7.1.6] if coker ϕ is (n,0)-projective. (n,0)-projective (pre)covers and special (n,0)-projective precovers can be defined dually. It is proved that every right *R*-module has a special (n,0)-projective preenvelope (see [11, Theorem 3.9]).

Theorem 3.1. Let *R* be a right n-coherent ring $(n \ge 1)$, then the following are identical: (1) rnpD(R)

- (2) sup{npd(M): M is a cyclic right R-module}
- (3) $\sup\{npd(M): M \text{ is any right } R\text{-module}\}$
- (4) $\sup\{npd(M): M \text{ is an } (n,0)\text{-injective right } R\text{-module}\}$
- (5) $\sup\{id(M): M \text{ is an } (n,0)\text{-injective right } R\text{-module}\}$

Proof. (1) \leq (2). We may assume sup{npd(M): *M* is a cyclic right *R*-module} = $m < \infty$. Let *A* be any finitely generated right *R*-module. We use induction on the number of generators of *A*. If *A* has *l* generators, let *A'* be a submodule generated by one of these generators. Then both A/A' and A' are finitely generated on less then *l* generators. Let *N* be any (n, 0)-injective right *R*-module. Consider the short exact sequence $0 \rightarrow A' \rightarrow A \rightarrow A/A' \rightarrow 0$ which induces an exact sequence

$$Ext_R^{m+1}(A/A', N) \rightarrow Ext_R^{m+1}(A, N) \rightarrow Ext_R^{m+1}(A', N)$$

where

$$Ext_{R}^{m+1}(A/A', N) = Ext_{R}^{m+1}(A', N) = 0$$

by induction hypothesis. Thus $Ext_R^{m+1}(A, N) = 0$. So $npd(A) \le m$.

 $(2) \leq (3)$ is clear.

(3) \leq (4). We may assume $\sup\{npd(M): M \text{ is an } (n,0)\text{-injective right } R\text{-module}\}=$ $m < \infty$. Let A be any right R-module, then A has a special (n,0)-injective preenvelope by [11, Theorem 3.9], that is, there exists a short exact sequence $0 \rightarrow A \rightarrow E \rightarrow L \rightarrow 0$ with $E(n,0)\text{-injective and } L(n,0)\text{-projective. Therefore, } npd(A) \leq npd(E) \leq m$ by Proposition 3.2.

(4) \leq (5). We may assume sup{id(M): M is an (n,0)-injective right R-module} = $m < \infty$. Let A and B be any (n,0)-injective right R-modules. Then $Ext_R^{m+1}(A,B) = 0$ since $id(B) \leq m$. So $npd(A) \leq m$ by Proposition 3.1.

(5) \leq (1). We may assume $rnpD(R) = m < \infty$. Let *M* be an (n,0)-injective right *R*-module. Then $Ext_R^{m+1}(R/I,M) = 0$ for any right ideal *I* of *R* since $npd(R/I) \leq m$ by hypothesis. Hence $id(M) \leq m$, this completes the proof.

Corollary 3.2. Let $n \ge 1$ be a fixed integer. Then the following are equivalent for a right *n*-coherent ring *R*:

- (1) $rnpD(R) \leq m$.
- (2) $npd(M) \le m$ for any (n,0)-injective right *R*-module *M*.
- (3) $npd(M) \le m$ for any injective right *R*-module *M*, and $rnpD(R) < \infty$.
- (4) $id(M) \le m$ for any (n,0)-injective right *R*-module *M*.
- (5) $id(M) \le m$ for all right *R*-module *M* that are both (n,0)-injective and (n,0)-projective, and $rnpD(R) < \infty$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4) holds by Theorem 3.1. (2) \Rightarrow (3) and (4) \Rightarrow (5) are clear.

 $(5) \Rightarrow (4)$. Let *M* be any (n,0)-injective right *R*-module. By (5) and Theorem 3.1 (4), npd(M) = m for a non-negative integer *m*. Note that every right *R*-module has a special (n,0)-projective precover by [11, Theorem 3.9], we obtain an exact sequence

$$0 \to P_m \to P_{m-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

where each P_t is both (n, 0)-projective and (n, 0)-injective, t = 0, 1, ..., m. Hence $id(P_t) \le m$ by (5), t = 0, 1, ..., m. So $id(M) \le m$.

