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1. Introduction

We consider the following minmax fractional programming problem:
(P) Minimize ψ (x) = sup

y∈Y

f (x,y)
h(x,y) subject to g(x) 6 0, x ∈ Rn, where Y is a compact

subset of Rl , f (·, ·) : Rn×Rl → R, h(·, ·) : Rn×Rl → R, are C2 mappings on Rn×Rl and
g(·) : Rn→ Rm is C2 mapping on Rn. It is assumed that for each (x,y) in Rn×Rl , f (x,y) > 0
and h(x,y) > 0.

There are several researchers interested in a class of minmax programming problem. For
detail one can consult [1, 4, 12] and the references cited therein. Particularly, Schmittendorf
[19] considered the following minmax problem:

(P1) minsup
y∈Y

f (x,y) subject to g(x) = (g1 (x) ,g2 (x) , ..., gr (x))T 6 0, where Y is a

compact subset of Rm, f (x,y) : Rn × Rm → R and g(x) : Rn → Rr are C1 mappings and
superscript T denotes the transpose of a column vector.

Under the conditions of convexity, Schmittendorf [19] obtained the necessary and suf-
ficient optimality conditions for (P1). Yadav and Mukherjee [20] employed the optimality
conditions presented in [19] to construct two kinds of dual problems and derived duality the-
orems for convex differentiable minmax fractional programming problem. In [6], Chandra
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and Kumar pointed out that the formulation in [20] has some omissions and inconsistencies,
and constructed two modified dual problems and proved duality theorems. Later on, Liu and
Wu [15, 16], Liang and Shi [14], Yang and Hou [21] and Ahmad and Husain [3], proposed
the convexity/generalized assumption for sufficient optimality conditions in [5], employed
the optimality conditions to construct dual problems and established duality theorems.

In [22], Zalmai used a certain infinite dimensional version of Gordan’s theorem of the
alternative to derive first and second order necessary optimality conditions for a class of
minmax programming problems in a Banach space, and discussed several sufficient criteria
and duality formulations under generalized invexity assumptions. The second order dual
for a nonlinear programming problem was first formulated by Mangasarian [17]. Hanson
[10] defined second order type-I functions and obtained second order duality theorems for
nonlinear mathematical programming problem under appropriate condition on the involved
functions.

Zhang and Mond [23] introduced the concept of second order (F,ρ)-convexity and es-
tablished some duality results concerning with nonlinear multiobjective programming prob-
lems. Ahmad and Husain [2] extended (F,α,ρ,d)-convex functions which were introduced
by Liang et al. [13] to second order (F,α,ρ,d)-convex functions. Hachimi and Aghezzaf
[9] further extended it to second order (F,α,ρ,d)-type I functions. Very recently, Gupta and
Kailey [8] formulated a pair of second-order multiobjective symmetric dual programs over
arbitrary cones and appropriate duality theorems are established under K-η-bonvexity as-
sumptions. Gupta and Dangar [7], considered Mond-Weir type multiobjective second-order
symmetric dual models with cone constraints in which the objective function is optimised
with respect to an arbitrary closed convex cone and established duality relations under K-
η-bonvexity assumptions.

Bector et al. [5] discussed second order duality results for minimax programming prob-
lems under generalized binvexity. Recently, Husain et al. [11] formulated two types of
second order dual models for minmax fractional programming problem (P) and established
weak, strong and strict converse duality theorems under the assumptions of η-bonvexity/
generalized η-bonvexity.

In this paper, inspired from the work of Ahmad and Husain [2], Hachimi and Aghez-
zaf [9] and Husain et al. [11], we establish the second order duality theorems for min-
max fractional programming problem (P) under the assumption of generalized second order
(F,α,ρ,d)-type I functions. The paper is organized as follows. Some definitions and no-
tation are given in Section 2. In Section 3, the duality results are presented. Concluding
remarks are presented in Section 4.

