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Abstract. In (n,d)-ring and n-coherent ring theory, n-presented modules plays an impor-
tant role. In this paper, we firstly give some new characterizations of n-presented modules
and n-coherent rings. Then, we introduce the concept of (n,0)-projective dimension, which
measures how far away a finitely generated module is from being n-presented and how far
away a ring is from being Noetherian, for modules and rings. This dimension has nice prop-
erties when the ring in question is n-coherent. Some known results are extended or obtained
as corollaries.
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1. Introduction

Throughout this paper all rings are associative with identity and modules are unitary. rD(R)
stands for the right global dimension of a ring R. pd(M), id(M) and f d(M) denote the
projective, injective and flat dimension of an R-module M, respectively.

Let n ≥ 0 be an integer. Following [2, 3, 15], we call a right R-module P n-presented if
there exists an exact sequence of right R-modules

Fn→ Fn−1→ ··· → F1→ F0→ P→ 0

where each Fi is finitely generated free (equivalently projective), i = 0,1, · · · ,n. An R-
module is 0-presented (resp. 1-presented) if and only if it is finitely generated (resp. finitely
presented). Every m-presented R-module is n-presented for m≥ n. A ring R is called right
n-coherent [3] in case every n-presented right R-module is (n + 1)-presented. It is easy to
see that R is right 0-coherent (resp. 1-coherent) if and only if R is right Noetherian (resp.
coherent), and every n-coherent ring is m-coherent for m≥ n.
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Let n and d be non-negative integers and M a right R-module. M is called (n,d)-in jective
[16] if ExtRd+1(N,M) = 0 for any n-presented right R-module N. M is said to be (n,d)-
pro jective [11] if Extd+1

R (M,N) = 0 for any (n,d)-injective R-module N. It is easy to
see that both (n,d)-injective modules and (n,d)-projective modules are closed under direct
summands and finite direct sums. (1,0)-injective (resp. (1,0)-projective) modules are also
called FP-in jective (resp. FP-pro jective) modules. It is clear that every (n,d)-injective
(resp. (m,d)-projective) module is (m,d)-injective (resp. (n,d)-projective) for m≥ n.

In (n,d)-ring and n-coherent ring theory (see [2,3,11,16]), n-presented modules plays an
important role. For modules and rings, Mao and Ding [10] defined a dimension, called an
FP-projective dimension; Ng [12] introduced the concept of finitely presented dimension.
In this paper, we introduce a kind of n-presented dimension of modules and rings.

Let n≥ 1 be a fixed integer. In Section 2, we introduce the concept of (n,0)-pro jective
dimension npd(M) for a right R-module M, and the concept of right (n,0)-pro jective
dimension for a ring R, which measures how far away a finitely generated right R-module
M is from being n-presented, and how far away a ring is from being right Noetherian, re-
spectively. It is shown that a finitely generated right R-module M is n-presented if and only
if it is (n,0)-projective if and only if npD(M) = 0 (Theorem 2.1); R is an n-coherent ring
if and only if every (n,0)-injective right R-module is (n,1)-injective if and only if every
(n,1)-projective right R-module is (n,0)-projective (Theorem 2.2); R is a right Noetherian
ring if and only if rnpD(R) = 0 if and only if every right R-module is (n,0)-projective if
and only if for a short exact sequence 0→ A→ B→C→ 0 of right R-modules, if both B
and C are finitely generated, then A is also finitely generated (Corollary 2.3).

Let n ≥ 1 be a fixed integer and R a right n-coherent ring. In Section 3, we prove that
rnpD(R) = sup{npd(M): M is a cyclic right R-module} = sup{id(M): M is an (n,0)-
injective right R-module} (Theorem 3.1). As corollaries we obtain that R is right Noether-
ian if and only if rnpD(R) < ∞ and every injective right R-module is (n,0)-projective if and
only if every (n,0)-injective right R-module has an (n,0)-projective cover with the unique
mapping property if and only if every (n,0)-injective right R-module has an injective enve-
lope with the unique mapping property (Corollary 3.3). If rnpD(R)≤ m, then we have that
R is a right m-coherent ring (Proposition 3.5). Let S and T be rings. If S⊕T is an right n-
coherent ring, then we get that rnpD(S⊕T ) = sup{rnpD(S), rnpD(T )} (Theorem 3.2). Let
R be a commutative n-coherent ring and P any prime ideal of R, then npD(RP) ≤ npD(R),
where RP is the localization of R at P (Theorem 3.3).

2. Definition and general results

Let R be a ring and m ≥ 0 an integer. Mao and Ding [10] defined the FP-pro jective
dimension f pd(M) of a right R-module M as inf{m: Extm+1

R (M,N) = 0 for any FP-injective
right R-module N}, if no such m exists, set f pd(M) = ∞; and the right FP-pro jective
dimension r f pD(R) of R as sup{ f pd(M): M is a finitely generated right R-module}. We
generalize it as follows.

Definition 2.1. Let m ≥ 0, n ≥ 1 be integers, and R a ring. For a right R-module M, set
npd(M) = inf{m: Extm+1

R (M,N) = 0 for any (n,0)-injective right R-module N}, called the
(n,0)-pro jective dimension of M. If no such m exists, set npd(M) = ∞.

Put rnpD(R) = sup{npd(M): M is a finitely generated right R-module}, and call rnpD(R)
the right (n,0)-pro jective dimension of R. The left (n,0)-projective dimension lnpD(R) of
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R may be defined similarly. If R is a commutative ring, we drop the unneeded letters r and
l.

We list the following lemma proved in [11, Lemma 3.3] for convenient using.