 $(3) \Rightarrow (2)$. Let *M* be any (n,0)-injective right *R*-module. By (3) and Theorem 3.1 (5), id(M) = t for a non-negative integer *t*. Hence we get an injective resolution of *M*:

$$0 \to M \to E^0 \to E^1 \cdots \to E^{t-1} \to E^t \to 0.$$

By (3), $npd(E^i) \le m$, i = 0, 1, ..., t. Hence we have $npd(M) \le m$ by Proposition 3.2, as desired.

Recall that an injective envelope $\phi : M \to E(M)$ of *M* has the *unique mapping property* [4] if for any homomorphism $f : M \to A$ with *A* injective, there is a unique homomorphism $g : E(M) \to A$ such that $g\phi = f$. The concept of an (n, 0)-projective cover with the unique mapping property can be defined similarly.

Corollary 3.3. Let $n \ge 1$ be a fixed integer. Then the following are equivalent for a right *n*-coherent ring *R*:

- (1) *R* is right Noetherian.
- (2) $rnpD(R) < \infty$ and every injective right *R*-module is (n,0)-projective.
- (3) Every (n,0)-injective right *R*-module is (n,0)-projective.
- (4) Every (n,0)-injective right *R*-module has an (n,0)-projective cover with the unique mapping property.
- (5) Every (n,0)-injective right *R*-module has an injective envelope with the unique mapping property.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) holds by Corollary 3.2 and Corollary 2.3.

 $(1) \Rightarrow (4)$ and $(1) \Rightarrow (5)$. Let *M* be any (n,0)-injective right *R*-module. Then *M* is (n,0)-projective and injective, since *R* is right Noetherian by (1). Thus (4) and (5) follows.

 $(4) \Rightarrow (3)$. For any (n,0)-injective right *R*-module *M*, let $g : P \to M$ be the (n,0)-projective cover of *M* with the unique mapping property, where *P* is (n,0)-projective. Write K = kerg. Then *K* is (n,0)-injective by [6, Corollary 7.2.3] and [11, Theorem 3.9]. Hence there exists an (n,0)-projective cover $f : P' \to K$ of *K* by (4). So, we obtain the following exact commutative diagram:

Since g(if) = 0, we have if = 0 by (4). Whence $K = \text{Im} f \subseteq \text{ker}(i) = 0$, that is, M is (n, 0)-projective.

 $(5) \Rightarrow (1)$. Let *M* be any (n,0)-injective right *R*-module. By Corollary 2.3, we need only to show that *M* is injective. Let $f: M \to E$ be the injective envelope of *M* with the unique mapping property. Write $L = \operatorname{coker} f$. Since *R* is *n*-coherent, *L* is (n,0)-injective by [11, Theorem 4.1]. So there exists an injective envelope $g: L \to E'$ of *L* by (5). Therefore we get the following exact commutative diagram:

Since $(g\pi)f = 0$, we have $g\pi = 0$ by (5). Hence $L = \text{Im}\pi \subseteq \text{ker}(g) = 0$. So *M* is injective. This completes the proof.

Recall that a short exact sequence $0 \to A \to B \to C \to 0$ is said to be *n*-pure [11] if $Hom(M,B) \to Hom(M,C) \to 0$ is exact for any *n*-presented module *M*. A submodule *N* of *M* is called an *n*-pure submodule if the sequence $0 \to N \to M \to M/N \to 0$ is *n*-pure.

Proposition 3.3. Let $n \ge 1$ be a fixed integer and *R* a right *n*-coherent ring. Observe the following statements:

- (1) $rnpD(R) \leq 1$.
- (2) For any n-pure submodule N of an injective right R-module E, the quotient E/N is injective (i.e., $id(N) \le 1$).
- (3) Every submodule of an (n,0)-projective right R-module is (n,0)-projective.
- (4) Every right ideal of R is (n,0)-projective.
- (5) For any pure submodule N of an injective right R-module E, the quotient E/N is injective.
- (6) Every submodule of an FP-projective right R-module is FP-projective.
- (7) Every right ideal of R is FP-projective.

Then: $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$ and $(2) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$.

Proof. (1) \Rightarrow (2). Let *N* be an *n*-pure submodule of an injective right *R*-module *E*. Then it is easy to see that *N* is (n,0)-injective. Hence $id(N) \le 1$ by Theorem 3.1 (5). So the short exact sequence $0 \rightarrow N \rightarrow E \rightarrow E/N \rightarrow 0$ implies that E/N is injective.

