Relative Projective Dimensions

${ }^{1}$ Baiyu Ouyang, ${ }^{2}$ Luling Duan and ${ }^{3}$ Weiqing Li
${ }^{1,3}$ College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
${ }^{2}$ Department of Mathematics and Computer Science, Guangxi College of Education, Nanning 530023, Guangxi, P. R. China
${ }^{1}$ oy@hunnu.edu.cn, ${ }^{2}$ duanluling2006@163.com, ${ }^{3}$ sdwg001@163.com

Abstract

In (n, d)-ring and n-coherent ring theory, n-presented modules plays an important role. In this paper, we firstly give some new characterizations of n-presented modules and n-coherent rings. Then, we introduce the concept of ($n, 0$)-projective dimension, which measures how far away a finitely generated module is from being n-presented and how far away a ring is from being Noetherian, for modules and rings. This dimension has nice properties when the ring in question is n-coherent. Some known results are extended or obtained as corollaries.

2010 Mathematics Subject Classification: 16D10, 16E40
Keywords and phrases: Noetherian rings, n-coherent rings, ($n, 0$)-projective module (dimension), ($n, 0$)-injective module, n-presented module.

1. Introduction

Throughout this paper all rings are associative with identity and modules are unitary. $r D(R)$ stands for the right global dimension of a ring $R . p d(M), i d(M)$ and $f d(M)$ denote the projective, injective and flat dimension of an R-module M, respectively.

Let $n \geq 0$ be an integer. Following [2,3,15], we call a right R-module P-presented if there exists an exact sequence of right R-modules

$$
F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow P \rightarrow 0
$$

where each F_{i} is finitely generated free (equivalently projective), $i=0,1, \cdots, n$. An R module is 0 -presented (resp. 1-presented) if and only if it is finitely generated (resp. finitely presented). Every m-presented R-module is n-presented for $m \geq n$. A ring R is called right n-coherent [3] in case every n-presented right R-module is ($n+1$)-presented. It is easy to see that R is right 0 -coherent (resp. 1-coherent) if and only if R is right Noetherian (resp. coherent), and every n-coherent ring is m-coherent for $m \geq n$.

Let n and d be non-negative integers and M a right R-module. M is called (n, d)-injective [16] if $\operatorname{Ext}_{R}{ }^{d+1}(N, M)=0$ for any n-presented right R-module $N . M$ is said to be (n, d) projective [11] if $E x t_{R}^{d+1}(M, N)=0$ for any (n, d)-injective R-module N. It is easy to see that both (n, d)-injective modules and (n, d)-projective modules are closed under direct summands and finite direct sums. (1,0)-injective (resp. (1,0)-projective) modules are also called $F P$-injective (resp. $F P$-projective) modules. It is clear that every (n, d)-injective (resp. (m, d)-projective) module is (m, d)-injective (resp. (n, d)-projective) for $m \geq n$.

In (n, d)-ring and n-coherent ring theory (see [2,3,11,16]), n-presented modules plays an important role. For modules and rings, Mao and Ding [10] defined a dimension, called an $F P$-projective dimension; Ng [12] introduced the concept of finitely presented dimension. In this paper, we introduce a kind of n-presented dimension of modules and rings.

Let $n \geq 1$ be a fixed integer. In Section 2, we introduce the concept of ($n, 0)$-projective dimension $\operatorname{npd}(M)$ for a right R-module M, and the concept of right ($n, 0$)-projective dimension for a ring R, which measures how far away a finitely generated right R-module M is from being n-presented, and how far away a ring is from being right Noetherian, respectively. It is shown that a finitely generated right R-module M is n-presented if and only if it is $(n, 0)$-projective if and only if $n p D(M)=0$ (Theorem 2.1); R is an n-coherent ring if and only if every $(n, 0)$-injective right R-module is $(n, 1)$-injective if and only if every ($n, 1$)-projective right R-module is ($n, 0$)-projective (Theorem 2.2); R is a right Noetherian ring if and only if $\operatorname{rnpD}(R)=0$ if and only if every right R-module is ($n, 0$)-projective if and only if for a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules, if both B and C are finitely generated, then A is also finitely generated (Corollary 2.3).

Let $n \geq 1$ be a fixed integer and R a right n-coherent ring. In Section 3, we prove that $\operatorname{rnp} D(R)=\sup \{n p d(M): M$ is a cyclic right R-module $\}=\sup \{i d(M): M$ is an $(n, 0)$ injective right R-module\} (Theorem 3.1). As corollaries we obtain that R is right Noetherian if and only if $\operatorname{rnpD}(R)<\infty$ and every injective right R-module is ($n, 0$)-projective if and only if every ($n, 0$)-injective right R-module has an ($n, 0$)-projective cover with the unique mapping property if and only if every $(n, 0)$-injective right R-module has an injective envelope with the unique mapping property (Corollary 3.3). If $\operatorname{rnpD}(R) \leq m$, then we have that R is a right m-coherent ring (Proposition 3.5). Let S and T be rings. If $S \oplus T$ is an right n coherent ring, then we get that $r n p D(S \oplus T)=\sup \{r n p D(S), r n p D(T)\}$ (Theorem 3.2). Let R be a commutative n-coherent ring and P any prime ideal of R, then $n p D\left(R_{\mathrm{P}}\right) \leq n p D(R)$, where R_{P} is the localization of R at P (Theorem 3.3).

2. Definition and general results

Let R be a ring and $m \geq 0$ an integer. Mao and Ding [10] defined the $F P$-projective dimension $\operatorname{fpd}(M)$ of a right R-module M as $\inf \left\{\mathrm{m}: \operatorname{Ext}_{R}^{m+1}(M, N)=0\right.$ for any $F P$-injective right R-module $N\}$, if no such m exists, set $f p d(M)=\infty$; and the right $F P$-projective dimension $\operatorname{rfp} D(R)$ of R as $\sup \{f p d(M): M$ is a finitely generated right R-module $\}$. We generalize it as follows.

Definition 2.1. Let $m \geq 0, n \geq 1$ be integers, and R a ring. For a right R-module M, set $\operatorname{npd}(M)=\inf \left\{m: \operatorname{Ext}_{R}^{m+1}(M, N)=0\right.$ for any ($n, 0$)-injective right R-module $\left.N\right\}$, called the $(n, 0)$-projective dimension of M. If no such m exists, set npd $(M)=\infty$.

Put $r n p D(R)=\sup \{n p d(M): M$ is a finitely generated right R-module $\}$, and call $r n p D(R)$ the right ($n, 0$)-projective dimension of R. The left ($\mathrm{n}, 0$)-projective dimension $\operatorname{lnp} D(R)$ of
R may be defined similarly. If R is a commutative ring, we drop the unneeded letters r and l.

We list the following lemma proved in [11, Lemma 3.3] for convenient using.
Lemma 2.1. [11, Lemma 3.3] Let R be a ring, $n \geq 0$ an integer and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of right R-modules. If C is $(n+1,0)$-projective and B is $(n, 0)$ projective, then A is $(n, 0)$-projective.

It is clear that an n-presented right R-module is ($n, 0$)-projective. In general, the converse is not true. Glaz (see [8, Theorem 2.1.10]) proved that a finitely generated right R-module is finitely presented if and only if it is $F P$-projective. We generalize it as the following.