2. Notation and preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ its non-negative orthant. Let X be a

nonempty open subset of Rn. For x, y ∈ Rn, we let x 6 y ⇔ y−x ∈ Rn
+ ; x < y ⇔ y−x ∈

Rn
+\{0}.

Throughout this paper, we denote by S = {x ∈ X : g(x) 6 0} the set of all feasible solu-
tions of problem (P). For each (x,y) ∈ Rn×Rl , we define

J (x) =
{

j ∈M = {1,2, ...,m} : g j (x) = 0
}

,

Y (x) =
{

y ∈ Y : f (x, y) = sup
z∈Y

f (x, z)
}

,
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and K (x) =
{
(s, t, ȳ) ∈ N×Rs

+×Rls : 1 6 s 6 n+1, t = (t1, t2, ..., ts) ∈ Rs
+

with
s

∑
i=1

ti = 1 , ȳ = (ȳ1, ȳ2, ..., ȳs) , with ȳi = Y (x) , i = 1,2, ...,s}.

Definition 2.1. A functional F : X×X×Rn→ R is said to be sublinear in its third argument
if for any x, x̄ ∈ X,

(i) F (x, x̄;a1 +a2) 6 F (x, x̄;a1)+F (x, x̄;a2) ∀a1, a2 ∈ Rn;
(ii) F (x, x̄;α a) = α F (x, x̄;a) ∀α ∈ R+,∀a ∈ Rn.

By (ii) it is clear that F (x, x̄; 0) = 0.
Now, we let F be a sublinear functional and d (·, ·) : X ×X → R. Let α =

(
α1,α2

)
,

where α1, α2 : X×X→ R+\{0}, ρ =
(
ρ1,ρ2

)
, where ρ1 =

(
ρ1

1 ,ρ1
2 , ...,ρ1

s
)
∈ Rs and ρ2 =(

ρ2
1 ,ρ2

2 , ...,ρ2
m
)
∈ Rm. Let f (·, ·) : X×Y (x)→ R and g(·) : X → Rm are twice differentiable

functions.

Definition 2.2. [4] For each j ∈M, ( f ,g j) is said to be second-order (F,α,ρ,d)-type I at
x̄ ∈ X if for all x ∈ S, p ∈ Rn and yi ∈ Y (x), we have

f (x,yi)− f (x̄,yi)+
1
2

pT
∇

2 f (x̄,yi) p

> F
(
x, x̄;α

1 (x, x̄)
[
∇ f (x̄,yi)+∇

2 f (x̄,yi) p
])

+ρ
1
i d2 (x, x̄) , i = 1,2, ...,s,

−g(x̄)+
1
2

pT
∇

2g(x̄) p

> F
(
x, x̄;α

2 (x, x̄)
[
∇g j (x̄)+∇

2g j (x̄) p
])

+ρ
2
j d2 (x, x̄) , j = 1,2, ...,m.

If the first inequality in the above definition is satisfied under the form

f (x,yi)− f (x̄,yi)+
1
2

pT
∇

2 f (x̄,yi) p

> F
(
x, x̄;α

1 (x, x̄)
[
∇ f (x̄,yi)+∇

2 f (x̄,yi) p
])

+ρ
1
i d2 (x, x̄) , i = 1,2, ...,s,

then we say that for each j ∈M, ( f ,g j) is second-order strictly (F,α,ρ,d)-type I at x̄.

Definition 2.3. [4] For each j∈M, ( f ,g j) is said to be second-order pseudoquasi (F,α,ρ,d)-
type I at x̄ ∈ X if for all x ∈ S, p ∈ Rn and yi ∈ Y (x), we have

f (x,yi) < f (x̄,yi)−
1
2

pT
∇

2 f (x̄,yi) p

⇒ F
(
x, x̄;α

1 (x, x̄)
[
∇ f (x̄,yi)+∇

2 f (x̄,yi) p
])

<−ρ
1
i d2 (x, x̄) , i = 1,2, ...,s,

−g j (x̄)+
1
2

pT
∇

2g j (x̄) p 6 0

⇒ F
(
x, x̄;α

2 (x, x̄)
[
∇g j (x̄)+∇

2g j (x̄) p
])

6 −ρ
2
j d2 (x, x̄) , j = 1,2, ...,m.