 $(2) \Rightarrow (3)$. Let L be any (n,0)-injective right R-module. Then it is clear that L is an *n*-pure submodule of its injective envelope E(L), and hence $id(L) \le 1$ by (2). If N is a submodule of an (n,0)-projective right R-module M, then the exactness of the sequence

$$0 = Ext_R^1(M,L) \to Ext_R^1(N,L) \to Ext_R^2(M/N,L) = 0$$

implies that $Ext_R^1(N,L) = 0$, and so N is (n,0)-projective.

 $(4) \Rightarrow (1)$. Let *I* be an ideal of *R*. The exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ implies that $npd(R/I) \le 1$ by Proposition 3.1. So (1) holds by Theorem 3.1 (2).

 $(2) \Rightarrow (5)$. It is easy to verify that every pure right *R*-module is *n*-pure. So (5) follows.

 $(5) \Rightarrow (6)$ is similar to that of $(2) \Rightarrow (3), (3) \Rightarrow (4)$ and $(6) \Rightarrow (7)$ are trivial.

It is known that if *R* is a right coherent ring, then fd(M) = pd(M) for any finitely present right *R*-module *M* (see [7, Lemma 5]). Mao and Ding (see [10, Proposition 4.1]) proved that if *R* is also self-*FP*-injective, then fd(M) = pd(M) for any *FP*-projective right *R*-module *M*. Here we have the following

Proposition 3.4. Let *n* be a fixed positive integer. If *R* is a right *n*-coherent and right self-(n,0)-injective ring, then fd(M) = pd(M) for any (n,0)-projective right *R*-module *M*.

Proof. It is enough to show that $fd(M) \ge pd(M)$. We may assume that $fd(M) = m < \infty$. Then there exists an exact sequence

$$0 \to F_m \to P_{m-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

with P_0, P_1, \dots, P_{m-1} projective and F_m flat. Consider the short exact sequence $0 \to K \to P \to F_m \to 0$ where P is projective. By [9, Theorem 4.85], the short exact sequence above is pure, and hence *n*-pure. By Proposition 2.1, P is (n, 0)-injective. So K is (n, 0)-injective by [11, Proposition 3.6]. Since M is (n, 0)-projective, so is F_m . Thus the exactness of the sequence

$$0 \to Hom_{R}(F_{m}, K) \to Hom_{R}(P, K) \to Hom_{R}(K, K) \to Ext_{R}^{1}(F_{m}, K) = 0$$

implies that the sequence $0 \to K \to P \to F_m \to 0$ is split exact, and so F_m is projective, that is, $pd(M) \le m$. This completes the proof.

Proposition 3.5. Let $n \ge 1$ be a fixed integer and R a right n-coherent ring. If $rnpD(R) \le m$, then R is a right m-coherent ring.

Proof. The case m = 0 holds by Corollary 2.3. Suppose $m \ge 1$. Let *M* be an *m*-presented right *R*-module, then *M* has a free resolution

$$F_m \to F_{m-1} \to \cdots \to F_1 \to F_0 \to M \to 0$$

with each F_i finitely generated free. Write $K_m = \ker(F_{m-1} \rightarrow F_{m-2})$, then

$$Ext_R^1(K_m, N) \cong Ext_R^{m+1}(M, N) = 0$$

for any *FP*-injective right *R*-module *N*, since $rnpD(R) \le m$ and every *FP*-injective right *R*-module is (n,0)-injective. Note that K_m is finitely generated. We obtain K_m is finitely presented by Theorem 2.1. This implies that *M* is (m+1)-presented, and so *R* is a right *m*-coherent ring.

To prove the next main result, we need four lemmas.

Lemma 3.1. Let $f: R \to S$ be a surjective ring homomorphism. If M_S is a right S-module (hence a right R-module) and A_R is a right R-module, then the following statements hold:

- (1) $M \otimes_R S_S \cong M_S$.
- (2) If A_R is a finitely generated right *R*-module, then $A \otimes_R S_S$ is a finitely generated right *S*-module.
- (3) M_S is a finitely generated right S-module if and only if M_R is a finitely generated right R-module.

Proof. (1). Easy.