Theorem 2.1. Let $n \geq 0$ be a fixed integer and R a ring. Then the following are equivalent for a finitely generated right R-module P.
(1) P is n-presented.
(2) P is ($n, 0$)-projective.
(3) $n p d(P)=0$.

Proof. (1) $\Rightarrow(2)$ is obvious, and (2) $\Leftrightarrow(3)$ holds by definition.
$(2) \Rightarrow(1)$. We use induction on n. The case $n=0$ is clear, and the case $n=1$ has been proven in [8, Theorem 2.1.10]. Assume $n>1$, and P is $(n, 0)$-projective. Then P is ($n-1,0$)-projective. So P is ($n-1,0$)-presented by the induction hypothesis. Therefore there exists an exact sequence of right R-modules

$$
F_{n-1} \rightarrow F_{n-2} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow P \rightarrow 0
$$

where each F_{i} is finitely generated projective (hence $(m, 0)$-projective, for any non-negative integer m), $i=0,1, \ldots, n-1$. Write $K_{1}=\operatorname{ker}\left(F_{0} \rightarrow P\right), K_{m}=\operatorname{ker}\left(F_{m-1} \rightarrow F_{m-2}\right), m=2,3$, $\ldots, n-1$. Then we have the following short exact sequences

$$
\begin{gathered}
0 \longrightarrow K_{1} \longrightarrow F_{0} \longrightarrow P \longrightarrow 0, \\
0 \longrightarrow K_{2} \longrightarrow F_{1} \longrightarrow K_{1} \longrightarrow 0, \\
\vdots \\
0 \longrightarrow K_{n-1} \longrightarrow F_{n-2} \longrightarrow K_{n-2} \longrightarrow 0 .
\end{gathered}
$$

Note that P is $(n, 0)$-projective and F_{0} is $(n-1,0)$-projective, we obtain K_{1} is $(n-1,0)$ projective by Lemma 2.1. It follows that K_{2} is $(n-2,0)$-projective again by Lemma 2.1. Continuing this way, we see that K_{n-1} is (1,0)-projective. Clearly, K_{n-1} is finitely generated. Thus K_{n-1} is finitely presented by [8, Theorem 2.1.10], and hence there exists an exact sequence $F_{n}^{\prime} \rightarrow F_{n-1}^{\prime} \rightarrow K_{n-1} \rightarrow 0$ with F_{n}^{\prime} and F_{n-1}^{\prime} finitely generated projective. So we get an exact sequence

$$
F_{n}^{\prime} \rightarrow F_{n-1}^{\prime} \rightarrow F_{n-2} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow P \rightarrow 0
$$

It follows that P is n-presented, as required.
The following corollary is well-known.
Corollary 2.1. Let $n \geq 0$ be a fixed integer and R a ring. Then the following statements hold:
(1) Every finitely generated projective right R-module is n-presented.
(2) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules, if both A and C are n-presented, then B is also n-presented.
(3) If $B \cong A \oplus C$, then B is n-presented if and only if both A and C are n-presented.

Proof.
(1) Note that every projective right R-module is ($n, 0$)-projective. Thus (1) follows from Theorem 2.1.
(2) Since A and C are n-presented, we have both A and C are finitely generated and $(n, 0)$-projective. Hence B is also finitely generated and ($n, 0$)-projective. Therefore B is n-presented by Theorem 2.1.
(3) If $B \cong A \oplus C$, then it is easy to see that B is finitely generated and ($n, 0$)-projective if and only if both A and C are finitely generated and ($n, 0$)-projective. Thus (3) holds by Theorem 2.1, and we complete the proof.

Corollary 2.2. Let R be a ring, $n \geq 0$ an integer and $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ a short exact sequence of right R-modules, where P is finitely generated projective. Then K is n-presented if and only if M is $(n+1,0)$-presented.

Proof. If K is n-presented, then clearly M is $(n+1)$-presented. Conversely, if M is $(n+1)$ presented (hence ($n+1,0$)-projective), then it is easy to see that K is finitely generated. On the other hand, K is $(n, 0)$-projective by Lemma 2.1. It follows that K is n-presented from Theorem 2.1.

Theorem 2.2. Let R be a ring, and $n \geq 0$ a fixed integer. Then the following are equivalent:
(1) R is a right n-coherent ring.
(2) Every ($n+1,0$)-injective right R-module is ($n, 0$)-injective.
(3) Every ($n, 0$)-projective right R-module is $(n+1,0)$-projective.
(4) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules with B finitely generated projective, if C is n-presented, then A is also n-presented.
(5) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules, if both B and C are n-presented, then A is also n-presented.
If $n \geq 1$, then the above conditions are also equivalent to:
(6) Every ($n, 0$)-injective right R-module is ($n, 1$)-injective
(7) Every ($n, 1$)-projective right R-module is ($n, 0$)-projective.

Proof. (1) $\Rightarrow(2) \Rightarrow(3)$. are obvious.
$(3) \Rightarrow(1)$. Let M be an n-presented right R-modules. Then M is finitely generated and ($n, 0$)-projective by Theorem 2.1. Note that M is $(n+1,0)$-projective by (3). Thus M is ($n+1$)-presented again by Theorem 2.1.
(4) $\Rightarrow(1)$. Let M be any n-presented right R-module. Then there exists a short exact sequence $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ of right R-modules with P finitely generated projective and $K n$-presented by (4). Hence M is ($n+1$)-presented by Corollary 2.2, and (1) follows.
$(1) \Rightarrow(5)$. If C is n-presented, then C is $(n+1)$-presented by (1). The rest proof is similar to that of Corollary 2.2.
$(5) \Rightarrow(4)$. By (5), it suffices to show that B is n-presented. But this follows from Corollary 2.1.

Now suppose $n \geq 1$.
(4) $\Rightarrow(6)$. Let M be an ($n, 0)$-injective right R-module and C any n-presented right R module. Then we get a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules with B finitely generated projective. By (4), A is n-presented. Thus,

$$
E x t_{R}^{2}(C, M) \cong \operatorname{Ext}_{R}^{1}(A, M)=0
$$

Therefore, M is ($n, 1$)-injective.
(6) $\Rightarrow(7)$ is easy.
(7) $\Rightarrow(1)$. Let P be an n-presented right R-module. We get a short exact sequence $0 \rightarrow K \rightarrow F \rightarrow P \rightarrow 0$ of right R-modules with F finitely generated projective and K finitely generated. For any ($n, 1$)-injective right R-module M, we have

$$
\operatorname{Ext}_{R}^{1}(K, M) \cong \operatorname{Ext}_{R}^{2}(P, M)=0
$$

So K is $(n, 1)$-projective and hence $(n, 0)$-projective by (7). Thus, K is n-presented by Theorem 2.1. Therefore, P is $(n+1)$-presented and (1) holds.

It is well known that a ring R is right Noetherian if and only if every right R-module is $F P$-projective if and only if $\operatorname{rfpD}(R)=0$ (see [10, Proposition 2.6]). Now, we have the following.