Lemma 2.1. [11, Lemma 3.3] Let R be a ring, n≥ 0 an integer and 0→ A→ B→C→ 0
a short exact sequence of right R-modules. If C is (n + 1,0)-projective and B is (n,0)-
projective, then A is (n,0)-projective.

It is clear that an n-presented right R-module is (n,0)-projective. In general, the converse
is not true. Glaz (see [8, Theorem 2.1.10]) proved that a finitely generated right R-module
is finitely presented if and only if it is FP-projective. We generalize it as the following.

Theorem 2.1. Let n≥ 0 be a fixed integer and R a ring. Then the following are equivalent
for a finitely generated right R-module P.

(1) P is n-presented.
(2) P is (n,0)-projective.
(3) npd(P) = 0.

Proof. (1)⇒ (2) is obvious, and (2)⇔ (3) holds by definition.
(2)⇒ (1). We use induction on n. The case n = 0 is clear, and the case n = 1 has

been proven in [8, Theorem 2.1.10]. Assume n > 1, and P is (n,0)-projective. Then P is
(n− 1,0)-projective. So P is (n− 1,0)-presented by the induction hypothesis. Therefore
there exists an exact sequence of right R-modules

Fn−1→ Fn−2→ ·· · → F1→ F0→ P→ 0

where each Fi is finitely generated projective (hence (m,0)-projective, for any non-negative
integer m), i = 0, 1, . . . , n−1. Write K1 = ker(F0→ P), Km = ker(Fm−1→ Fm−2), m = 2, 3,
. . . , n−1. Then we have the following short exact sequences

0−→ K1 −→ F0 −→ P−→ 0,

0−→ K2 −→ F1 −→ K1 −→ 0,

...

0−→ Kn−1 −→ Fn−2 −→ Kn−2 −→ 0.

Note that P is (n,0)-projective and F0 is (n− 1,0)-projective, we obtain K1 is (n− 1,0)-
projective by Lemma 2.1. It follows that K2 is (n− 2,0)-projective again by Lemma 2.1.
Continuing this way, we see that Kn−1 is (1,0)-projective. Clearly, Kn−1 is finitely gener-
ated. Thus Kn−1 is finitely presented by [8, Theorem 2.1.10], and hence there exists an exact
sequence F

′
n→ F

′
n−1→ Kn−1→ 0 with F

′
n and F

′
n−1 finitely generated projective. So we get

an exact sequence

F
′
n → F

′
n−1→ Fn−2→ ··· → F1→ F0→ P→ 0.

It follows that P is n-presented, as required.
The following corollary is well-known.

Corollary 2.1. Let n ≥ 0 be a fixed integer and R a ring. Then the following statements
hold:

(1) Every finitely generated projective right R-module is n-presented.
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(2) For a short exact sequence 0→ A→ B→C→ 0 of right R-modules, if both A and
C are n-presented, then B is also n-presented.

(3) If B∼= A⊕C, then B is n-presented if and only if both A and C are n-presented.

Proof.

(1) Note that every projective right R-module is (n,0)-projective. Thus (1) follows
from Theorem 2.1.

(2) Since A and C are n-presented, we have both A and C are finitely generated and
(n,0)-projective. Hence B is also finitely generated and (n,0)-projective. Therefore
B is n-presented by Theorem 2.1.

(3) If B∼= A⊕C, then it is easy to see that B is finitely generated and (n,0)-projective if
and only if both A and C are finitely generated and (n,0)-projective. Thus (3) holds
by Theorem 2.1, and we complete the proof.

Corollary 2.2. Let R be a ring, n ≥ 0 an integer and 0→ K→ P→M→ 0 a short exact
sequence of right R-modules, where P is finitely generated projective. Then K is n-presented
if and only if M is (n+1,0)-presented.

Proof. If K is n-presented, then clearly M is (n+1)-presented. Conversely, if M is (n+1)-
presented (hence (n+1,0)-projective), then it is easy to see that K is finitely generated. On
the other hand, K is (n,0)-projective by Lemma 2.1. It follows that K is n-presented from
Theorem 2.1.

Theorem 2.2. Let R be a ring, and n≥ 0 a fixed integer. Then the following are equivalent:

(1) R is a right n-coherent ring.
(2) Every (n+1,0)-injective right R-module is (n,0)-injective.
(3) Every (n,0)-projective right R-module is (n+1,0)-projective.
(4) For a short exact sequence 0→ A→ B→C→ 0 of right R-modules with B finitely

generated projective, if C is n-presented, then A is also n-presented.
(5) For a short exact sequence 0→ A→ B→C→ 0 of right R-modules, if both B and

C are n-presented, then A is also n-presented.

If n≥ 1, then the above conditions are also equivalent to:

(6) Every (n,0)-injective right R-module is (n,1)-injective
(7) Every (n,1)-projective right R-module is (n,0)-projective.

Proof. (1)⇒ (2)⇒ (3). are obvious.
(3)⇒ (1). Let M be an n-presented right R-modules. Then M is finitely generated and

(n,0)-projective by Theorem 2.1. Note that M is (n + 1,0)-projective by (3). Thus M is
(n+1)-presented again by Theorem 2.1.

(4)⇒ (1). Let M be any n-presented right R-module. Then there exists a short exact
sequence 0→ K→ P→M→ 0 of right R-modules with P finitely generated projective and
K n-presented by (4). Hence M is (n+1)-presented by Corollary 2.2, and (1) follows.

(1)⇒ (5). If C is n-presented, then C is (n+1)-presented by (1). The rest proof is similar
to that of Corollary 2.2.

(5) ⇒ (4). By (5), it suffices to show that B is n-presented. But this follows from
Corollary 2.1.