If the first implication in the above definition is satisfied under the form

F
(
x, x̄;α

1 (x, x̄)
[
∇ f (x̄,yi)+∇

2 f (x̄,yi) p
])

>−ρ
1
i d2 (x, x̄) ,

⇒ f (x,yi) > f (x̄,yi)−
1
2

pT
∇

2 f (x̄,yi) p, i = 1,2, ...,s,
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then we say that for each j ∈ M, ( f ,g j) is second-order strictly pseudoquasi (F,α,ρ,d)-
type I at x̄.

The following result will be needed in the sequel in the proof of strong duality theorem.

Theorem 2.1. [6] Let x∗be a solution of problem (P) and let ∇g j (x∗) , j ∈ J (x∗), be linearly
independent. Then there exist (s∗, t∗, ȳ∗) ∈ K (x∗) , λ ∗ ∈ R+, and µ∗ ∈ Rm

+ such that

∇

s∗

∑
i=1

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i ))+∇

m

∑
j=1

µ
∗
j g j (x∗) = 0

f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i ) = 0, i = 1,2, ...,s∗,

m

∑
j=1

µ
∗
j g j (x∗) = 0,

t∗i > 0,
s∗

∑
i=1

t∗i = 1, ȳ∗i ∈ Y (x∗) , i = 1,2, ...,s∗.

3. Duality

In this section, we consider a general dual to (P) and discuss duality results in which various
generalized second-order (F,α,ρ,d)-type I hypothesis are imposed on certain combination
of the functions f ,h and g. This is accomplished by employing a certain type of partitioning
scheme which was originally proposed by Mond and Weir [18] for the purpose of construct-
ing generalized dual problem for nonlinear programming problems. We state our general
dual model and discuss duality results as follows:

(GMD) max
(s,t,ȳ)∈K(z)

sup
(z,µ,λ ,p)∈H1(s,t,ȳ)

λ ,

where H1 (s, t, ȳ) denotes the set of all (z,µ,λ , p) ∈ Rn×Rm
+×R+×Rn satisfying

∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p

(3.1) +∇

m

∑
j=1

µ jg j (z)+∇
2

m

∑
j=1

µ jg j (z) p = 0,

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

(3.2) −1
2

pT
∇

2

[
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

]
p > 0,

(3.3) ∑
j∈Jβ

µ jg j (z)−
1
2

pT
∇

2
∑
j∈Jβ

µ jg j (z)p > 0, β = 1,2, ...,r,

where Jβ ⊆M, β = 0,1,2, ...,r, with
r
∪

β=0
Jβ = M and Jγ ∩ Jβ = φ if γ 6= β . If, for a triplet

(s, t, ȳ) ∈ K (z), the set H1 (s, t, ȳ) = φ , we define the supremum over it to be -∞.
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Theorem 3.1. (Weak duality) Let x and (z,µ,λ ,s, t, ȳ, p) be feasible solutions to (P) and
(GMD), respectively. Assume that

(i)

(
s
∑

i=1
ti ( f (·, ȳi)−λh(·, ȳi))+ ∑

j∈J0

µ jg j (·) , ∑
j∈Jβ

µ jg j (·)

)
is second order (F,α,ρ,d)-

type I at z,

(ii) ρ1
1

α1(x,z) +
∑

r
β=1 ρ2

β

α2(x,z) > 0.

Then

sup
y∈Y

f (x,y)
h(x,y)

> λ .

Proof. Suppose contrary to the result that

sup
y∈Y

f (x,y)
h(x,y)

< λ .