Corollary 2.3. Let $n \geq 1$ be a fixed integer. Then the following are equivalent for a ring R :
(1) R is right Noetherian.
(2) $\operatorname{rnpD}(R)=0$.
(3) Every finitely generated right R-module is n-presented.
(4) Every ($n, 0$)-injective right R-module is injective.
(5) Every right R-module is $(n, 0)$-projective.
(6) Every finitely generated right R-module is ($n, 0$)-projective.
(7) Every cyclic right R-module is $(n, 0)$-projective.
(8) For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules, if both B and C are finitely generated, then A is also finitely generated.
If R is right n-coherent, then the above conditions are also equivalent to:
(9) Every ($n, 0$)-injective right R-module is ($n, 0$)-projective.

Proof. (1) $\Leftrightarrow(3) \Rightarrow(4)$ and $(5) \Rightarrow(6) \Rightarrow(7)$ are trivial.
$(4) \Rightarrow(5)$ Let M be any right R-module and N any ($n, 0$)-injective right R-module. Then $E x t_{R}^{1}(M, N)=0$ since N is injective by (4). Hence M is ($n, 0$)-projective.
(7) \Rightarrow (4). Let N be any ($n, 0$)-injective right R-module, and I any right ideal of R. By (7), R / I is ($n, 0$)-projective. So $E x t_{R}^{1}(R / I, N)=0$. That is, N is injective.
$(2) \Leftrightarrow(6)$ holds by definition, $(3) \Leftrightarrow(6)$ holds by Theorem $2.1,(1) \Leftrightarrow(8)$ holds by Theorem 2.2, and (4) $\Leftrightarrow(9)$ has been proven in [11, Proposition 4.10].

Corollary 2.4. Let $n \geq 1$ be an integer and R a ring. If $r n p D(R) \leq 1$, then $r n p D(R)=$ $r f p D(R)$.
Proof. This follows from the fact that $r n p D(R)=0$ if and only if $r f p D(R)=0$ by Corollary 2.3 and [10, Proposition 2.6].

Remark 2.1.

(1) From Theorem 2.1 and Corollary 2.3, we see that $n p d(M)$ measures how far away a finitely generated right R-module M is from being n-presented, and $r n p D(R)$ measures how far away a ring is from being right Noetherian.
(2) It is clear that $f p d(M) \leq n p d(M) \leq p d(M)$, and $r f p D(R) \leq r n p D(R) \leq r D(R)$. Since $\operatorname{rfp} D(R)=r D(R)$ if and only if R is von Neumann regular [10, Remarks 2.2], we have $\operatorname{rfpD}(R)=r n p D(R)=r D(R)$ if and only if R is von Neumann regular. It is also easy to see that $r n p D(R)=r D(R)$ if and only if R is a right $(n, 0)$-ring (see [16, Definition 2.5]).
(3) It is known that a right Noetherian ring need not be left Noetherian, so $r n p D(R) \neq$ $\operatorname{lnp} D(R)$ in general.
(4) The equivalence of (1) through (3) in Theorem 2.2 has been proven in [11, Theorem 4.1]. Here we prove the equivalence in a different way.
(5) If $n=1$, then Theorem 2.2 is just some characterizations of coherent rings.

Recall that a ring R is called right self- $(n, 0)$-injective in case R_{R} is $(n, 0)$-injective. Stenström proved that if R is right coherent and right self- $F P$-injective, then every flat right R-module is $F P$-injective (see [14, Lemma 4.1]). We generalize it as the following

Proposition 2.1. Let $n \geq 1$ be a fixed integer. If R is a right n-coherent and right self- $(n, 0)$ injective ring, then every flat right R-module is ($n, 0$)-injective.
Proof. Let M be a flat right R-module. Then, by [9, Theorem 4.85], we get a pure short exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ where $F \cong \bigoplus_{I} R$ for a set I. Since R is right n coherent and right self- $(n, 0)$-injective, we have F is ($n, 0$)-injective by [16, Lemma 2.9]. Hence we obtain the following exact sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(N, K) \rightarrow \operatorname{Hom}_{R}(N, F) \rightarrow \operatorname{Hom}_{R}(N, M) \rightarrow \operatorname{Ext}_{R}^{1}(N, K) \rightarrow \operatorname{Ext}_{R}^{1}(N, F)=0
$$

for any n-presented (hence finitely presented) right R-module N. It follows that $E x t_{R}^{1}(N, K)=$ 0 , and so K is ($n, 0$)-injective. Note that R is right n-coherent, we have M is $(n, 0)$-injective by [11, Theorem 4.1], as desired.

3. ($n, 0$)-projective dimensions over n-coherent rings

Proposition 3.1. Let $n \geq 1, m \geq 0$ be integers. If R is a right n-coherent ring, then the following are equivalent for a right R-module M :
(1) $n p d(M) \leq m$.
(2) $E x t_{R}^{m+1}(M, N)=0$ for any ($n, 0$)-injective right R-module N.
(3) $\operatorname{Ext}_{R}^{m+j}(M, N)=0$ for any $(n, 0)$-injective right R-module N and $j \geq 1$.
(4) There exists an exact sequence $0 \rightarrow P_{m} \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$, where each P_{i} is ($\left.n, 0\right)$-projective.
(5) If $\cdots \rightarrow P_{m-1} \rightarrow P_{m-2} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ is a projective resolution of M, then $\operatorname{ker}\left(P_{m-1} \rightarrow P_{m-2}\right)$ is (n,0)-projective.

Proof. (1) \Rightarrow (2). We use induction on m. The case $m=0$ is clear. Let $m \geq 1$. If $n p d(M)=$ m, then (2) holds by definition. Suppose $n p d(M) \leq m-1$. For any ($n, 0$)-injective right R-module N, the short exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with E injective induces an exact sequence

$$
\operatorname{Ext}_{R}^{m}(M, L) \rightarrow \operatorname{Ext}_{R}^{m+1}(M, N) \rightarrow \operatorname{Ext}_{R}^{m+1}(M, E)=0
$$

Since R is n-coherent, we get L is $(n, 0)$-injective by [11, Theorem 4.1]. So $E x t_{R}^{m}(M, L)=0$ by the induction hypothesis. It follows that $E x t_{R}^{m+1}(M, N)=0$, as desired.
$(2) \Rightarrow(3)$. Using induction on j, the proof is similar to that of $(1) \Rightarrow(2)$.
$(3) \Rightarrow(1)$, and $(2) \Rightarrow(5) \Rightarrow(4)$ are obvious.
(4) \Rightarrow (2). Write $K_{1}=\operatorname{ker}\left(P_{0} \rightarrow M\right), K_{i}=\operatorname{ker}\left(P_{i-1} \rightarrow P_{i-2}\right), i=2,3, \ldots, m-1$. Then we have the following short exact sequences

$$
\begin{gathered}
0 \longrightarrow K_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0, \\
0 \longrightarrow K_{2} \longrightarrow P_{1} \longrightarrow K_{1} \longrightarrow 0, \\
\vdots \\
0 \longrightarrow P_{m} \longrightarrow P_{m-1} \longrightarrow K_{m-1} \longrightarrow 0 .
\end{gathered}
$$

From the bottom exact sequence, we get the exactness of the sequence

$$
0=\operatorname{Ext}_{R}^{1}\left(P_{m}, N\right) \rightarrow \operatorname{Ext}_{R}^{2}\left(K_{m-1}, N\right) \rightarrow \operatorname{Ext}_{R}^{2}\left(P_{m-1}, N\right)
$$

for any $(n, 0)$-injective right R-module N. Since P_{m-1} is ($n, 0$)-projective, using an argument similar to that of $(1) \Rightarrow(2)$, we get $E x t_{R}^{2}\left(P_{m-1}, N\right)=0$. Hence $E x t_{R}^{2}\left(K_{m-1}, N\right)=0$. Continuing this way, we obtain $E x t_{R}^{m+1}(M, N)=0$. Thus (2) holds.

