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1. Introduction

Let [n] = {1,2, . . . ,n} ordered in the standard way. We denote by Tn the semigroup of all
full transformations of [n], and by S ingn its subsemigroup of all singular transformations of
[n]. We say that a transformation α in S ingn is order-preserving if, for all x,y ∈ [n], x ≤ y
implies xα ≤ yα . We denote by On the subsemigroup of S ingn of all order-preserving
singular transformations. Let

Ok
n = {a−k f ak : f ∈ On}, k ∈ [n],

where a = (123 · · ·n) is the fixed generator of the cyclic group Zn. Catarino and Higgins [2]
proved that Ok

n and On are isomorphic subsemigroups of Tn.
Let α ∈ Tn, we say that α is orientation-preserving if the sequence (1α,2α, . . . ,nα)

is cyclic, that is, there exists no more than one subscript i such that iα > (i + 1)α . The
notion of an orientation-preserving transformation was introduced by McAlister in [16] and,
independently, by Catarino and Higgins in [2]. We denote by OPn the subsemigroup of Tn
of all orientation-preserving full transformations of [n], and by S OPn the subsemigroup
of S ingn of all orientation-preserving singular transformations of [n].

A semigroup S is called idempotent-generated or semiband if it is generated by its idem-
potents. The latter term was introduced by F. Pastijn [17].

Let S be a semigroup. The set of all subsemigroups or subsemigroups with particular
properties of S is partially ordered with respect to inclusions, and the maximal elements of
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this set are called maximal subsemigroups or maximal subsemigroups with particular prop-
erties of S. The history of the problem to classify (or describe) all maximal subsemigroups
or maximal subsemigroups with particular properties of a given semigroup goes back at
least to [11]. Various special subsemigroups of Tn have been studied by many authors (see
for example [1–4, 6–10, 13, 18–33]). In recently years the problem was studied for several
classes of transformation semigroups in [1,3–6,9,12,14,15,18–33]. In particular, Zhao, Bo
and Mei [28] classified completely locally maximal subsemibands of S OPn. Recently,
Zhao [29] characterized completely maximal subsemibands of S OPn. Further, Zhao [30]
completely described maximal regular subsemibands of S OPn. In this paper, we aim to
give more insight into the subsemigroup structure of the semigroup S OPn by character-
izing the locally maximal regular subsemibands of S OPn.

Remark 1.1. In the paper it will always be clear from context when additions are modular.

For convenience, we introduce the following notation. From Catarino and Higgins [2],
Green,s equivalences in S OPn can be characterized as:

αL β ⇔ Im(α) = Im(β ),

αRβ ⇔ Ker(α) = Ker(β ),

αJ β ⇔ | Im(α)|= | Im(β )|.
Thus S OPn has n−1 J -classes: J1,J2, . . . ,Jn−1, where

Jr = {α ∈S OPn : | Im(α)|= r} .
Obviously, we have S OPn =

⋃n−1
r=1 Jr. Let

K(n,r) = {α ∈S OPn : | Im(α)| ≤ r}= J1∪ J2 · · ·∪ Jr,

where 1≤ r≤ n−1. The sets K(n,r) are the two-sided ideals of S OPn. We want to focus
on the class Jn−1 at the top of the semigroup S OPn. As in [29], we use the notation

Lk = {α ∈S OPn : Im(α) = [n]\{k}},
R(i,i+1) = {α ∈S OPn : the unique non-singleton class of Ker(α) is {i, i+1}}

for L -classes and R-classes in Jn−1. Hence Jn−1 has n L -classes L1,L2, . . . ,Ln and n
R-classes R(1,2),R(2,3), . . . ,R(n−1,n),R(n,1).

Gomes and Howie [10] used the notation [i→ i− 1] for the decreasing idempotent e
defined by ie = i−1, xe = x (x 6= i). They also used the notation [i→ i+1] for the increasing
idempotent f defined by i f = i+1, x f = x (x 6= i).