Now suppose n≥ 1.
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(4)⇒ (6). Let M be an (n,0)-injective right R-module and C any n-presented right R-
module. Then we get a short exact sequence 0→ A→ B→C→ 0 of right R-modules with
B finitely generated projective. By (4), A is n-presented. Thus,

Ext2
R(C,M)∼= Ext1

R(A,M) = 0.

Therefore, M is (n,1)-injective.
(6)⇒ (7) is easy.
(7)⇒ (1). Let P be an n-presented right R-module. We get a short exact sequence

0→ K→ F→ P→ 0 of right R-modules with F finitely generated projective and K finitely
generated. For any (n,1)-injective right R-module M, we have

Ext1
R(K,M)∼= Ext2

R(P,M) = 0.

So K is (n,1)-projective and hence (n,0)-projective by (7). Thus, K is n-presented by
Theorem 2.1. Therefore, P is (n+1)-presented and (1) holds.

It is well known that a ring R is right Noetherian if and only if every right R-module is
FP-projective if and only if r f pD(R) = 0 (see [10, Proposition 2.6]). Now, we have the
following.

Corollary 2.3. Let n≥ 1 be a fixed integer. Then the following are equivalent for a ring R:
(1) R is right Noetherian.
(2) rnpD(R) = 0.
(3) Every finitely generated right R-module is n-presented.
(4) Every (n,0)-injective right R-module is injective.
(5) Every right R-module is (n,0)-projective.
(6) Every finitely generated right R-module is (n,0)-projective.
(7) Every cyclic right R-module is (n,0)-projective.
(8) For a short exact sequence 0→ A→ B→C→ 0 of right R-modules, if both B and

C are finitely generated, then A is also finitely generated.
If R is right n-coherent, then the above conditions are also equivalent to:

(9) Every (n,0)-injective right R-module is (n,0)-projective.

Proof. (1)⇔ (3)⇒ (4) and (5)⇒ (6)⇒ (7) are trivial.
(4)⇒ (5) Let M be any right R-module and N any (n,0)-injective right R-module. Then

Ext1
R(M,N) = 0 since N is injective by (4). Hence M is (n,0)-projective.
(7)⇒ (4). Let N be any (n,0)-injective right R-module, and I any right ideal of R. By

(7), R/I is (n,0)-projective. So Ext1
R(R/I,N) = 0. That is, N is injective.

(2)⇔ (6) holds by definition, (3)⇔ (6) holds by Theorem 2.1, (1)⇔ (8) holds by
Theorem 2.2, and (4)⇔ (9) has been proven in [11, Proposition 4.10].

Corollary 2.4. Let n ≥ 1 be an integer and R a ring. If rnpD(R) ≤ 1, then rnpD(R) =
r f pD(R).

Proof. This follows from the fact that rnpD(R) = 0 if and only if r f pD(R) = 0 by Corollary
2.3 and [10, Proposition 2.6].

Remark 2.1.
(1) From Theorem 2.1 and Corollary 2.3, we see that npd(M) measures how far away

a finitely generated right R-module M is from being n-presented, and rnpD(R)
measures how far away a ring is from being right Noetherian.
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(2) It is clear that f pd(M) ≤ npd(M) ≤ pd(M), and r f pD(R) ≤ rnpD(R) ≤ rD(R).
Since r f pD(R) = rD(R) if and only if R is von Neumann regular [10, Remarks 2.2],
we have r f pD(R) = rnpD(R) = rD(R) if and only if R is von Neumann regular.
It is also easy to see that rnpD(R) = rD(R) if and only if R is a right (n,0)-ring
(see [16, Definition 2.5]).

(3) It is known that a right Noetherian ring need not be left Noetherian, so rnpD(R) 6=
lnpD(R) in general.

(4) The equivalence of (1) through (3) in Theorem 2.2 has been proven in [11, Theorem
4.1]. Here we prove the equivalence in a different way.

(5) If n = 1, then Theorem 2.2 is just some characterizations of coherent rings.

Recall that a ring R is called right self-(n,0)-injective in case RR is (n,0)-injective. Sten-
ström proved that if R is right coherent and right self-FP-injective, then every flat right
R-module is FP-injective (see [14, Lemma 4.1]). We generalize it as the following

Proposition 2.1. Let n≥ 1 be a fixed integer. If R is a right n-coherent and right self-(n,0)-
injective ring, then every flat right R-module is (n,0)-injective.

Proof. Let M be a flat right R-module. Then, by [9, Theorem 4.85], we get a pure short
exact sequence 0→ K → F → M → 0 where F ∼=

⊕
I R for a set I. Since R is right n-

coherent and right self-(n,0)-injective, we have F is (n,0)-injective by [16, Lemma 2.9].
Hence we obtain the following exact sequence

0→ HomR(N,K)→ HomR(N,F)→ HomR(N,M)→ Ext1
R(N,K)→ Ext1

R(N,F) = 0

for any n-presented (hence finitely presented) right R-module N. It follows that Ext1
R(N,K)=

0, and so K is (n,0)-injective. Note that R is right n-coherent, we have M is (n,0)-injective
by [11, Theorem 4.1], as desired.

3. (n,0)-projective dimensions over n-coherent rings

Proposition 3.1. Let n ≥ 1, m ≥ 0 be integers. If R is a right n-coherent ring, then the
following are equivalent for a right R-module M:

(1) npd(M)≤ m.
(2) Extm+1

R (M,N) = 0 for any (n,0)-injective right R-module N.
(3) Extm+ j

R (M,N) = 0 for any (n,0)-injective right R-module N and j ≥ 1.
(4) There exists an exact sequence 0→ Pm→ Pm−1→ ··· → P1→ P0→M→ 0, where

each Pi is (n,0)-projective.
(5) If · · · → Pm−1→ Pm−2→ ··· → P1→ P0→M→ 0 is a projective resolution of M,

then ker(Pm−1→ Pm−2) is (n,0)-projective.