Therefore, we have f (x, ȳi)− λh(x, ȳi) < 0 for all ȳi ∈ Y (x) , i = 1,2, ...,s. It follows
from ti > 0, i = 1,2, ...,s, that

ti ( f (x, ȳi)−λh(x, ȳi)) 6 0,

with at least one strict inequality, since t = (t1, t2, ..., ts) 6= 0.Taking summation over i, we
have

s

∑
i=1

ti ( f (x, ȳi)−λh(x, ȳi)) < 0,

which, by the feasibility of x for (P), µ ∈ Rm
+ and (3.2) gives

s

∑
i=1

ti ( f (x, ȳi)−λh(x, ȳi))+ ∑
j∈J0

µ jg j (x) < 0 6
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

−1
2

pT
∇

2

[
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

]
p.

That is,
s

∑
i=1

ti ( f (x, ȳi)−λh(x, ȳi))+ ∑
j∈J0

µ jg j (x)−
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))− ∑
j∈J0

µ jg j (z)

(3.4) +
1
2

pT
∇

2

[
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

]
p < 0.

Using (3.3), (3.4) and hypothesis (i), we obtain

0 >
s

∑
i=1

ti ( f (x, ȳi)−λh(x, ȳi))+ ∑
j∈J0

µ jg j (x)−
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))− ∑
j∈J0

µ jg j (z)

+
1
2

pT
∇

2

[
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

]
p.

>F

(
x,z;α

1 (x,z)

(
∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p
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+∇ ∑
j∈J0

µ jg j (z)+∇
2

∑
j∈J0

µ jg j (z)p

))
+ρ

1
1 d2 (x,z) ,

and

0 >− ∑
j∈Jβ

µ jg j (z)+
1
2

pT
∇

2
∑
j∈Jβ

µ jg j (z)p

> F

x,z;α
2 (x,z)

∇ ∑
j∈Jβ

µ jg j (z)+∇
2

∑
j∈Jβ

µ jg j (z)p

+ρ
2
β

d2 (x,z) ,

β = 1,2, ...,r.
Since α1 (x,z) > 0 and α2 (x,z) > 0, by using the sublinearity of F , the above two in-

equalities imply

F

(
x,z;

(
∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p

)

(3.5) +∇ ∑
j∈J0

µ jg j (z)+∇
2

∑
j∈J0

µ jg j (z)p

)
<−ρ1

1 d2 (x,z)
α1 (x,z)

,

and

(3.6) F

x,z;

∇ ∑
j∈Jβ

µ jg j (z)+∇
2

∑
j∈Jβ

µ jg j (z)p

6−
ρ2

β
d2 (x,z)

α2 (x,z)
, β = 1,2, ...,r.

From (3.1), (3.5), (3.6) and the sublinearity of F in the above inequalities, we summarize
to get

0 = F

(
x,z;∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p

+∇

m

∑
j=1

µ jg j (z)+∇
2

m

∑
j=1

µ jg j (z) p

)

6 F

(
x,z;

(
∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p

)

+∇ ∑
j∈J0

µ jg j (z)+∇
2

∑
j∈J0

µ jg j (z)p

)
+

r

∑
β=1

F

x,z;

∇ ∑
j∈Jβ

µ jg j (z)+∇
2

∑
j∈Jβ

µ jg j (z)p


<−

(
ρ1

1
α1 (x,z)

+
∑

r
β=1 ρ2

β

α2 (x,z)

)
d2 (x,z) 6 0. (by(ii))

Thus, we have a contradiction. Hence, the proof is complete.

Theorem 3.2. (Weak duality) Let x and (z,µ,λ ,s, t, ȳ, p) be feasible solutions to (P) and
(GMD), respectively. Assume that
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(i)

(
s
∑

i=1
ti ( f (·, ȳi)−λh(·, ȳi))+ ∑

j∈J0

µ jg j (·) , ∑
j∈Jβ

µ jg j (·)

)
is second order pseudoquasi

(F,α,ρ,d)-type I at z,

(ii) ρ1
1

α1(x,z) +
∑

r
β=1 ρ2

β

α2(x,z) > 0.

Then

sup
y∈Y

f (x,y)
h(x,y)

> λ .