As usual, we denote by E(S) the set of all idempotents of a subset S of S OPn. Em-
ploying above notation the set E(Jn−1) consists of n decreasing idempotents [i→ i− 1]
(i ∈ [n]) and n increasing idempotents [i→ i+1] (i ∈ [n]). Let E+

n−1 = {[i→ i+1] : i ∈ [n]}
and E−n−1 = {[i→ i−1] : i ∈ [n]} be the increasing and decreasing idempotent sets, respec-
tively. Then E(Jn−1) = E+

n−1 ∪ E−n−1. Note that [0→ 1] = [n→ 1], [1→ 0] = [1→ n],
[n→ n+1] = [n→ 1], [n+1→ n] = [1→ n], etc., by Remark 1.1.

With above notation, we have the following simple observations:

Lemma 1.1. Let n≥ 3. Then

E(R(k,k+1)) = {[k→ k +1], [k +1→ k]}, k ∈ [n],

E(Lk) = {[k→ k−1], [k→ k +1]}, k ∈ [n].
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Lemma 1.2. Let n≥ 3. Then

E(Ok
n ∩ Jn−1) = E(Jn−1)\{[k→ k +1], [k +1→ k]}, k ∈ [n].

2. Locally maximal regular subsemibands of S OPn

Let I be a subset of E(Jn−1). A subsemiband 〈I〉 of S OPn is called locally maximal
regular subsemiband of S OPn if 〈I〉 is a regular, and any regular subsemiband 〈J〉 (J ⊆
E(Jn−1)) of S OPn properly containing 〈I〉 must be S OPn. In this section, we obtain a
classification of locally maximal regular subsemibands of S OPn.

Our main result is

Theorem 2.1. Let n≥ 3. Then each one of the following types (A), (B) is a locally maximal
regular subsemiband of S OPn:

(A) Si = O i
n, i ∈ [n].

(B) Ti = {α ∈S OPn : iα = i}, i ∈ [n].
Conversely, every locally maximal regular subsemiband of S OPn is one of types (A),

(B). S OPn has 2n locally maximal regular subsemibands.

To prove Theorem 2.1 we need the following series of lemmas. First, we need the fol-
lowing notation.

As in [2], let k ∈ {0,1,2, . . . ,n−1}, define a total order ≤k on [n] by

k +1≤k k +2≤k · · · ≤k n≤k 1≤k · · · ≤k k.

We write i <k j if i≤k j and i 6= j. Note that i≤k j if and only if i− k ≤ j− k. We say that
A = (a1,a2, . . . ,at) is cyclic with respect to ≤k if there exist no more than one subscript i
such that ai+1 <k ai. Clearly A = (a1,a2, . . . ,at) is cyclic with respect to ≤k if and only if
there exists j ∈ {0, . . . , t−1} such that

a j+1 ≤k · · · ≤k at ≤k a1 ≤k · · · ≤k a j.

The following lemma was proved by Catarino and Higgins [2, Lemma 1.4].

Lemma 2.1. Let A = (a1,a2, . . . ,at) be any sequence of elements from [n]. Then the follow-
ing are equivalent:

(a) A is cyclic with respect to ≤0=≤.
(b) A is cyclic with respect to ≤k for some k.
(c) A is cyclic with respect to ≤k for all k.

Let

Mi, j = 〈E(Jn−1)\{[i→ i+1], [ j→ j−1]}〉, i, j ∈ [n],(2.1)

Sk
j = {α ∈ Ok

n : (∀x ∈ [n]) j ≤k x =⇒ j ≤k xα}, j 6= k +1(mod(n)),(2.2)

T k
j = {α ∈ Ok

n : (∀x ∈ [n])x≤k j =⇒ xα ≤k j}, j 6= k(mod(n)).(2.3)

The following lemma establishes the relationships among Mi, j, Si
j and T j−1

i .