Proof. (1)⇒ (2). We use induction on m. The case m = 0 is clear. Let m≥ 1. If npd(M) =
m, then (2) holds by definition. Suppose npd(M) ≤ m− 1. For any (n,0)-injective right
R-module N, the short exact sequence 0→ N → E → L→ 0 with E injective induces an
exact sequence

Extm
R (M,L)→ Extm+1

R (M,N)→ Extm+1
R (M,E) = 0.

Since R is n-coherent, we get L is (n,0)-injective by [11, Theorem 4.1]. So Extm
R (M,L) = 0

by the induction hypothesis. It follows that Extm+1
R (M,N) = 0, as desired.

(2)⇒ (3). Using induction on j, the proof is similar to that of (1)⇒ (2).
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(3)⇒ (1), and (2)⇒ (5)⇒ (4) are obvious.
(4)⇒ (2). Write K1 = ker(P0→M), Ki = ker(Pi−1→ Pi−2), i = 2, 3, . . . , m− 1. Then

we have the following short exact sequences

0−→ K1 −→ P0 −→M −→ 0,

0−→ K2 −→ P1 −→ K1 −→ 0,

...

0−→ Pm −→ Pm−1 −→ Km−1 −→ 0.

From the bottom exact sequence, we get the exactness of the sequence

0 = Ext1
R(Pm,N)→ Ext2

R(Km−1,N)→ Ext2
R(Pm−1,N)

for any (n,0)-injective right R-module N. Since Pm−1 is (n,0)-projective, using an argu-
ment similar to that of (1)⇒ (2), we get Ext2

R(Pm−1,N) = 0. Hence Ext2
R(Km−1,N) = 0.

Continuing this way, we obtain Extm+1
R (M,N) = 0. Thus (2) holds.

Proposition 3.2. Let R be a right n-coherent ring (n≥ 1) and 0→ A→ B→C→ 0 a short
exact sequence of right R-modules. Then the following are true:

(1) If two of npd(A), npd(B) and npd(C) are finite, so is the third.
(2) npd(A) ≤ sup{npd(B), npd(C)−1}.
(3) npd(B) ≤ sup{npd(A), npd(C)}.
(4) npd(C) ≤ sup{npd(B), npd(A)+1}.
(5) If B is (n,0)-projective and 0 < npd(A) < ∞, then npd(C) = npd(A)+1.

Proof. Easy to verify by Proposition 3.1.

Corollary 3.1. Let R be a right n-coherent ring (n ≥ 1), A, B and C right R-modules. If
B∼= A⊕C, then npd(B) = sup{npd(A), npd(C)}.

Proof. Since B ∼= A⊕C, we get two short exact sequences 0→ A→ B→C→ 0 and 0→
C→ B→ A→ 0. By Proposition 3.2 (3), it is enough to show that npd(B) ≥ sup{npd(A),
npd(C)}. Suppose npd(B) < sup{npd(A), npd(C)}, then npd(B) < npd(A) or npd(B) <
npd(C). We may assume npd(B) < npd(A). By Proposition 3.2 (2), npd(C)≤ sup{npd(B),
npd(A)− 1}. So npd(C) ≤ npd(A)− 1, that is, npd(C) < npd(A). In addition, also
by Proposition 3.2 (2), we have npd(A) ≤ sup{npd(B), npd(C)− 1}. Hence npd(A) ≤
npd(C)−1, since npd(B) < npd(A), and so npd(A) < npd(C), a contradiction.

Let M be a right R-module. Recall that a a homomorphism φ : M → F where F is a
right (n,0)-injective R-module, is called an (n,0)-injective preenvelope [5] of M if for any
homomorphism f : M→ F

′
with F

′
is (n,0)-injective, there is a homomorphism g : F→ F

′

such that gφ = f . Moreover, if the only such g are automorphism of F when F
′
= F

and f = φ , then the (n,0)-injective preenvelope φ is called an (n,0)-injective envelope.
A monomorphic (n,0)-injective preenvelope φ is said to be special [6, Definition 7.1.6]
if coker φ is (n,0)-projective. (n,0)-projective (pre)covers and special (n,0)-projective
precovers can be defined dually. It is proved that every right R-module has a special (n,0)-
projective precover and a special (n,0)-injective preenvelope (see [11, Theorem 3.9]).

Theorem 3.1. Let R be a right n-coherent ring (n≥ 1), then the following are identical:
(1) rnpD(R)
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(2) sup{npd(M): M is a cyclic right R-module}
(3) sup{npd(M): M is any right R-module}
(4) sup{npd(M): M is an (n,0)-injective right R-module}
(5) sup{id(M): M is an (n,0)-injective right R-module}

Proof. (1)≤ (2). We may assume sup{npd(M): M is a cyclic right R-module}= m < ∞. Let
A be any finitely generated right R-module. We use induction on the number of generators
of A. If A has l generators, let A

′
be a submodule generated by one of these generators.

Then both A/A
′

and A
′

are finitely generated on less then l generators. Let N be any (n,0)-
injective right R-module. Consider the short exact sequence 0→A

′→A→A/A
′→ 0 which

induces an exact sequence

Extm+1
R (A/A

′
,N)→ Extm+1

R (A,N)→ Extm+1
R (A

′
,N)

where
Extm+1

R (A/A
′
,N) = Extm+1

R (A
′
,N) = 0

by induction hypothesis. Thus Extm+1
R (A,N) = 0. So npd(A)≤ m.