Proposition 3.2. Let R be a right n-coherent ring ($n \geq 1$) and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of right R-modules. Then the following are true:
(1) If two of $n p d(A), n p d(B)$ and $n p d(C)$ are finite, so is the third.
(2) $n p d(A) \leq \sup \{n p d(B), n p d(C)-1\}$.
(3) $n p d(B) \leq \sup \{n p d(A), n p d(C)\}$.
(4) $\operatorname{npd}(C) \leq \sup \{n p d(B), n p d(A)+1\}$.
(5) If B is $(n, 0)$-projective and $0<\operatorname{npd}(A)<\infty$, then $\operatorname{npd}(C)=n p d(A)+1$.

Proof. Easy to verify by Proposition 3.1.
Corollary 3.1. Let R be a right n-coherent ring ($n \geq 1$), A, B and C right R-modules. If $B \cong A \oplus C$, then $n p d(B)=\sup \{n p d(A), n p d(C)\}$.

Proof. Since $B \cong A \oplus C$, we get two short exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $0 \rightarrow$ $C \rightarrow B \rightarrow A \rightarrow 0$. By Proposition 3.2 (3), it is enough to show that $n p d(B) \geq \sup \{n p d(A)$, $n p d(C)\}$. Suppose $n p d(B)<\sup \{n p d(A), n p d(C)\}$, then $n p d(B)<n p d(A)$ or $n p d(B)<$ $n p d(C)$. We may assume $n p d(B)<n p d(A)$. By Proposition $3.2(2), n p d(C) \leq \sup \{n p d(B)$, $n p d(A)-1\}$. So $n p d(C) \leq n p d(A)-1$, that is, $n p d(C)<\operatorname{npd}(A)$. In addition, also by Proposition $3.2(2)$, we have $n p d(A) \leq \sup \{n p d(B), \operatorname{npd}(C)-1\}$. Hence $n p d(A) \leq$ $n p d(C)-1$, since $n p d(B)<n p d(A)$, and so $\operatorname{npd}(A)<\operatorname{npd}(C)$, a contradiction.

Let M be a right R-module. Recall that a a homomorphism $\phi: M \rightarrow F$ where F is a right ($n, 0$)-injective R-module, is called an ($n, 0$)-injective preenvelope [5] of M if for any homomorphism $f: M \rightarrow F^{\prime}$ with F^{\prime} is ($n, 0$)-injective, there is a homomorphism $g: F \rightarrow F^{\prime}$ such that $g \phi=f$. Moreover, if the only such g are automorphism of F when $F^{\prime}=F$ and $f=\phi$, then the $(n, 0)$-injective preenvelope ϕ is called an ($n, 0$)-injective envelope. A monomorphic ($n, 0$)-injective preenvelope ϕ is said to be special [6, Definition 7.1.6] if coker ϕ is $(n, 0)$-projective. ($n, 0$)-projective (pre)covers and special ($n, 0$)-projective precovers can be defined dually. It is proved that every right R-module has a special $(n, 0)$ projective precover and a special ($n, 0$)-injective preenvelope (see [11, Theorem 3.9]).

Theorem 3.1. Let R be a right n-coherent ring $(n \geq 1)$, then the following are identical:
(1) $r n p D(R)$
(2) $\sup \{n p d(M): M$ is a cyclic right R-module $\}$
(3) $\sup \{n p d(M): M$ is any right R-module $\}$
(4) $\sup \{n p d(M): M$ is an ($n, 0$)-injective right R-module $\}$
(5) $\sup \{i d(M): M$ is an ($n, 0$)-injective right R-module $\}$

Proof. (1) \leq (2). We may assume $\sup \{n p d(M): M$ is a cyclic right R-module $\}=m<\infty$. Let A be any finitely generated right R-module. We use induction on the number of generators of A. If A has l generators, let A^{\prime} be a submodule generated by one of these generators. Then both A / A^{\prime} and A^{\prime} are finitely generated on less then l generators. Let N be any $(n, 0)$ injective right R-module. Consider the short exact sequence $0 \rightarrow A^{\prime} \rightarrow A \rightarrow A / A^{\prime} \rightarrow 0$ which induces an exact sequence

$$
\operatorname{Ext}_{R}^{m+1}\left(A / A^{\prime}, N\right) \rightarrow \operatorname{Ext}_{R}^{m+1}(A, N) \rightarrow \operatorname{Ext}_{R}^{m+1}\left(A^{\prime}, N\right)
$$

where

$$
E x t_{R}^{m+1}\left(A / A^{\prime}, N\right)=E x t_{R}^{m+1}\left(A^{\prime}, N\right)=0
$$

by induction hypothesis. Thus $E x t_{R}^{m+1}(A, N)=0$. So $n p d(A) \leq m$.
$(2) \leq(3)$ is clear.
(3) $\leq(4)$. We may assume $\sup \{n p d(M): M$ is an $(n, 0)$-injective right R-module $\}=$ $m<\infty$. Let A be any right R-module, then A has a special ($n, 0$)-injective preenvelope by [11, Theorem 3.9], that is, there exists a short exact sequence $0 \rightarrow A \rightarrow E \rightarrow L \rightarrow 0$ with $E(n, 0)$-injective and $L(n, 0)$-projective. Therefore, $n p d(A) \leq n p d(E) \leq m$ by Proposition 3.2.
(4) $\leq(5)$. We may assume $\sup \{\operatorname{id}(M): M$ is an $(n, 0)$-injective right R-module $\}=m<\infty$. Let A and B be any $(n, 0)$-injective right R-modules. Then $E x t_{R}^{m+1}(A, B)=0$ since $i d(B) \leq$ m. So $n p d(A) \leq m$ by Proposition 3.1.
(5) $\leq(1)$. We may assume $\operatorname{rnp} D(R)=m<\infty$. Let M be an $(n, 0)$-injective right R module. Then $\operatorname{Ext}_{R}^{m+1}(R / I, M)=0$ for any right ideal I of R since $n p d(R / I) \leq m$ by hypothesis. Hence $i d(M) \leq m$, this completes the proof.

Corollary 3.2. Let $n \geq 1$ be a fixed integer. Then the following are equivalent for a right n-coherent ring R :
(1) $\operatorname{rnpD}(R) \leq m$.
(2) $n p d(M) \leq m$ for any $(n, 0)$-injective right R-module M.
(3) $n p d(M) \leq m$ for any injective right R-module M, and $\operatorname{rnp} D(R)<\infty$.
(4) id $(M) \leq m$ for any $(n, 0)$-injective right R-module M.
(5) id $(M) \leq m$ for all right R-module M that are both ($n, 0$)-injective and ($n, 0)$-projective, and $\operatorname{rnp} D(R)<\infty$.