Lemma 2.2. Let Mi, j, Si
j and T j−1

i be defined as (2.1), (2.2) and (2.3), respectively. Then

Mi, j ∩ Jn−1 = (Si
j ∪T j−1

i )∩ Jn−1, j 6= i+1 (mod(n)).

Proof. See [29, Lemma 3.5].
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The following lemma is the main result of [28, Theorem 3.5].

Lemma 2.3. Let Sk
j and T k

j be defined as (2.2) and (2.3), respectively. Then

(1) Sk
j = 〈E(Ok

n ∩ Jn−1)\{[ j→ j−1]}〉, j 6= k +1 (mod(n)).
(2) T k

j = 〈E(Ok
n ∩ Jn−1)\{[ j→ j +1]}〉, j 6= k (mod(n)).

Proof. See [28, Theorem 3.5].
We can use Lemmas 1.2, 2.1 and 2.3 to obtain the following.

Lemma 2.4. Let Mi,i be defined as (2.1). Then

Mi,i = {α ∈S OPn : iα = i}.

Proof. Let Di = {α ∈S OPn : iα = i} and F = E(Jn−1)\{[i→ i + 1], [i→ i− 1]. Then
Mi,i = 〈F〉. It is easy to verify that Di is a subsemigroup of S OPn. Note that F ⊆ Di.
Thus Mi,i = 〈F〉 ⊆ Di.

For the reverse containment, let T i−1
i be defined as (2.3). By Lemmas 1.2 and 2.3, we

have
T i−1

i = 〈E(Jn−1)\{[i−1→ i], [i→ i−1], [i→ i+1]}〉.
It follows easily that

(2.4) Mi,i = 〈F〉= 〈T i−1
i ∪{[i−1→ i]}〉.

By the definition of T i−1
i , we easily deduce that

(2.5) T i−1
i = {α ∈ O i−1

n : iα = i}.
We now prove that Di ⊆Mi,i. Let α ∈ Di. We partition into two cases.

Case 1. | Im(α)| = 1. Clearly, α =
(

[n]
i

)
(since α ∈ Di, we have iα = i). Then, by (2.4)

and (2.5),

α =
(

[n]
i

)
∈ {α ∈ O i−1

n : iα = i}= T i−1
i ⊆Mi,i.

Case 2. | Im(α)|= r ≥ 2. From [2, Theorem 3.3], we know that α can be expressed as

α =
(

A1 A2 · · · Ar
b1 b2 · · · br

)
,

where As = {as,as +1, . . . ,as+1−1}, s = 1,2, . . . ,r, the subset {a1,a2, . . . ,ar} is an initial
points set of kernel classes A1,A2, . . . ,Ar, a1 < a2 < · · · < ar and (b1,b2, . . . ,br) is cyclic.
Since α ∈ Di, we have iα = i. Then there exist k ∈ {1,2, . . . ,r} such that bk = i and i ∈ Ak.
Note that Ak = {ak,ak + 1, . . . ,ak+1− 1}. We may now partition into two cases according
to ak = i or ak 6= i.

Case 2.1. ak = i. Note that bk = i and (b1,b2, . . . ,br) is a cyclic. From Lemma 2.1, we
easily deduce that

(2.6) i = bk ≤i−1 · · · ≤i−1 br ≤i−1 b1 ≤i−1 · · · ≤i−1 bk−1.

Note that Ak = {i, i+1, . . . ,ak+1−1} and Ak−1 = {ak−1,ak−1 +1, . . . , i−1} (since ak−1 =
i−1). Then, by (2.5), (2.6) and the definition of O i−1

n ,

α =
(

Ak Ak+1 · · · Ar A1 . . . Ak−1
bk bk+1 · · · br b1 . . . bk−1

)
∈ T i−1

i .
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Thus, by (2.4), α ∈ T i−1
i ⊆Mi,i.