(2)≤ (3) is clear.
(3) ≤ (4). We may assume sup{npd(M): M is an (n,0)-injective right R-module}=

m < ∞. Let A be any right R-module, then A has a special (n,0)-injective preenvelope
by [11, Theorem 3.9], that is, there exists a short exact sequence 0→ A→ E→ L→ 0 with
E (n,0)-injective and L (n,0)-projective. Therefore, npd(A)≤ npd(E)≤ m by Proposition
3.2.

(4)≤ (5). We may assume sup{id(M): M is an (n,0)-injective right R-module}= m < ∞.
Let A and B be any (n,0)-injective right R-modules. Then Extm+1

R (A,B) = 0 since id(B)≤
m. So npd(A)≤ m by Proposition 3.1.

(5) ≤ (1). We may assume rnpD(R)= m < ∞. Let M be an (n,0)-injective right R-
module. Then Extm+1

R (R/I,M) = 0 for any right ideal I of R since npd(R/I) ≤ m by hy-
pothesis. Hence id(M)≤ m, this completes the proof.

Corollary 3.2. Let n ≥ 1 be a fixed integer. Then the following are equivalent for a right
n-coherent ring R:

(1) rnpD(R)≤ m.
(2) npd(M)≤ m for any (n,0)-injective right R-module M.
(3) npd(M)≤ m for any injective right R-module M, and rnpD(R) < ∞.
(4) id(M)≤ m for any (n,0)-injective right R-module M.
(5) id(M)≤m for all right R-module M that are both (n,0)-injective and (n,0)-projective,

and rnpD(R) < ∞.

Proof. (1)⇔ (2)⇔ (4) holds by Theorem 3.1. (2)⇒ (3) and (4)⇒ (5) are clear.
(5)⇒ (4). Let M be any (n,0)-injective right R-module. By (5) and Theorem 3.1 (4),

npd(M) = m for a non-negative integer m. Note that every right R-module has a special
(n,0)-projective precover by [11, Theorem 3.9], we obtain an exact sequence

0→ Pm→ Pm−1→ ·· · → P1→ P0→M→ 0

where each Pt is both (n,0)-projective and (n,0)-injective, t = 0, 1, . . ., m. Hence id(Pt)≤m
by (5), t = 0, 1, . . ., m. So id(M)≤ m.
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(3)⇒ (2). Let M be any (n,0)-injective right R-module. By (3) and Theorem 3.1 (5),
id(M) = t for a non-negative integer t. Hence we get an injective resolution of M:

0→M→ E0→ E1 · · · → Et−1→ Et → 0.

By (3), npd(E i) ≤ m, i = 0, 1, . . ., t. Hence we have npd(M) ≤ m by Proposition 3.2, as
desired.

Recall that an injective envelope φ : M→ E(M) of M has the unique mapping property
[4] if for any homomorphism f : M→ A with A injective, there is a unique homomorphism
g : E(M)→ A such that gφ = f . The concept of an (n,0)-projective cover with the unique
mapping property can be defined similarly.

Corollary 3.3. Let n ≥ 1 be a fixed integer. Then the following are equivalent for a right
n-coherent ring R:

(1) R is right Noetherian.
(2) rnpD(R) < ∞ and every injective right R-module is (n,0)-projective.
(3) Every (n,0)-injective right R-module is (n,0)-projective.
(4) Every (n,0)-injective right R-module has an (n,0)-projective cover with the unique

mapping property.
(5) Every (n,0)-injective right R-module has an injective envelope with the unique

mapping property.

Proof. (1)⇔ (2)⇔ (3) holds by Corollary 3.2 and Corollary 2.3.
(1)⇒ (4) and (1)⇒ (5). Let M be any (n,0)-injective right R-module. Then M is

(n,0)-projective and injective, since R is right Noetherian by (1). Thus (4) and (5) follows.
(4) ⇒ (3). For any (n,0)-injective right R-module M, let g : P → M be the (n,0)-

projective cover of M with the unique mapping property, where P is (n,0)-projective. Write
K = kerg. Then K is (n,0)-injective by [6, Corollary 7.2.3] and [11, Theorem 3.9]. Hence
there exists an (n,0)-projective cover f : P

′ → K of K by (4). So, we obtain the following
exact commutative diagram:

P
′

f
↙ ↓ i f ↘ 0

0−→ K i−→ P
g−→ M −→ 0

Since g(i f ) = 0, we have i f = 0 by (4). Whence K = Im f ⊆ ker(i) = 0, that is, M is
(n,0)-projective.

(5)⇒ (1). Let M be any (n,0)-injective right R-module. By Corollary 2.3, we need
only to show that M is injective. Let f : M → E be the injective envelope of M with the
unique mapping property. Write L = coker f . Since R is n-coherent, L is (n,0)-injective
by [11, Theorem 4.1]. So there exists an injective envelope g : L→ E

′
of L by (5). Therefore

we get the following exact commutative diagram:

0−→ M
f−→ E π−→ L −→ 0
0
↘ ↓ gπ ↙ g

E
′

Since (gπ) f = 0, we have gπ = 0 by (5). Hence L = Imπ ⊆ ker(g) = 0. So M is injective.
This completes the proof.
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Recall that a short exact sequence 0→ A→ B→ C → 0 is said to be n-pure [11] if
Hom(M,B)→ Hom(M,C)→ 0 is exact for any n-presented module M. A submodule N of
M is called an n-pure submodule if the sequence 0→ N→M→M/N→ 0 is n-pure.

Proposition 3.3. Let n ≥ 1 be a fixed integer and R a right n-coherent ring. Observe the
following statements:

(1) rnpD(R)≤ 1.
(2) For any n-pure submodule N of an injective right R-module E, the quotient E/N is

injective (i.e., id(N)≤ 1).
(3) Every submodule of an (n,0)-projective right R-module is (n,0)-projective.
(4) Every right ideal of R is (n,0)-projective.
(5) For any pure submodule N of an injective right R-module E, the quotient E/N is

injective.
(6) Every submodule of an FP-projective right R-module is FP-projective.
(7) Every right ideal of R is FP-projective.