Proof. (1) $\Leftrightarrow(2) \Leftrightarrow(4)$ holds by Theorem 3.1. (2) $\Rightarrow(3)$ and $(4) \Rightarrow(5)$ are clear.
$(5) \Rightarrow(4)$. Let M be any ($n, 0$)-injective right R-module. By (5) and Theorem 3.1 (4), $\operatorname{npd}(M)=m$ for a non-negative integer m. Note that every right R-module has a special ($n, 0$)-projective precover by [11, Theorem 3.9], we obtain an exact sequence

$$
0 \rightarrow P_{m} \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

where each P_{t} is both $(n, 0)$-projective and $(n, 0)$-injective, $t=0,1, \ldots, m$. Hence $i d\left(P_{t}\right) \leq m$ by $(5), t=0,1, \ldots, m$. So $i d(M) \leq m$.
(3) $\Rightarrow(2)$. Let M be any ($n, 0$)-injective right R-module. By (3) and Theorem 3.1 (5), $i d(M)=t$ for a non-negative integer t. Hence we get an injective resolution of M :

$$
0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \cdots \rightarrow E^{t-1} \rightarrow E^{t} \rightarrow 0
$$

By (3), $n p d\left(E^{i}\right) \leq m, i=0,1, \ldots, t$. Hence we have $n p d(M) \leq m$ by Proposition 3.2, as desired.

Recall that an injective envelope $\phi: M \rightarrow E(M)$ of M has the unique mapping property [4] if for any homomorphism $f: M \rightarrow A$ with A injective, there is a unique homomorphism $g: E(M) \rightarrow A$ such that $g \phi=f$. The concept of an ($n, 0$)-projective cover with the unique mapping property can be defined similarly.
Corollary 3.3. Let $n \geq 1$ be a fixed integer. Then the following are equivalent for a right n-coherent ring R :
(1) R is right Noetherian.
(2) $\operatorname{rnp} D(R)<\infty$ and every injective right R-module is ($n, 0$)-projective.
(3) Every ($n, 0$)-injective right R-module is ($n, 0$)-projective.
(4) Every ($n, 0$)-injective right R-module has an ($n, 0$)-projective cover with the unique mapping property.
(5) Every ($n, 0$)-injective right R-module has an injective envelope with the unique mapping property.

Proof. (1) $\Leftrightarrow(2) \Leftrightarrow(3)$ holds by Corollary 3.2 and Corollary 2.3.
$(1) \Rightarrow(4)$ and $(1) \Rightarrow(5)$. Let M be any ($n, 0)$-injective right R-module. Then M is ($n, 0$)-projective and injective, since R is right Noetherian by (1). Thus (4) and (5) follows.
$(4) \Rightarrow(3)$. For any $(n, 0)$-injective right R-module M, let $g: P \rightarrow M$ be the $(n, 0)$ projective cover of M with the unique mapping property, where P is $(n, 0)$-projective. Write $K=\operatorname{kerg}$. Then K is ($n, 0$)-injective by [6, Corollary 7.2.3] and [11, Theorem 3.9]. Hence there exists an ($n, 0$)-projective cover $f: P^{\prime} \rightarrow K$ of K by (4). So, we obtain the following exact commutative diagram:

Since $g(i f)=0$, we have $i f=0$ by (4). Whence $K=\operatorname{Im} f \subseteq \operatorname{ker}(i)=0$, that is, M is ($n, 0$)-projective.
$(5) \Rightarrow(1)$. Let M be any $(n, 0)$-injective right R-module. By Corollary 2.3, we need only to show that M is injective. Let $f: M \rightarrow E$ be the injective envelope of M with the unique mapping property. Write $L=\operatorname{coker} f$. Since R is n-coherent, L is ($n, 0)$-injective by [11, Theorem 4.1]. So there exists an injective envelope $g: L \rightarrow E^{\prime}$ of L by (5). Therefore we get the following exact commutative diagram:

Since $(g \pi) f=0$, we have $g \pi=0$ by (5). Hence $L=\operatorname{Im} \pi \subseteq \operatorname{ker}(g)=0$. So M is injective. This completes the proof.

Recall that a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is said to be n-pure [11] if $\operatorname{Hom}(M, B) \rightarrow \operatorname{Hom}(M, C) \rightarrow 0$ is exact for any n-presented module M. A submodule N of M is called an n-pure submodule if the sequence $0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0$ is n-pure.
Proposition 3.3. Let $n \geq 1$ be a fixed integer and R a right n-coherent ring. Observe the following statements:
(1) $\operatorname{rnpD}(R) \leq 1$.
(2) For any n-pure submodule N of an injective right R-module E, the quotient E / N is injective (i.e., $\operatorname{id}(N) \leq 1$).
(3) Every submodule of an ($n, 0$)-projective right R-module is ($n, 0$)-projective.
(4) Every right ideal of R is $(n, 0)$-projective.
(5) For any pure submodule N of an injective right R-module E, the quotient E / N is injective.
(6) Every submodule of an FP-projective right R-module is FP-projective.
(7) Every right ideal of R is $F P$-projective.

Then: $(1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$ and $(2) \Rightarrow(5) \Rightarrow(6) \Rightarrow(7)$.
Proof. (1) \Rightarrow (2). Let N be an n-pure submodule of an injective right R-module E. Then it is easy to see that N is $(n, 0)$-injective. Hence $i d(N) \leq 1$ by Theorem 3.1 (5). So the short exact sequence $0 \rightarrow N \rightarrow E \rightarrow E / N \rightarrow 0$ implies that E / N is injective.
$(2) \Rightarrow(3)$. Let L be any $(n, 0)$-injective right R-module. Then it is clear that L is an n-pure submodule of its injective envelope $E(L)$, and hence $i d(L) \leq 1$ by (2). If N is a submodule of an $(n, 0)$-projective right R-module M, then the exactness of the sequence

$$
0=E x t_{R}^{1}(M, L) \rightarrow \operatorname{Ext}_{R}^{1}(N, L) \rightarrow \operatorname{Ext}_{R}^{2}(M / N, L)=0
$$

implies that $E x t_{R}^{1}(N, L)=0$, and so N is ($n, 0$)-projective.
$(4) \Rightarrow(1)$. Let I be an ideal of R. The exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ implies that $n p d(R / I) \leq 1$ by Proposition 3.1. So (1) holds by Theorem 3.1 (2).
$(2) \Rightarrow(5)$. It is easy to verify that every pure right R-module is n-pure. So (5) follows.
$(5) \Rightarrow(6)$ is similar to that of $(2) \Rightarrow(3),(3) \Rightarrow(4)$ and $(6) \Rightarrow(7)$ are trivial.
It is known that if R is a right coherent ring, then $f d(M)=p d(M)$ for any finitely present right R-module M (see [7, Lemma 5]). Mao and Ding (see [10, Proposition 4.1]) proved that if R is also self- $F P$-injective, then $f d(M)=p d(M)$ for any $F P$-projective right R-module M. Here we have the following