Case 2.2. ak 6= i. Since i ∈ Ak and Ak = {ak,ak + 1, . . . ,ak+1− 1}, we have i− 1 ∈ Ak.
Let A∗k = {ak,ak +1, . . . , i−1} and A∗∗k = {i, . . . ,ak+1−1}. Then Ak = A∗k ∪A∗∗k . Note that
bk = i and As = {as,as +1, . . . ,as+1−1}, s = 1,2, . . . ,r. Let

β =
(

A∗∗k Ak+1 · · · Ar A1 · · · Ak−1 A∗k
i ak+1 · · · ar a1 · · · ak−1 i−1

)
,

γ =
(

A∗∗k Ak+1 · · · Ar A1 · · · Ak−2 Ak−1∪A∗k
bk bk+1 · · · br b1 · · · bk−2 bk−1

)
.

Then clearly α = β [i− 1 → i]γ . Note that [i− 1 → i] ∈ Mi,i (by (2.4)). To prove that
α ∈ Mi,i, it suffices to prove that γ ∈ Mi,i and β ∈ Mi,i ∪{1[n]}, where 1[n] be the identity
mapping on [n]. By (2.5), (2.6) and the definition of O i−1

n , we have γ ∈ T i−1
i . Thus, by (2.4),

γ ∈ T i−1
i ⊆ Mi,i. Since i− 1, i ∈ Ak, we have ak ≤ i− 1 < i ≤ ak+1− 1 < ak+1. Note that

a1 < a2 < · · ·< ar. It easily follows from Lemma 2.1 that

i≤i−1 ak+1 ≤i−1 · · · ≤i−1 ar ≤i−1 a1 ≤i−1 · · · ≤i−1 ak−1 ≤i−1 ak ≤i−1 i−1.

If r = n− 1, then clearly β = 1[n]; if r ≤ n− 2, then, by (2.5) and the definition of O i−1
n ,

β ∈ T i−1
i . Thus, by (2.4), β ∈ T i−1

i ⊆Mi,i.
Recall that Catarino and Higgins [2] had already proved that S OPn is a subsemiband

of Tn. We have proved in [28, Theorem 2.1] the following result.

Lemma 2.5. For n≥ 3, let A⊆ E(S OPn). Then

〈A〉= S OPn if and only if E+
n−1 ⊆ A or E−n−1 ⊆ A.

The following lemma was proved by the author in [28, Lemma 2.3].

Lemma 2.6. Let i ∈ [n], e = [i+1→ i], f ∈ E(Jn−1) and e f /∈ {e, f}. Then

e f ∈ Jn−1 if and only if f = [i+2→ i+1].

Let I be a subset of E(Jn−1). It is obvious that I ⊆ E(〈I〉 ∩ Jn−1). In general, E(〈I〉 ∩
Jn−1) ⊆ I is false. For example, let I = E+

n−1, then, by Lemma 2.5, 〈I〉 = S OPn and so
E(〈I〉∩Jn−1) = E(Jn−1) = E+

n−1∪E−n−1. Then clearly E(〈I〉∩Jn−1) * I. However, we have
the following.

Lemma 2.7. Let I be a subset of E(Jn−1). If 〈I〉 ⊂S OPn. Then

E(〈I〉∩ Jn−1) = I.

Proof. Clearly, I ⊆ E(〈I〉∩ Jn−1). Now, we need to prove that E(〈I〉∩ Jn−1)⊆ I. Note that
I ⊆ E(Jn−1) and E(Jn−1) = E+

n−1 ∪E−n−1. Let I∗1 = 〈I〉 ∩E+
n−1 and I∗2 = 〈I〉 ∩E−n−1, then

E(〈I〉 ∩ Jn−1) = I∗1 ∪ I∗2 . Let Gi = I∗i \I, i = 1,2. To prove that E(〈I〉 ∩ Jn−1) ⊆ I, we only
need to prove that Gi = /0, i = 1,2. Note that G1 ⊆ I∗1 ⊆ E+

n−1 and G2 ⊆ I∗2 ⊆ E−n−1. Now, we
assume that G1 6= /0, and so there is some idempotent element e = [k→ k +1] ∈ I∗1\I. Note
that I∗1 ⊆ 〈I〉 and I ⊆ E(Jn−1). Obviously, we may suppose that