Then: (1)⇔ (2)⇔ (3)⇔ (4) and (2)⇒ (5)⇒ (6)⇒ (7).

Proof. (1)⇒ (2). Let N be an n-pure submodule of an injective right R-module E. Then it
is easy to see that N is (n,0)-injective. Hence id(N) ≤ 1 by Theorem 3.1 (5). So the short
exact sequence 0→ N→ E→ E/N→ 0 implies that E/N is injective.

(2)⇒ (3). Let L be any (n,0)-injective right R-module. Then it is clear that L is an
n-pure submodule of its injective envelope E(L), and hence id(L) ≤ 1 by (2). If N is a
submodule of an (n,0)-projective right R-module M, then the exactness of the sequence

0 = Ext1
R(M,L)→ Ext1

R(N,L)→ Ext2
R(M/N,L) = 0

implies that Ext1
R(N,L) = 0, and so N is (n,0)-projective.

(4)⇒ (1). Let I be an ideal of R. The exact sequence 0→ I → R→ R/I → 0 implies
that npd(R/I)≤ 1 by Proposition 3.1. So (1) holds by Theorem 3.1 (2).

(2)⇒ (5). It is easy to verify that every pure right R-module is n-pure. So (5) follows.
(5)⇒ (6) is similar to that of (2)⇒ (3), (3)⇒ (4) and (6)⇒ (7) are trivial.
It is known that if R is a right coherent ring, then f d(M) = pd(M) for any finitely present

right R-module M (see [7, Lemma 5]). Mao and Ding (see [10, Proposition 4.1]) proved that
if R is also self-FP-injective, then f d(M) = pd(M) for any FP-projective right R-module
M. Here we have the following

Proposition 3.4. Let n be a fixed positive integer. If R is a right n-coherent and right self-
(n,0)-injective ring, then f d(M) = pd(M) for any (n,0)-projective right R-module M.

Proof. It is enough to show that f d(M) ≥ pd(M). We may assume that f d(M) = m < ∞.
Then there exists an exact sequence

0→ Fm→ Pm−1→ ·· · → P1→ P0→M→ 0

with P0, P1, · · · , Pm−1 projective and Fm flat. Consider the short exact sequence 0→ K →
P→ Fm→ 0 where P is projective. By [9, Theorem 4.85], the short exact sequence above
is pure, and hence n-pure. By Proposition 2.1, P is (n,0)-injective. So K is (n,0)-injective
by [11, Proposition 3.6]. Since M is (n,0)-projective, so is Fm. Thus the exactness of the
sequence

0→ HomR(Fm,K)→ HomR(P,K)→ HomR(K,K)→ Ext1
R(Fm,K) = 0
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implies that the sequence 0→ K→ P→ Fm→ 0 is split exact, and so Fm is projective, that
is, pd(M)≤ m. This completes the proof.

Proposition 3.5. Let n≥ 1 be a fixed integer and R a right n-coherent ring. If rnpD(R)≤m,
then R is a right m-coherent ring.

Proof. The case m = 0 holds by Corollary 2.3. Suppose m ≥ 1. Let M be an m-presented
right R-module, then M has a free resolution

Fm→ Fm−1→ ··· → F1→ F0→M→ 0

with each Fi finitely generated free. Write Km = ker(Fm−1→ Fm−2), then

Ext1
R(Km,N)∼= Extm+1

R (M,N) = 0

for any FP-injective right R-module N, since rnpD(R) ≤ m and every FP-injective right
R-module is (n,0)-injective. Note that Km is finitely generated. We obtain Km is finitely
presented by Theorem 2.1. This implies that M is (m + 1)-presented, and so R is a right
m-coherent ring.

To prove the next main result, we need four lemmas.

Lemma 3.1. Let f : R→ S be a surjective ring homomorphism. If MS is a right S-module
(hence a right R-module) and AR is a right R-module, then the following statements hold:

(1) M⊗R SS ∼= MS.
(2) If AR is a finitely generated right R-module, then A⊗R SS is a finitely generated

right S-module.
(3) MS is a finitely generated right S-module if and only if MR is a finitely generated

right R-module.

Proof. (1). Easy.
(2). Clearly, S is a cyclic R-module. Suppose x1, x2, · · · , xn are generators of A. Then it is

easy to verify that x1⊗1S, x2⊗1S, · · · , xn⊗1S are generators of A⊗R SS, where 1S denotes
the identity of S. Thus A⊗R SS is a finitely generated right S-module.

(3). If MS is a finitely generated right S-module, and suppose x1, x2, · · · , xn are generators
of M, then M = x1S + x2S + · · ·+ xnS. So M = x1R + x2R + · · ·+ xnR since f : R→ S is
surjective. Hence MR is a finitely generated right R-module. The converse holds by (1) and
(2).

Lemma 3.2. Let f : R→ S be a surjective ring homomorphism, n a non-negative integer,
and M a right S-module. If both SR and RS are projective, then MS is an n-presented right
S-module if and only if MR is an n-presented right R-module. (Note that the case n = 1 has
been proven in [10, Lemma 3.13].)