(2). Clearly, *S* is a cyclic *R*-module. Suppose x_1, x_2, \dots, x_n are generators of *A*. Then it is easy to verify that $x_1 \otimes 1_S, x_2 \otimes 1_S, \dots, x_n \otimes 1_S$ are generators of $A \otimes_R S_S$, where 1_S denotes the identity of *S*. Thus $A \otimes_R S_S$ is a finitely generated right *S*-module.

(3). If M_S is a finitely generated right *S*-module, and suppose x_1, x_2, \dots, x_n are generators of *M*, then $M = x_1S + x_2S + \dots + x_nS$. So $M = x_1R + x_2R + \dots + x_nR$ since $f: R \to S$ is surjective. Hence M_R is a finitely generated right *R*-module. The converse holds by (1) and (2).

Lemma 3.2. Let $f: R \to S$ be a surjective ring homomorphism, n a non-negative integer, and M a right S-module. If both S_R and $_RS$ are projective, then M_S is an n-presented right S-module if and only if M_R is an n-presented right R-module. (Note that the case n = 1 has been proven in [10, Lemma 3.13].)

Proof. The case n = 0 follows by Lemma 3.1. So next we assume n > 0.

" \Rightarrow ". Suppose *M* is an *n*-presented right *S*-module. Then there exists an exact sequence

$$0 \to K \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

of right S-modules with K finitely generated, and P_i finitely generated projective, $i = 0, 1, \dots, n-1$. By Lemma 3.1, each P_i and K are finitely generated right R-modules. Since S_R is projective, we have each P_i is a projective right R-module. So, M is an n-presented right R-module.

" \leftarrow ". Assume *M* is an *n*-presented right *R*-module. Then there exists an exact sequence

$$0 \to K \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

of right *R*-modules with *K* finitely generated, and P_i finitely generated projective, $i = 0, 1, \dots, n-1$. Since _RS is projective, the sequence

$$0 \to K \otimes_R S_S \to P_{n-1} \otimes_R S_S \to \cdots \to P_1 \otimes_R S_S \to P_0 \otimes_R S_S \to M \otimes_R S_S \to 0$$

is exact. By Lemma 3.1, $M \otimes_R S_S \cong M_S$, and both $K \otimes_R S_S$ and each $P_i \otimes_R S_S$ are finitely generated *S*-modules. Since each P_i is a projective right *R*-module, we have each $P_i \otimes_R S_S$ is a projective right *S*-module. So *M* is an *n*-presented right *S*-module.

Let *n* and *d* be non-negative integers. Recall that a left *R*-module *A* is called (n,d)-*flat* [16], in case $Tor_{d+1}^{R}(B,A) = 0$ for any *n*-presented right *R*-module *B*.

Lemma 3.3. Let $f: R \to S$ be a surjective ring homomorphism, M_S a right S-module and ${}_{S}A$ a left S-module. If both S_R and ${}_{R}S$ are projective, then the following statements hold for any non-negative integers n and d:

- (1) M_S is an (n,d)-injective right S-module if and only if M_R is an (n,d)-injective right *R*-module.
- (2) $_{S}A$ is an (n,d)-flat left S-module if and only if $_{R}A$ is an (n,d)-flat left R-module.
- (3) If R is a right n-coherent ring, then S is a right n-coherent ring.

Proof. (1). " \Rightarrow ". Suppose M_S is an (n,d)-injective right S-module. Let N_R be any *n*-presented right *R*-module. Then, using an argument similar to that in Lemma 3.2, we get that $N \otimes_R S_S$ is an *n*-presented right S-module. By [13, Theorem 11.65], we have

$$Ext_R^{d+1}(N_R, M_R) \cong Ext_S^{d+1}(N \otimes_R S_S, M_S) = 0.$$

Therefore M_R is an (n,d)-injective right *R*-module.

"⇐". Assume M_R is an (n,d)-injective right *R*-module. Let N_S be any *n*-presented right *S*-module. Then $N \otimes_R S_S \cong N_S$ by Lemma 3.1 and N_R is an *n*-presented right *R*-module by Lemma 3.2. Again by [13, Theorem 11.65], we have

$$Ext_S^{d+1}(N_S, M_S) \cong Ext_S^{d+1}(N \otimes_R S_S, M_S) \cong Ext_R^{d+1}(N_R, M_R) = 0.$$

Therefore M_S is an (n,d)-injective right S-module.