Proposition 3.4. Let n be a fixed positive integer. If R is a right n-coherent and right self$(n, 0)$-injective ring, then $f d(M)=p d(M)$ for any $(n, 0)$-projective right R-module M.
Proof. It is enough to show that $f d(M) \geq p d(M)$. We may assume that $f d(M)=m<\infty$. Then there exists an exact sequence

$$
0 \rightarrow F_{m} \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

with $P_{0}, P_{1}, \cdots, P_{m-1}$ projective and F_{m} flat. Consider the short exact sequence $0 \rightarrow K \rightarrow$ $P \rightarrow F_{m} \rightarrow 0$ where P is projective. By [9, Theorem 4.85], the short exact sequence above is pure, and hence n-pure. By Proposition 2.1, P is $(n, 0)$-injective. So K is $(n, 0)$-injective by [11, Proposition 3.6]. Since M is $(n, 0)$-projective, so is F_{m}. Thus the exactness of the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}\left(F_{m}, K\right) \rightarrow \operatorname{Hom}_{R}(P, K) \rightarrow \operatorname{Hom}_{R}(K, K) \rightarrow \operatorname{Ext}_{R}^{1}\left(F_{m}, K\right)=0
$$

implies that the sequence $0 \rightarrow K \rightarrow P \rightarrow F_{m} \rightarrow 0$ is split exact, and so F_{m} is projective, that is, $p d(M) \leq m$. This completes the proof.

Proposition 3.5. Let $n \geq 1$ be a fixed integer and R a right n-coherent ring. If rnp $D(R) \leq m$, then R is a right m-coherent ring.

Proof. The case $m=0$ holds by Corollary 2.3. Suppose $m \geq 1$. Let M be an m-presented right R-module, then M has a free resolution

$$
F_{m} \rightarrow F_{m-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

with each F_{i} finitely generated free. Write $K_{m}=\operatorname{ker}\left(F_{m-1} \rightarrow F_{m-2}\right)$, then

$$
\operatorname{Ext}_{R}^{1}\left(K_{m}, N\right) \cong \operatorname{Ext}_{R}^{m+1}(M, N)=0
$$

for any $F P$-injective right R-module N, since $\operatorname{rnpD}(R) \leq m$ and every $F P$-injective right R-module is ($n, 0$)-injective. Note that K_{m} is finitely generated. We obtain K_{m} is finitely presented by Theorem 2.1. This implies that M is $(m+1)$-presented, and so R is a right m-coherent ring.

To prove the next main result, we need four lemmas.
Lemma 3.1. Let $f: R \rightarrow S$ be a surjective ring homomorphism. If M_{S} is a right S-module (hence a right R-module) and A_{R} is a right R-module, then the following statements hold:
(1) $M \otimes_{R} S_{S} \cong M_{S}$.
(2) If A_{R} is a finitely generated right R-module, then $A \otimes_{R} S_{S}$ is a finitely generated right S-module.
(3) M_{S} is a finitely generated right S-module if and only if M_{R} is a finitely generated right R-module.

Proof. (1). Easy.
(2). Clearly, S is a cyclic R-module. Suppose $x_{1}, x_{2}, \cdots, x_{n}$ are generators of A. Then it is easy to verify that $x_{1} \otimes 1_{S}, x_{2} \otimes 1_{S}, \cdots, x_{n} \otimes 1_{S}$ are generators of $A \otimes_{R} S_{S}$, where 1_{S} denotes the identity of S. Thus $A \otimes_{R} S_{S}$ is a finitely generated right S-module.
(3). If M_{S} is a finitely generated right S-module, and suppose $x_{1}, x_{2}, \cdots, x_{n}$ are generators of M, then $M=x_{1} S+x_{2} S+\cdots+x_{n} S$. So $M=x_{1} R+x_{2} R+\cdots+x_{n} R$ since $f: R \rightarrow S$ is surjective. Hence M_{R} is a finitely generated right R-module. The converse holds by (1) and (2).

Lemma 3.2. Let $f: R \rightarrow S$ be a surjective ring homomorphism, n a non-negative integer, and M a right S-module. If both S_{R} and ${ }_{R} S$ are projective, then M_{S} is an n-presented right S-module if and only if M_{R} is an n-presented right R-module. (Note that the case $n=1$ has been proven in [10, Lemma 3.13].)

Proof. The case $n=0$ follows by Lemma 3.1. So next we assume $n>0$.
$" \Rightarrow$ ". Suppose M is an n-presented right S-module. Then there exists an exact sequence

$$
0 \rightarrow K \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

of right S-modules with K finitely generated, and P_{i} finitely generated projective, $i=0,1$, $\cdots, n-1$. By Lemma 3.1, each P_{i} and K are finitely generated right R-modules. Since S_{R} is projective, we have each P_{i} is a projective right R-module. So, M is an n-presented right R-module.
" $\Leftarrow "$. Assume M is an n-presented right R-module. Then there exists an exact sequence

$$
0 \rightarrow K \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

of right R-modules with K finitely generated, and P_{i} finitely generated projective, $i=0,1$, $\cdots, n-1$. Since ${ }_{R} S$ is projective, the sequence

$$
0 \rightarrow K \otimes_{R} S_{S} \rightarrow P_{n-1} \otimes_{R} S_{S} \rightarrow \cdots \rightarrow P_{1} \otimes_{R} S_{S} \rightarrow P_{0} \otimes_{R} S_{S} \rightarrow M \otimes_{R} S_{S} \rightarrow 0
$$

is exact. By Lemma 3.1, $M \otimes_{R} S_{S} \cong M_{S}$, and both $K \otimes_{R} S_{S}$ and each $P_{i} \otimes_{R} S_{S}$ are finitely generated S-modules. Since each P_{i} is a projective right R-module, we have each $P_{i} \otimes_{R} S_{S}$ is a projective right S-module. So M is an n-presented right S-module.

Let n and d be non-negative integers. Recall that a left R-module A is called (n, d) flat [16], in case $\operatorname{Tor}_{d+1}^{R}(B, A)=0$ for any n-presented right R-module B.
Lemma 3.3. Let $f: R \rightarrow S$ be a surjective ring homomorphism, M_{S} a right S-module and ${ }_{S} A$ a left S-module. If both S_{R} and ${ }_{R} S$ are projective, then the following statements hold for any non-negative integers n and d :
(1) M_{S} is an ($\left.n, d\right)$-injective right S-module if and only if M_{R} is an (n, d)-injective right R-module.
(2) ${ }_{S} A$ is an (n, d)-flat left S-module if and only if ${ }_{R} A$ is an (n, d)-flat left R-module.
(3) If R is a right n-coherent ring, then S is a right n-coherent ring.