Proof. The case n = 0 follows by Lemma 3.1. So next we assume n > 0.
“⇒”. Suppose M is an n-presented right S-module. Then there exists an exact sequence

0→ K→ Pn−1→ ··· → P1→ P0→M→ 0

of right S-modules with K finitely generated, and Pi finitely generated projective, i = 0, 1,
· · · , n− 1. By Lemma 3.1, each Pi and K are finitely generated right R-modules. Since SR
is projective, we have each Pi is a projective right R-module. So, M is an n-presented right
R-module.
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“⇐”. Assume M is an n-presented right R-module. Then there exists an exact sequence

0→ K→ Pn−1→ ··· → P1→ P0→M→ 0

of right R-modules with K finitely generated, and Pi finitely generated projective, i = 0, 1,
· · · , n−1. Since RS is projective, the sequence

0→ K⊗R SS→ Pn−1⊗R SS→ ·· · → P1⊗R SS→ P0⊗R SS→M⊗R SS→ 0

is exact. By Lemma 3.1, M⊗R SS ∼= MS, and both K⊗R SS and each Pi⊗R SS are finitely
generated S-modules. Since each Pi is a projective right R-module, we have each Pi⊗R SS is
a projective right S-module. So M is an n-presented right S-module.

Let n and d be non-negative integers. Recall that a left R-module A is called (n,d)-
f lat [16], in case TorR

d+1(B,A) = 0 for any n-presented right R-module B.

Lemma 3.3. Let f : R→ S be a surjective ring homomorphism, MS a right S-module and
SA a left S-module. If both SR and RS are projective, then the following statements hold for
any non-negative integers n and d:

(1) MS is an (n,d)-injective right S-module if and only if MR is an (n,d)-injective right
R-module.

(2) SA is an (n,d)-flat left S-module if and only if RA is an (n,d)-flat left R-module.
(3) If R is a right n-coherent ring, then S is a right n-coherent ring.

Proof. (1). “⇒”. Suppose MS is an (n,d)-injective right S-module. Let NR be any n-
presented right R-module. Then, using an argument similar to that in Lemma 3.2, we get
that N⊗R SS is an n-presented right S-module. By [13, Theorem 11.65], we have

Extd+1
R (NR,MR)∼= Extd+1

S (N⊗R SS,MS) = 0.

Therefore MR is an (n,d)-injective right R-module.
“⇐”. Assume MR is an (n,d)-injective right R-module. Let NS be any n-presented right

S-module. Then N⊗R SS ∼= NS by Lemma 3.1 and NR is an n-presented right R-module by
Lemma 3.2. Again by [13, Theorem 11.65], we have

Extd+1
S (NS,MS)∼= Extd+1

S (N⊗R SS,MS)∼= Extd+1
R (NR,MR) = 0.

Therefore MS is an (n,d)-injective right S-module.
(2). “⇒”. If SA is an (n,d)-flat left S-module. Let BR be any n-presented right R-module.

Then B⊗R SS is an n-presented right S-module. By [13, Corollary 11.63], we have

TorR
d+1(BR,R A)∼= TorS

d+1(B⊗R SS,S A) = 0.

Therefore RA is an (n,d)-flat left R-module.
“⇐”. If RA is an (n,d)-flat left R-module. Let BS be any n-presented right R-module.

Then B⊗R SS ∼= BS by Lemma 3.1 and BR is an n-presented right R-module by Lemma 3.2.
By [13, Corollary 11.63], we have

TorS
d+1(BS,S A)∼= TorS

d+1(B⊗R SS,S A)∼= TorR
d+1(BR,R A) = 0.

Therefore SA is an (n,d)-flat left S-module.
(3). Let MS be an n-presented right R-module, then MR is an n-presented right R-module

by Lemma 3.2. Thus MR is an (n+1)-presented right R-module since R is a right n-coherent
ring. Therefore MS is an (n+1)-presented right S-module again by Lemma 3.2, and so S is
a right n-coherent ring.
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We list the following lemma proved in [10, Lemma 3.14] for convenient using.

Lemma 3.4. [10, Lemma 3.14]. Let R and S be rings. Every right (R⊕ S)-module has
a unique decomposition that M = A⊕B, where A = M(R,0) is a right R-module and B =
M(0,S) is a right S-module via xr = x(r,0) for x ∈ A, r ∈ R, and ys = y(0,s) for y∈ B, s∈ S.

We are now in a position to prove the following main result.

Theorem 3.2. Let S and T be rings, and n≥ 1 a fixed integer. If S⊕T is a right n-coherent
ring, then

rnpD(S⊕T ) = sup{rnpD(S),rnpD(T ).

Proof. For convenience, we write R = S⊕T . Since R is a right n-coherent ring, we have
both S and T are right n-coherent rings by Lemma 3.3.

We first show that rnpD(R) ≤ sup{rnpD(S), rnpD(T )}. We may assume sup{rnpD(S),
rnpD(T )} = m < ∞. Let M be a right (R)-module and N any (n,0)-injective right (R)-
module. Then N = A⊕ B, where A is a right S-module and B is a right T -module by
Lemma 3.4. Note that both A and B are (n,0)-injective right (R)-modules. Hence A is an
(n,0)-injective right S-module and B is an (n,0)-injective right T -module by Lemma 3.3.
By [13, Theorem 11.65], we have

Extm+1
R (M,N)∼= Extm+1

R (M,A)⊕Extm+1
R (M,B)

∼= Extm+1
S (M⊗R SS,A)⊕Extm+1

T (M⊗R TT ,B) = 0,

and hence rnpD(R) ≤ sup{rnpD(S), rnpD(T )}.
Next we prove that rnpD(R) ≥ sup{rnpD(S), rnpD(T )}. We may assume rnpD(R) =

m < ∞. Let M be a right S-module and N any (n,0)-injective right S-module. Then N is
an (n,0)-injective right (R)-module by Lemma 3.3. By Lemma 3.1, M⊗R SS ∼= MS. Again
by [13, Theorem 11.65], we have

Extm+1
S (M,N)∼= Extm+1

S (M⊗R SS,N)∼= Extm+1
R (M,N) = 0.