e = e1e2 · · ·er, where ei ∈ I, i = 1,2, . . . ,r,r > 1,

and
eiei+1 · · ·e j 6= ei,e j, 1≤ i < j ≤ r.
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Since e∈ Jn−1 and e /∈ I it follows that eRe1, eLer. By Lemma 1.1, we have e1 = [k+1→
k] and er = [k→ k− 1]. By repeated use of Lemma 2.6, we have ei = [k + i→ k + i− 1]
(i = 1,2, . . . ,r). Then er = [k + r → k + r− 1] = [k → k− 1] and so r ≡ 0 (mod n). It
follows immediately that E−n−1 = {[k + i→ k + i−1] : i ∈ [n]}= {e1,e2, . . . ,er} ⊆ I. Thus,
by Lemma 2.5, 〈I〉= S OPn, contradicting the assumption that 〈I〉 ⊂S OPn. Similarly,
we can prove that G2 = /0.

Let I and J be nonempty subsets of E(Jn−1). It is obvious that I ⊆ J ⇒ 〈I〉 ⊆ 〈J〉 ⇒
K(n,n− 2)∪〈I〉 ⊆ K(n,n− 2)∪〈J〉. In general, I ⊆ J⇐ 〈I〉 ⊆ 〈J〉 and I ⊆ J⇐ K(n,n−
2)∪ 〈I〉 ⊆ K(n,n− 2)∪ 〈J〉 are false. For example, let I = E+

n−1 and J = E−n−1, then, by
Lemma 2.5, 〈I〉 = 〈J〉 = S OPn and so K(n,n− 2)∪ 〈I〉 = K(n,n− 2)∪ 〈J〉 = S OPn.
Clearly I∩ J = /0. However, we can use Lemma 2.7 to obtain the following.

Lemma 2.8. Let I and J be nonempty subsets of E(Jn−1). If 〈J〉 ⊂S OPn. Then
(i) I ⊆ J⇔ 〈I〉 ⊆ 〈J〉 ⇔ K(n,n−2)∪〈I〉 ⊆ K(n,n−2)∪〈J〉.

(ii) I ⊂ J⇔ 〈I〉 ⊂ 〈J〉 ⇔ K(n,n−2)∪〈I〉 ⊂ K(n,n−2)∪〈J〉.

Proof. (i) Clearly,

I ⊆ J⇒ 〈I〉 ⊆ 〈J〉 ⇒ K(n,n−2)∪〈I〉 ⊆ K(n,n−2)∪〈J〉.
To prove that

I ⊆ J⇐ 〈I〉 ⊆ 〈J〉 ⇐ K(n,n−2)∪〈I〉 ⊆ K(n,n−2)∪〈J〉.
It suffices to prove that

K(n,n−2)∪〈I〉 ⊆ K(n,n−2)∪〈J〉 ⇒ I ⊆ J.

Suppose that K(n,n− 2)∪〈I〉 ⊆ K(n,n− 2)∪〈J〉. Then 〈I〉∩ Jn−1 = (K(n,n− 2)∪〈I〉)∩
Jn−1 ⊆ (K(n,n−2)∪〈J〉)∩ Jn−1 = 〈J〉∩ Jn−1. Thus, by Lemma 2.7,

I ⊆ E(〈I〉∩ Jn−1)⊆ E(〈J〉∩ Jn−1) = J.

(ii) By (i), we easily deduce that

I = J⇔ 〈I〉= 〈J〉 ⇔ K(n,n−2)∪〈I〉= K(n,n−2)∪〈J〉.
It follows immediately that

I ⊂ J⇔ 〈I〉 ⊂ 〈J〉 ⇔ K(n,n−2)∪〈I〉 ⊂ K(n,n−2)∪〈J〉.
We can use Lemmas 2.4 and 2.8 to obtain the following.