(2). " \Rightarrow ". If $_{S}A$ is an (n, d)-flat left *S*-module. Let B_{R} be any *n*-presented right *R*-module. Then $B \otimes_{R} S_{S}$ is an *n*-presented right *S*-module. By [13, Corollary 11.63], we have

$$Tor_{d+1}^{R}(B_{R,R}A) \cong Tor_{d+1}^{S}(B \otimes_{R} S_{S,S}A) = 0.$$

Therefore $_{R}A$ is an (n, d)-flat left *R*-module.

"⇐". If $_RA$ is an (n,d)-flat left R-module. Let B_S be any n-presented right R-module. Then $B \otimes_R S_S \cong B_S$ by Lemma 3.1 and B_R is an n-presented right R-module by Lemma 3.2. By [13, Corollary 11.63], we have

$$Tor_{d+1}^{\mathcal{S}}(B_{\mathcal{S},\mathcal{S}}A) \cong Tor_{d+1}^{\mathcal{S}}(B \otimes_{\mathcal{R}} S_{\mathcal{S},\mathcal{S}}A) \cong Tor_{d+1}^{\mathcal{R}}(B_{\mathcal{R},\mathcal{R}}A) = 0.$$

Therefore $_{S}A$ is an (n,d)-flat left S-module.

(3). Let M_S be an *n*-presented right *R*-module, then M_R is an *n*-presented right *R*-module by Lemma 3.2. Thus M_R is an (n+1)-presented right *R*-module since *R* is a right *n*-coherent ring. Therefore M_S is an (n+1)-presented right *S*-module again by Lemma 3.2, and so *S* is a right *n*-coherent ring.

We list the following lemma proved in [10, Lemma 3.14] for convenient using.

Lemma 3.4. [10, Lemma 3.14]. Let *R* and *S* be rings. Every right $(R \oplus S)$ -module has a unique decomposition that $M = A \oplus B$, where A = M(R,0) is a right *R*-module and B = M(0,S) is a right *S*-module via xr = x(r,0) for $x \in A$, $r \in R$, and ys = y(0,s) for $y \in B$, $s \in S$.

We are now in a position to prove the following main result.

Theorem 3.2. Let *S* and *T* be rings, and $n \ge 1$ a fixed integer. If $S \oplus T$ is a right n-coherent ring, then

$$rnpD(S \oplus T) = \sup\{rnpD(S), rnpD(T)\}$$

Proof. For convenience, we write $R = S \oplus T$. Since R is a right *n*-coherent ring, we have both S and T are right *n*-coherent rings by Lemma 3.3.

We first show that $rnpD(R) \leq \sup\{rnpD(S), rnpD(T)\}\)$. We may assume $\sup\{rnpD(S), rnpD(T)\}\) = m < \infty$. Let *M* be a right (*R*)-module and *N* any (n, 0)-injective right (*R*)-module. Then $N = A \oplus B$, where *A* is a right *S*-module and *B* is a right *T*-module by Lemma 3.4. Note that both *A* and *B* are (n, 0)-injective right (*R*)-modules. Hence *A* is an (n, 0)-injective right *S*-module and *B* is an (n, 0)-injective right *T*-module by Lemma 3.3. By [13, Theorem 11.65], we have

$$Ext_R^{m+1}(M,N) \cong Ext_R^{m+1}(M,A) \oplus Ext_R^{m+1}(M,B)$$
$$\cong Ext_S^{m+1}(M \otimes_R S_S,A) \oplus Ext_T^{m+1}(M \otimes_R T_T,B) = 0,$$

and hence $rnpD(R) \leq \sup\{rnpD(S), rnpD(T)\}$.

Next we prove that $rnpD(R) \ge \sup\{rnpD(S), rnpD(T)\}$. We may assume $rnpD(R) = m < \infty$. Let *M* be a right *S*-module and *N* any (n,0)-injective right *S*-module. Then *N* is an (n,0)-injective right (*R*)-module by Lemma 3.3. By Lemma 3.1, $M \otimes_R S_S \cong M_S$. Again by [13, Theorem 11.65], we have

$$Ext_{S}^{m+1}(M,N) \cong Ext_{S}^{m+1}(M \otimes_{R} S_{S},N) \cong Ext_{R}^{m+1}(M,N) = 0.$$

Therefore $rnpD(R) \ge rnpD(S)$. Similarly for $rnpD(R) \ge rnpD(T)$, and hence $rnpD(R) \ge$ sup{rnpD(S), rnpD(T)}. This completes the proof.