Proof. (1). " \Rightarrow ". Suppose M_{S} is an (n, d)-injective right S-module. Let N_{R} be any n presented right R-module. Then, using an argument similar to that in Lemma 3.2, we get that $N \otimes_{R} S_{S}$ is an n-presented right S-module. By [13, Theorem 11.65], we have

$$
E x t_{R}^{d+1}\left(N_{R}, M_{R}\right) \cong E x t_{S}^{d+1}\left(N \otimes_{R} S_{S}, M_{S}\right)=0
$$

Therefore M_{R} is an (n, d)-injective right R-module.
" $\Leftarrow "$. Assume M_{R} is an (n, d)-injective right R-module. Let N_{S} be any n-presented right S-module. Then $N \otimes_{R} S_{S} \cong N_{S}$ by Lemma 3.1 and N_{R} is an n-presented right R-module by Lemma 3.2. Again by [13, Theorem 11.65], we have

$$
E x t_{S}^{d+1}\left(N_{S}, M_{S}\right) \cong E x t_{S}^{d+1}\left(N \otimes_{R} S_{S}, M_{S}\right) \cong E x t_{R}^{d+1}\left(N_{R}, M_{R}\right)=0
$$

Therefore M_{S} is an (n, d)-injective right S-module.
(2). " \Rightarrow ". If ${ }_{S} A$ is an (n, d)-flat left S-module. Let B_{R} be any n-presented right R-module. Then $B \otimes_{R} S_{S}$ is an n-presented right S-module. By [13, Corollary 11.63], we have

$$
\operatorname{Tor}_{d+1}^{R}\left(B_{R, R} A\right) \cong \operatorname{Tor}_{d+1}^{S}\left(B \otimes_{R} S_{S, S} A\right)=0
$$

Therefore ${ }_{R} A$ is an (n, d)-flat left R-module.
" \Leftarrow ". If ${ }_{R} A$ is an (n, d)-flat left R-module. Let B_{S} be any n-presented right R-module. Then $B \otimes_{R} S_{S} \cong B_{S}$ by Lemma 3.1 and B_{R} is an n-presented right R-module by Lemma 3.2. By [13, Corollary 11.63], we have

$$
\operatorname{Tor}_{d+1}^{S}\left(B_{S, S} A\right) \cong \operatorname{Tor}_{d+1}^{S}\left(B \otimes_{R} S_{S, S} A\right) \cong \operatorname{Tor}_{d+1}^{R}\left(B_{R, R} A\right)=0
$$

Therefore ${ }_{S} A$ is an (n, d)-flat left S-module.
(3). Let M_{S} be an n-presented right R-module, then M_{R} is an n-presented right R-module by Lemma 3.2. Thus M_{R} is an $(n+1)$-presented right R-module since R is a right n-coherent ring. Therefore M_{S} is an $(n+1)$-presented right S-module again by Lemma 3.2, and so S is a right n-coherent ring.

We list the following lemma proved in [10, Lemma 3.14] for convenient using.
Lemma 3.4. [10, Lemma 3.14]. Let R and S be rings. Every right $(R \oplus S)$-module has a unique decomposition that $M=A \oplus B$, where $A=M(R, 0)$ is a right R-module and $B=$ $M(0, S)$ is a right S-module via $x r=x(r, 0)$ for $x \in A, r \in R$, and $y s=y(0, s)$ for $y \in B, s \in S$.

We are now in a position to prove the following main result.
Theorem 3.2. Let S and T be rings, and $n \geq 1$ a fixed integer. If $S \oplus T$ is a right n-coherent ring, then

$$
r n p D(S \oplus T)=\sup \{r n p D(S), r n p D(T)
$$

Proof. For convenience, we write $R=S \oplus T$. Since R is a right n-coherent ring, we have both S and T are right n-coherent rings by Lemma 3.3.

We first show that $r n p D(R) \leq \sup \{r n p D(S), \operatorname{rnpD}(T)\}$. We may assume $\sup \{r n p D(S)$, $\operatorname{rnp} D(T)\}=m<\infty$. Let M be a right (R)-module and N any ($n, 0)$-injective right (R) module. Then $N=A \oplus B$, where A is a right S-module and B is a right T-module by Lemma 3.4. Note that both A and B are ($n, 0$)-injective right (R)-modules. Hence A is an ($n, 0$)-injective right S-module and B is an ($n, 0$)-injective right T-module by Lemma 3.3. By [13, Theorem 11.65], we have

$$
\begin{aligned}
\operatorname{Ext}_{R}^{m+1}(M, N) & \cong E x t_{R}^{m+1}(M, A) \oplus E x t_{R}^{m+1}(M, B) \\
& \cong E x t_{S}^{m+1}\left(M \otimes_{R} S_{S}, A\right) \oplus E x t_{T}^{m+1}\left(M \otimes_{R} T_{T}, B\right)=0,
\end{aligned}
$$

and hence $r n p D(R) \leq \sup \{r n p D(S), r n p D(T)\}$.
Next we prove that $\operatorname{rnp} D(R) \geq \sup \{r n p D(S), \operatorname{rnpD}(T)\}$. We may assume $\operatorname{rnpD}(R)=$ $m<\infty$. Let M be a right S-module and N any ($n, 0$)-injective right S-module. Then N is an $(n, 0)$-injective right (R)-module by Lemma 3.3. By Lemma 3.1, $M \otimes_{R} S_{S} \cong M_{S}$. Again by [13, Theorem 11.65], we have

$$
\operatorname{Ext}_{S}^{m+1}(M, N) \cong \operatorname{Ext}_{S}^{m+1}\left(M \otimes_{R} S_{S}, N\right) \cong E x t_{R}^{m+1}(M, N)=0
$$

Therefore $\operatorname{rnp} D(R) \geq r n p D(S)$. Similarly for $r n p D(R) \geq r n p D(T)$, and hence $r n p D(R) \geq$ $\sup \{r n p D(S), \operatorname{rnpD}(T)\}$. This completes the proof.
Remark 3.1. Let $R_{1}, R_{2}, \cdots, R_{m}$ be rings and n a positive integer. The theorem above shows that $\operatorname{rnp} D\left(\bigoplus_{i=1}^{m} R_{i}\right)=\sup \left\{r n p D\left(R_{1}\right), \operatorname{rnp} D\left(R_{2}\right), \cdots, \operatorname{rnp} D\left(R_{m}\right)\right\}$ if $\bigoplus_{i=1}^{m} R_{i}$ is an n-coherent ring. In particular, we obtain the known result that $\bigoplus_{i=1}^{m} R_{i}$ is right Noetherian if and only if each R_{i} is right Noetherian. But in general $r n p D\left(\bigoplus_{i=1}^{\infty} R_{i}\right) \neq \sup _{i \geq 1}\left\{r n p D\left(R_{i}\right)\right\}$. For example, Z_{2} is a field of two elements, but $\bigoplus_{i=1}^{\infty} \mathrm{Z}_{2}$ is not Noetherian.
Lemma 3.5. Assume n and d are non-negative integers, R is a commutative ring, and P is any prime ideal of R. Let R_{P} denote the localization of R at P, M is an $R_{P}-$ module (M may be viewed as an R-module), and A is an R-module. Then the following statements hold:
(1) If A is an n-presented R-module, then A_{P} is an n-presented R_{P}-module.
(2) If M is an (n, d)-injective R_{P}-module, then M is an (n, d)-injective R-module.
(3) If M is an (n, d)-flat R_{P}-module, then M is an (n, d)-flat R-module.
(4) If A is an (n, d)-projective R-module, then A_{P} is an (n, d)-projective R_{P}-module.