Lemma 2.9. Let i ∈ [n], Ti = {α ∈S OPn : iα = i}. Then Ti is a locally maximal regular
subsemiband of S OPn.

Proof. Let Mi,i be as defined in (2.1). By Lemma 2.4, we have

(2.7) Ti = {α ∈S OPn : iα = i}= Mi,i = 〈E(Jn−1)\{[i→ i+1], [i→ i−1]}〉.
Then Ti is a subsemiband of S OPn. Let α ∈ Ti. If | Im(α)| = 1, then clearly α is an
idempotent, and so α is regular. If | Im(α)| ≥ 2, from [2, Theorem 3.3], we know that α

can be expressed as

α =
(

A1 A2 · · · Ar
b1 b2 · · · br

)
,

where As = {as,as + 1, . . . ,as+1−1}, s = 1,2, . . . ,r, the subset {a1,a2, . . . ,ar} is an initial
points set of kernel classes A1,A2, . . . ,Ar, a1 < a2 < · · · < ar and (b1,b2, . . . ,br) is cyclic.
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Since α ∈ Ti, we have iα = i. Then there exist k ∈ {1,2, . . . ,r} such that bk = i and i ∈ Ak.
Let C j = {b j,b j +1, . . . ,b j+1−1}, j = 1,2, . . . ,r, and let

β =
(

Ck Ck+1 · · · Cr C1 · · · Ck−1
i ak+1 · · · ar a1 · · · ak−1

)
,

then α = αβα (since i ∈ Ak) and iβ = i (since i = bk ∈Ck). Since i ∈ Ak, we have ak ≤ i≤
ak+1−1 < ak+1. Note that a1 < a2 < · · ·< ar. It easily follows from Lemma 2.1 that

i≤i−1 ak+1 ≤i−1 · · · ≤i−1 ar ≤i−1 a1 ≤i−1 · · · ≤i−1 ak−1 ≤i−1 i−1.

Then, by (2.5) and the definition of O i−1
n , β ∈ T i−1

i . Thus, by (2.4) and (2.7), β ∈ T i−1
i ⊆

Mi,i = Ti and so α is regular (note that α = αβα). Hence Ti is a locally regular subsemiband
of S OPn.

Let 〈J〉 (J ⊆ E(Jn−1)) be a locally regular subsemiband of S OPn properly containing
Ti. We shall prove that 〈J〉= S OPn. If 〈J〉 ⊂S OPn, then, by Lemma 2.8 (ii) and (2.7),

E(Jn−1)\{[i→ i+1], [i→ i−1]} ⊂ J,

and so
E(Jn−1)\{[i→ i+1]} ⊆ J or E(Jn−1)\{[i→ i−1]} ⊆ J.

Note E(Jn−1) = E+
n−1∪E−n−1. It follows that

E−n−1 ⊆ J or E+
n−1 ⊆ J.

Thus, by Lemma 2.5, 〈J〉= S OPn, contradicting the assumption that 〈J〉 ⊂S OPn .
A proper subsemigroup S of S OPn is called maximal regular subsemiband of S OPn

if S is a regular subsemiband, and any regular subsemiband of S OPn properly containing
S must be S OPn. The following lemma is the main result of [30].

Lemma 2.10. Let n≥ 3. Then each maximal regular subsemiband of S OPn must be one
of the following forms:

(C) K(n,n−2)∪ O i
n, i ∈ [n].

(D) K(n,n−2)∪{α ∈ O i−1
n ∪O i

n : iα = i}, i ∈ [n].

Proof. See [30, Theorem 4].
The following lemma gives a necessary condition for a locally regular subsemiband of

S OPn to be maximal.

Lemma 2.11. Let I be a nonempty subset of E(Jn−1). If 〈I〉 is a locally maximal regular
subsemiband of S OPn then T = K(n,n− 2)∪ 〈I〉 is a maximal regular subsemiband of
S OPn.