Remark 3.1. Let R_1, R_2, \dots, R_m be rings and *n* a positive integer. The theorem above shows that $rnpD(\bigoplus_{i=1}^{m} R_i) = \sup\{rnpD(R_1), rnpD(R_2), \dots, rnpD(R_m)\}$ if $\bigoplus_{i=1}^{m} R_i$ is an *n*-coherent ring. In particular, we obtain the known result that $\bigoplus_{i=1}^{m} R_i$ is right Noetherian if and only if each R_i is right Noetherian. But in general $rnpD(\bigoplus_{i=1}^{m} R_i) \neq \sup_{i\geq 1}\{rnpD(R_i)\}$. For example, Z_2 is a field of two elements, but $\bigoplus_{i=1}^{m} Z_2$ is not Noetherian.

Lemma 3.5. Assume *n* and *d* are non-negative integers, *R* is a commutative ring, and *P* is any prime ideal of *R*. Let R_P denote the localization of *R* at *P*, *M* is an R_P -module (*M* may be viewed as an *R*-module), and *A* is an *R*-module. Then the following statements hold:

- (1) If A is an n-presented R-module, then A_P is an n-presented R_P -module.
- (2) If M is an (n,d)-injective R_P -module, then M is an (n,d)-injective R-module.
- (3) If M is an (n,d)-flat R_P -module, then M is an (n,d)-flat R-module.
- (4) If A is an (n,d)-projective R-module, then A_P is an (n,d)-projective R_P -module.

Proof. (1). Suppose *A* is an *n*-presented *R*-module. Then there exists an exact sequence of *R*-modules

$$F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to A \to 0$$

where each F_i is finitely generated projective, $i = 0, 1, \dots, n$. It gives rise to the exactness of the sequence

$$(F_n)_{\mathbb{P}} \to (F_{n-1})_{\mathbb{P}} \to \cdots \to (F_1)_{\mathbb{P}} \to (F_0)_{\mathbb{P}} \to A_{\mathbb{P}} \to 0$$

of $R_{\rm P}$ -modules. By [6, Remark 2.2.5], each $(F_i)_{\rm P}$ is a finitely generated projective $R_{\rm P}$ module, $i = 0, 1, \dots, n$. Hence A_P is an *n*-presented R_P -module.

(2). Assume M is an (n,d)-injective $R_{\rm P}$ -module. Let N be any n-presented R-module, then $N_{\rm P}$ is an *n*-presented $R_{\rm P}$ -module by (1). Note that $R_{\rm P}$ is a flat *R*-module and $R_{\rm P} \otimes_R N \cong$ $N_{\rm P}$. By [13, Theorem 11.65], we have

$$Ext_{R}^{d+1}(N,M) \cong Ext_{R_{P}}^{d+1}(R_{P} \otimes_{R} N,M) \cong Ext_{R_{P}}^{d+1}(N_{P},M) = 0.$$

Therefore *M* is an (n, d)-injective *R*-module.

(3). Similar to that of (2).

(4). Suppose A is an (n,d)-projective R-module. Let B be any (n,d)-injective R_P-module, then B is an (n,d)-injective R-module by (2). Note that $A_P \cong R_P \otimes_R A$. By [13, Theorem 11.65], we have

$$Ext^{1}_{R_{P}}(A_{P},B) \cong Ext^{1}_{R_{P}}(R_{P} \otimes_{R} A,B) \cong Ext^{1}_{R}(A,B) = 0.$$

Therefore $A_{\rm P}$ is an (n, d)-projective $R_{\rm P}$ -module.

Corollary 3.4. Let R be a commutative ring and P any prime ideal of R. If M is an R_{P} module, then the following statements hold:

- (1) *M* is an injective $R_{\rm P}$ -module if and only if *M* is an injective *R*-module.
- (2) *M* is a flat $R_{\rm P}$ -module if and only if *M* is a flat *R*-module.

Proof. (1). If M is an injective $R_{\rm P}$ -module, then M is an injective R-module by Lemma 3.5. If M is an injective R-module, then $M_{\rm P}$ is an injective $R_{\rm P}$ -module by [13, Theorem 3.76]. Note that $M \cong M_P$ as R_P -modules. Thus (1) follows.

(2). Similar to that of (1).

Theorem 3.3. Let $n \ge 1$ be a fixed integer and R a commutative n-coherent ring. If P is any prime ideal of R, then $npD(R_{\rm P}) < npD(R)$.