Proof. (1). Suppose A is an n-presented R-module. Then there exists an exact sequence of R-modules

$$
F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0
$$

where each F_{i} is finitely generated projective, $i=0,1, \cdots, n$. It gives rise to the exactness of the sequence

$$
\left(F_{n}\right)_{\mathrm{P}} \rightarrow\left(F_{n-1}\right)_{\mathrm{P}} \rightarrow \cdots \rightarrow\left(F_{1}\right)_{\mathrm{P}} \rightarrow\left(F_{0}\right)_{\mathrm{P}} \rightarrow A_{\mathrm{P}} \rightarrow 0
$$

of R_{P}-modules. By [6, Remark 2.2.5], each $\left(F_{i}\right)_{\mathrm{P}}$ is a finitely generated projective R_{P} module, $i=0,1, \cdots, n$. Hence A_{P} is an n-presented R_{P}-module.
(2). Assume M is an (n, d)-injective R_{P}-module. Let N be any n-presented R-module, then N_{P} is an n-presented R_{P}-module by (1). Note that R_{P} is a flat R-module and $R_{\mathrm{P}} \otimes_{R} N \cong$ N_{P}. By [13, Theorem 11.65], we have

$$
E x t_{R}^{d+1}(N, M) \cong \operatorname{Ext}_{R_{\mathrm{P}}}^{d+1}\left(R_{\mathrm{P}} \otimes_{R} N, M\right) \cong \operatorname{Ext}_{R_{\mathrm{P}}}^{d+1}\left(N_{\mathrm{P}}, M\right)=0 .
$$

Therefore M is an (n, d)-injective R-module.
(3). Similar to that of (2).
(4). Suppose A is an (n, d)-projective R-module. Let B be any (n, d)-injective R_{P}-module, then B is an (n, d)-injective R-module by (2). Note that $A_{\mathrm{P}} \cong R_{\mathrm{P}} \otimes_{R} A$. By [13, Theorem 11.65], we have

$$
E x t_{R_{\mathrm{P}}}^{1}\left(A_{\mathrm{P}}, B\right) \cong E x t_{R_{\mathrm{P}}}^{1}\left(R_{\mathrm{P}} \otimes_{R} A, B\right) \cong E x t_{R}^{1}(A, B)=0
$$

Therefore A_{P} is an (n, d)-projective R_{P}-module.
Corollary 3.4. Let R be a commutative ring and P any prime ideal of R. If M is an $R_{P}-$ module, then the following statements hold:
(1) M is an injective R_{P}-module if and only if M is an injective R-module.
(2) M is a flat R_{P}-module if and only if M is a flat R-module.

Proof. (1). If M is an injective R_{P}-module, then M is an injective R-module by Lemma 3.5. If M is an injective R-module, then M_{P} is an injective R_{P}-module by [13, Theorem 3.76]. Note that $M \cong M_{\mathrm{P}}$ as R_{P}-modules. Thus (1) follows.
(2). Similar to that of (1).

Theorem 3.3. Let $n \geq 1$ be a fixed integer and R a commutative n-coherent ring. If P is any prime ideal of R, then $n p D\left(R_{\mathrm{P}}\right) \leq n p D(R)$.
Proof. We may assume $n p D(R)=t<\infty$. Let M be any R_{P}-module. Note that M may be viewed as an R-module. Thus $n p d\left(M_{R}\right) \leq t$. If $t=0$, then M is an $(n, 0)$-projective R module. Since $M \cong M_{\mathrm{P}}$ as R_{P}-modules, we have M is an ($n, 0$)-projective R_{P}-module by Lemma 3.5, and so the theorem follows. Next we assume $t \geq 1$. By Proposition 3.1 (5), There exists an exact sequence

$$
0 \rightarrow K \rightarrow F_{t-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

of R-modules, where each F_{i} is a projective R-module, $i=1,2, \cdots, t-1$, and K is an ($n, 0$)-projective R-module. The above sequence induces an R_{P}-module exact sequence

$$
0 \rightarrow K_{\mathrm{P}} \rightarrow\left(F_{t-1}\right)_{\mathrm{P}} \rightarrow \cdots \rightarrow\left(F_{1}\right)_{\mathrm{P}} \rightarrow\left(F_{0}\right)_{\mathrm{P}} \rightarrow M_{\mathrm{P}} \rightarrow 0 .
$$

By [6, Remark 2.2.5], each $\left(F_{i}\right)_{\mathrm{P}}$ is a projective R_{P}-module, $i=1,2, \cdots, t-1$. Note that K_{P} is an ($n, 0$)-projective R_{P}-module by Lemma 3.5. Thus, for any ($n, 0$)-injective R_{P}-module N, we have

$$
E x t_{R_{\mathrm{P}}}^{t+1}\left(M_{\mathrm{P}}, N\right) \cong E x t_{R_{\mathrm{P}}}^{1}\left(K_{\mathrm{P}}, N\right)=0
$$

and so $n p d\left(M_{\mathrm{P}}\right)_{R_{\mathrm{P}}} \leq t$ by definition. Since $M \cong M_{\mathrm{P}}$ as R_{P}-modules, $n p d(M) \leq t$. Therefore $n p D\left(R_{\mathrm{P}}\right) \leq n p D(R)$, and we complete the proof.

Remark 3.2.

(1) The theorem above shows the well-known result that any localization of a Noetherian ring is again Noetherian. But in general $n p D(R) \neq \sup \left\{n p D\left(R_{\mathrm{P}}\right): P\right.$ is a prime ideal of $R\}$. For example, take R to be the direct product of countably many copies of \mathbf{Z}_{2}, then R is not Noetherian. Thus $n p D(R)>0$. However, $n p D\left(R_{\mathrm{P}}\right)=0$ for any prime ideal of R.
(2) Let R be a commutative ring and P any prime ideal of R. Corollary 3.4 shows that if M is an R_{P}-module, then M is a flat (resp. injective) R_{P}-module if and only if M is a flat (resp. injective) R-module. But, in general, a projective R_{P}-module need not be a projective R-module. For example, R_{P} is a projective R_{P}-module, but R_{P} need not be a projective R-module.

Acknowledgement. This research was supported by the Scientific Research Fund of Education Department of Guangxi Province (No. 201203YB224).

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, second edition, Graduate Texts in Mathematics, 13, Springer, New York, 1992.
[2] J. Chen and N. Ding, On n-coherent rings, Comm. Algebra 24 (1996), no. 10, 3211-3216.
[3] D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994), no. 10, 3997-4011.
[4] N. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459-1470.
[5] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209.
[6] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000.
[7] M. Finkel Jones and M. L. Teply, Coherent rings of finite weak global dimension, Comm. Algebra 10 (1982), no. 5, 493-503.
[8] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989.
[9] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999.
[10] L. Mao and N. Ding, FP-projective dimensions, Comm. Algebra 33 (2005), no. 4, 1153-1170.
[11] L. Mao and N. Ding, Relative projective modules and relative injective modules, Comm. Algebra 34 (2006), no. 7, 2403-2418.
[12] H. K. Ng, Finitely presented dimension of commutative rings and modules, Pacific J. Math. 113 (1984), no. 2, 417-431.
[13] J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, New York, 1979.
[14] B. Stenström, Coherent rings and F P-injective modules, J. London Math. Soc. (2) 2 (1970), 323-329.
[15] W. Xue, On n-presented modules and almost excellent extensions, Comm. Algebra 27 (1999), no. 3, 10911102.
[16] D. Zhou, On n-coherent rings and (n, d)-rings, Comm. Algebra 32 (2004), no. 6, 2425-2441.