Proof. From [30, Lemma 13] we know that if S is a regular semigroup and I is an ideal
of S, then I is also a regular semigroup. Note that S OPn is a regular semigroup (see [2,
Theorem 3.1]) and K(n,n− 2) is an ideal of S OPn. Then K(n,n− 2) is regular and so
T = K(n,n−2)∪〈I〉 is regular (since 〈I〉 is regular). From [29, Theorem 2.1] we know that
K(n,n−2) = 〈E(Jn−2)〉. Then

T = K(n,n−2)∪〈I〉= 〈E(Jn−2)∪ I〉.

Thus T = K(n,n−2)∪〈I〉 is a regular subsemiband of S OPn.
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Let S be a regular subsemiband of S OPn properly containing T . Clearly S = 〈E(S)〉
and K(n,n−2)⊆ T ⊂ S. We easily deduce that S = K(n,n−2)∪S = K(n,n−2)∪〈E(S∩
Jn−1)〉 and so

K(n,n−2)∪〈I〉= T ⊂ S = K(n,n−2)∪〈E(S∩ Jn−1)〉.
Note that E(S∩ Jn−1)⊆ E(Jn−1) and S ⊂S OPn. Then, by Lemma 2.8 (ii), 〈I〉 ⊂ 〈E(S∩
Jn−1)〉 and so, by the locally maximality of 〈I〉, 〈E(S∩Jn−1)〉= S OPn. Thus S = S OPn
and so T = K(n,n−2)∪〈I〉 is a maximal regular subsemiband of S OPn.

Our final lemma is

Lemma 2.12. Let n≥ 3. Then

Ok
n = 〈E(Ok

n ∩ Jn−1)〉.

Proof. See [28, Lemma 2.2].
Now, we can prove Theorem 2.1.

Proof of Theorem 2.1. From Lemma 2.9 we know that Ti is a locally maximal regular sub-
semiband of S OPn. By Lemmas 1.2 and 2.12, we have

(2.8) Oi
n = 〈E(Jn−1)\{[i→ i+1], [i+1→ i]}〉.

It is well known that On is regular. From Lemma 4.1 in [2], we know that the mapping
ϕi : f → a−i f ai is an isomorphism between On and O i

n, where a = (123 · · ·n) is the fixed
generator of the cyclic group Zn. Then O i

n is regular and so, by (2.8), Si = O i
n is a locally

regular subsemiband of S OPn. Let 〈J〉 (J ⊆ E(Jn−1)) be a locally regular subsemiband of
S OPn properly containing Si = Oi

n. We shall prove that 〈J〉= S OPn. If 〈J〉 ⊂S OPn,
then, by Lemma 2.8 (ii) and (2.8),

E(Jn−1)\{[i→ i+1], [i+1→ i]} ⊂ J,

and so
E(Jn−1)\{[i→ i+1]} ⊆ J or E(Jn−1)\{[i+1→ i]} ⊆ J.

Note that E(Jn−1) = E+
n−1∪E−n−1. It follows that

E−n−1 ⊆ J or E+
n−1 ⊆ J.

Thus, by Lemma 2.5, 〈J〉 = S OPn, contradicting the assumption that 〈J〉 ⊂ S OPn.
Hence Si is a locally maximal regular subsemiband of S OPn.

Conversely, we shall prove that each locally maximal regular subsemiband of S OPn
must be of the form Si or Ti. Let Ci = K(n,n− 2)∪ O i

n and Di = K(n,n− 2)∪ {α ∈
O i−1

n ∪O i
n : iα = i}. By (2.8), we have

(2.9) Ci = K(n,n−2)∪ O i
n = K(n,n−2)∪〈E(Jn−1\{[i→ i+1], [i+1→ i]}〉.