Proof. We may assume $npD(R) = t < \infty$. Let M be any R_P -module. Note that M may be viewed as an *R*-module. Thus $npd(M_R) \le t$. If t = 0, then *M* is an (n,0)-projective *R*module. Since $M \cong M_P$ as R_P -modules, we have M is an (n, 0)-projective R_P -module by Lemma 3.5, and so the theorem follows. Next we assume $t \ge 1$. By Proposition 3.1 (5), There exists an exact sequence

$$0 \to K \to F_{t-1} \to \cdots \to F_1 \to F_0 \to M \to 0$$

of *R*-modules, where each F_i is a projective *R*-module, $i = 1, 2, \dots, t-1$, and K is an (n,0)-projective *R*-module. The above sequence induces an $R_{\rm P}$ -module exact sequence

$$0 \to K_{\mathsf{P}} \to (F_{t-1})_{\mathsf{P}} \to \cdots \to (F_1)_{\mathsf{P}} \to (F_0)_{\mathsf{P}} \to M_{\mathsf{P}} \to 0.$$

By [6, Remark 2.2.5], each $(F_i)_P$ is a projective R_P -module, $i = 1, 2, \dots, t-1$. Note that K_P is an (n,0)-projective $R_{\rm P}$ -module by Lemma 3.5. Thus, for any (n,0)-injective $R_{\rm P}$ -module N, we have

$$Ext_{R_{\mathbf{P}}}^{t+1}(M_{\mathbf{P}},N) \cong Ext_{R_{\mathbf{P}}}^{1}(K_{\mathbf{P}},N) = 0$$

and so $npd(M_P)_{R_P} \leq t$ by definition. Since $M \cong M_P$ as R_P -modules, $npd(M) \leq t$. Therefore $npD(R_{\rm P}) \leq npD(R)$, and we complete the proof.

878

I

Remark 3.2.

- (1) The theorem above shows the well-known result that any localization of a Noetherian ring is again Noetherian. But in general $npD(R) \neq \sup\{npD(R_P): P \text{ is a prime} ideal of R\}$. For example, take *R* to be the direct product of countably many copies of \mathbb{Z}_2 , then *R* is not Noetherian. Thus npD(R) > 0. However, $npD(R_P) = 0$ for any prime ideal of *R*.
- (2) Let *R* be a commutative ring and *P* any prime ideal of *R*. Corollary 3.4 shows that if *M* is an R_P -module, then *M* is a flat (resp. injective) R_P -module if and only if *M* is a flat (resp. injective) *R*-module. But, in general, a projective R_P -module need not be a projective *R*-module. For example, R_P is a projective R_P -module, but R_P need not be a projective *R*-module.

Acknowledgement. This research was supported by the Scientific Research Fund of Education Department of Guangxi Province (No. 201203YB224).

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, second edition, Graduate Texts in Mathematics, 13, Springer, New York, 1992.
- [2] J. Chen and N. Ding, On n-coherent rings, Comm. Algebra 24 (1996), no. 10, 3211-3216.
- [3] D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994), no. 10, 3997–4011.
- [4] N. Ding, On envelopes with the unique mapping property, *Comm. Algebra* 24 (1996), no. 4, 1459–1470.
- [5] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209.
- [6] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000.
- [7] M. Finkel Jones and M. L. Teply, Coherent rings of finite weak global dimension, *Comm. Algebra* 10 (1982), no. 5, 493–503.
- [8] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989.
- [9] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999.
- [10] L. Mao and N. Ding, FP-projective dimensions, Comm. Algebra 33 (2005), no. 4, 1153–1170.
- [11] L. Mao and N. Ding, Relative projective modules and relative injective modules, *Comm. Algebra* 34 (2006), no. 7, 2403–2418.
- [12] H. K. Ng, Finitely presented dimension of commutative rings and modules, *Pacific J. Math.* 113 (1984), no. 2, 417–431.
- [13] J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, New York, 1979.
- [14] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. (2) 2 (1970), 323–329.
- [15] W. Xue, On *n*-presented modules and almost excellent extensions, *Comm. Algebra* 27 (1999), no. 3, 1091– 1102.
- [16] D. Zhou, On *n*-coherent rings and (*n*,*d*)-rings, Comm. Algebra 32 (2004), no. 6, 2425–2441.