Therefore rnpD(R) ≥ rnpD(S). Similarly for rnpD(R) ≥ rnpD(T ), and hence rnpD(R) ≥
sup{rnpD(S), rnpD(T )}. This completes the proof.

Remark 3.1. Let R1, R2, · · · , Rm be rings and n a positive integer. The theorem above
shows that rnpD(

⊕m
i=1 Ri) = sup{rnpD(R1), rnpD(R2), · · · , rnpD(Rm)} if

⊕m
i=1 Ri is an

n-coherent ring. In particular, we obtain the known result that
⊕m

i=1 Ri is right Noetherian if
and only if each Ri is right Noetherian. But in general rnpD(

⊕
∞
i=1 Ri) 6= supi≥1{rnpD(Ri)}.

For example, Z2 is a field of two elements, but
⊕

∞
i=1Z2 is not Noetherian.

Lemma 3.5. Assume n and d are non-negative integers, R is a commutative ring, and P is
any prime ideal of R. Let RP denote the localization of R at P, M is an RP-module (M may
be viewed as an R-module), and A is an R-module. Then the following statements hold:

(1) If A is an n-presented R-module, then AP is an n-presented RP-module.
(2) If M is an (n,d)-injective RP-module, then M is an (n,d)-injective R-module.
(3) If M is an (n,d)-flat RP-module, then M is an (n,d)-flat R-module.
(4) If A is an (n,d)-projective R-module, then AP is an (n,d)-projective RP-module.

Proof. (1). Suppose A is an n-presented R-module. Then there exists an exact sequence of
R-modules

Fn→ Fn−1→ ··· → F1→ F0→ A→ 0
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where each Fi is finitely generated projective, i = 0, 1, · · · , n. It gives rise to the exactness
of the sequence

(Fn)P→ (Fn−1)P→ ·· · → (F1)P→ (F0)P→ AP→ 0

of RP-modules. By [6, Remark 2.2.5], each (Fi)P is a finitely generated projective RP-
module, i = 0, 1, · · · , n. Hence AP is an n-presented RP-module.

(2). Assume M is an (n,d)-injective RP-module. Let N be any n-presented R-module,
then NP is an n-presented RP-module by (1). Note that RP is a flat R-module and RP⊗R N ∼=
NP. By [13, Theorem 11.65], we have

Extd+1
R (N,M)∼= Extd+1

RP
(RP⊗R N,M)∼= Extd+1

RP
(NP,M) = 0.

Therefore M is an (n,d)-injective R-module.
(3). Similar to that of (2).
(4). Suppose A is an (n,d)-projective R-module. Let B be any (n,d)-injective RP-module,

then B is an (n,d)-injective R-module by (2). Note that AP
∼= RP⊗R A. By [13, Theorem

11.65], we have

Ext1
RP

(AP,B)∼= Ext1
RP

(RP⊗R A,B)∼= Ext1
R(A,B) = 0.

Therefore AP is an (n,d)-projective RP-module.

Corollary 3.4. Let R be a commutative ring and P any prime ideal of R. If M is an RP-
module, then the following statements hold:

(1) M is an injective RP-module if and only if M is an injective R-module.
(2) M is a flat RP-module if and only if M is a flat R-module.

Proof. (1). If M is an injective RP-module, then M is an injective R-module by Lemma 3.5.
If M is an injective R-module, then MP is an injective RP-module by [13, Theorem 3.76].
Note that M ∼= MP as RP-modules. Thus (1) follows.

(2). Similar to that of (1).

Theorem 3.3. Let n≥ 1 be a fixed integer and R a commutative n-coherent ring. If P is any
prime ideal of R, then npD(RP)≤ npD(R).

Proof. We may assume npD(R) = t < ∞. Let M be any RP-module. Note that M may be
viewed as an R-module. Thus npd(MR) ≤ t. If t = 0, then M is an (n,0)-projective R-
module. Since M ∼= MP as RP-modules, we have M is an (n,0)-projective RP-module by
Lemma 3.5, and so the theorem follows. Next we assume t ≥ 1. By Proposition 3.1 (5),
There exists an exact sequence

0→ K→ Ft−1→ ··· → F1→ F0→M→ 0

of R-modules, where each Fi is a projective R-module, i = 1, 2, · · · , t − 1, and K is an
(n,0)-projective R-module. The above sequence induces an RP-module exact sequence

0→ KP→ (Ft−1)P→ ·· · → (F1)P→ (F0)P→MP→ 0.

By [6, Remark 2.2.5], each (Fi)P is a projective RP-module, i = 1, 2, · · · , t−1. Note that KP

is an (n,0)-projective RP-module by Lemma 3.5. Thus, for any (n,0)-injective RP-module
N, we have

Extt+1
RP

(MP,N)∼= Ext1
RP

(KP,N) = 0
and so npd(MP)RP ≤ t by definition. Since M ∼= MP as RP-modules, npd(M)≤ t. Therefore
npD(RP)≤ npD(R), and we complete the proof.



Relative Projective Dimensions 879

Remark 3.2.
(1) The theorem above shows the well-known result that any localization of a Noether-

ian ring is again Noetherian. But in general npD(R) 6= sup{npD(RP): P is a prime
ideal of R}. For example, take R to be the direct product of countably many copies
of Z2, then R is not Noetherian. Thus npD(R) > 0. However, npD(RP) = 0 for any
prime ideal of R.

(2) Let R be a commutative ring and P any prime ideal of R. Corollary 3.4 shows that
if M is an RP-module, then M is a flat (resp. injective) RP-module if and only if M
is a flat (resp. injective) R-module. But, in general, a projective RP-module need
not be a projective R-module. For example, RP is a projective RP-module, but RP

need not be a projective R-module.
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