Let Mi,i, Si
i and T i−1

i be defined as (2.1), (2.2) and (2.3), respectively. By the definition of Si
i,

T i−1
i , we easily deduce that Si

i = {α ∈ O i
n : iα = i} and T i−1

i = {α ∈ O i−1
n : iα = i}. Then,

by Lemma 2.2,

Di = K(n,n−2)∪{α ∈ O i−1
n ∪O i

n : iα = i}= K(n,n−2)∪Si
i∪T i−1

i

= K(n,n−2)∪{(Si
i∪T i−1

i )∩ Jn−1}= K(n,n−2)∪ (Mi,i∩ Jn−1)

= K(n,n−2)∪Mi,i = K(n,n−2)∪〈E(Jn−1)\{[i→ i+1], [i→ i−1]}〉.(2.10)
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Suppose that 〈I〉 (I ⊆ E(Jn−1)) is a locally maximal regular subsemiband of S OPn.
Then, by Lemma 2.11, T = K(n,n−2)∪〈I〉 is a maximal regular subsemiband of S OPn.
Thus, by Lemma 2.10, (2.9) and (2.10), there exist s ∈ [n] such that T = Cs = K(n,n−2)∪
〈E(Jn−1\{[s→ s + 1], [s + 1→ s]}〉 or there exist t ∈ [n] such that T = Dt = K(n,n− 2)∪
〈E(Jn−1\{[t→ t +1], [t→ t−1]}〉. It follows easily from Lemma 2.8 (i) that

〈I〉= 〈E(Jn−1〉\{[s→ s+1], [s+1→ s]}〉 or 〈I〉= 〈E(Jn−1)\{[t→ t +1], [t→ t−1]}〉.
Thus, by (2.8) and Lemma 2.4,

〈I〉= 〈E(Jn−1〉\{[s→ s+1], [s+1→ s]}〉= Os
n = Ss

or

〈I〉= 〈E(Jn−1)\{[t→ t +1], [t→ t−1]}〉= Mt,t

= {α ∈S OPn : tα = t}= Tt .

It now is obvious that S OPn has n locally maximal regular subsemibands of type (A),
and n locally maximal regular subsemibands of type (B). Hence S OPn has 2n locally
maximal regular subsemibands. This completes the proof of Theorem 2.1.

Remark 2.1. By Lemma 2.4 and (2.10), we have

K(n,n−2)∪{α ∈ O i−1
n ∪O i

n : iα = i}= K(n,n−2)∪Mi,i

= K(n,n−2)∪{α ∈S OPn : iα = i}.

From this fact and Lemma 2.10 (the main result of [30]), we immediately obtain the
following result, which is a clearer than the main result of [30] (see [30, Theorem 4]).

Theorem 2.2. Let n≥ 3. Then each maximal regular subsemiband of S OPn must be one
of the following forms:

(C) K(n,n−2)∪ O i
n, i ∈ [n].

(D) K(n,n−2)∪{α ∈S OPn : iα = i}, i ∈ [n].

3. Some related problems

In [26], You described the maximal regular subsemigroup of the ideals of Tn. In turn, the
maximal subsemigroup of the ideals of Tn was given by Yang and Yang [20]. In [27], You
and Yang classified the maximal subsemibands of S ingn. Yang and Yang [25] obtained the
classification of maximal regular subsemibands of S ingn. For the semigroup Tn, it is then
natural to ask for the problem concerning the description of (locally) maximal subsemibands
or (locally) maximal regular subsemibands of the ideals of Tn which are open questions.

On the other hand, as the notions of order-preserving transformation and orientation-
preserving transformation have been widely considered for several classes of transformation
semigroups, it is also natural to consider the semigroups On and OPn. We also may ask for
the problem concerning the description of (locally) maximal subsemibands or (locally) max-
imal regular subsemibands of the ideals of the two semigroup. Dimitrova and Koppitz [3]
determined all the maximal subsemigroups of the ideals of On. The same authors [4] clas-
sified completely maximal regular subsemigroups of the ideals of On. Recently, Zhao [31]
classified completely maximal regular subsemibands of the ideals of On. Further, Dim-
itrova, Fernandes and Koppitz [6] described all the maximal subsemigroups of the ideals of
OPn. All the other cases remain as open problems.
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