Proof. We proceed as in the proof of Theorem 3.1 and obtain
s

∑
i=1

ti ( f (x, ȳi)−λh(x, ȳi))+ ∑
j∈J0

µ jg j (x) <
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

(3.7) −1
2

pT
∇

2

[
s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+ ∑
j∈J0

µ jg j (z)

]
p.

Using (3.3), (3.7) and hypothesis (i), we obtain

F

(
x,z;α

1 (x,z)

(
∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p

+∇ ∑
j∈J0

µ jg j (z)+∇
2

∑
j∈J0

µ jg j (z)p

))
<−ρ

1
1 d2 (x,z) ,

and

F

x,z;α
2 (x,z)

∇ ∑
j∈Jβ

µ jg j (z)+∇
2

∑
j∈Jβ

µ jg j (z)p

6−ρ
2
β

d2 (x,z) .

Since α1 (x,z) > 0 and α2 (x,z) > 0, and the sublinearity of F in the above inequalities,
we summarize to get

F

(
x,z;∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p

+∇

m

∑
j=1

µ jg j (z)+∇
2

m

∑
j=1

µ jg j (z) p

)

(3.8) <−

(
ρ1

1
α1 (x,z)

+
∑

r
β=1 ρ2

β

α2 (x,z)

)
d2 (x,z) .

Since ρ1
1

α1(x,z) +
∑

r
β=1 ρ2

β

α2(x,z) > 0, inequality (3.8) yields

F

(
x,z;∇

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))+∇
2

s

∑
i=1

ti ( f (z, ȳi)−λh(z, ȳi))p

+∇

m

∑
j=1

µ jg j (z)+∇
2

m

∑
j=1

µ jg j (z) p

)
< 0,
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which contradicts (3.1), as F (x,z;0) = 0. This completes the proof.

Theorem 3.3. (Strong duality) Assume that x∗ is an optimal solution to (P) and ∇g j(x∗), j ∈
J(x∗), are linearly independent. Then there exist (s∗, t∗, ȳ∗) ∈ K(x∗) and (x∗,µ∗,λ ∗, p∗ =
0) ∈ H1(s∗, t∗, ȳ∗) such that (x∗,µ∗,λ ∗,s∗, t∗, ȳ∗, p∗ = 0) is a feasible solution to (GMD)
and the two objectives have the same values. Further, if the hypotheses of weak dual-
ity Theorems 3.1 or 3.2 hold for all feasible solutions (z,µ,λ ,s, t, ȳ, p) to (GMD), then
(x∗,µ∗,λ ∗,s∗, t∗, ȳ∗, p∗ = 0) is an optimal solution to (GMD).

Proof. Since x∗ is an optimal solution to (P) and ∇g j(x∗), j ∈ J(x∗), are linearly inde-
pendent, then by Theorem 2.1, there exist (s∗, t∗, ȳ∗) ∈ K(x∗) and (x∗,µ∗,λ ∗, p∗ = 0) ∈
H1(s∗, t∗, ȳ∗) such that (x∗,µ∗,λ ∗,s∗, t∗, ȳ∗, p∗ = 0) is a feasible solution to (GMD) and the
two objectives have the same values.
Optimality of (x∗,µ∗,λ ∗,s∗, t∗, ȳ∗, p∗ = 0) for (GMD) thus follows from weak duality The-
orems 3.1 or 3.2.

Theorem 3.4. (Strict converse duality) Let x∗ be an optimal solution to (P) and (z∗,µ∗,λ ∗,
s∗, t∗, ȳ∗, p∗) be optimal solution to (GMD). Assume that the following conditions are satis-
fied:

(i) ∇g j(x∗), j ∈ J(x∗), are linearly independent,

(ii)

(
s∗

∑
i=1

t∗i ( f (·, ȳi)−λ ∗h(·, ȳi))+ ∑
j∈J0

µ∗j g j(·), ∑
j∈Jβ

µ∗j g j(·)

)
is second order strictly

(F,α,ρ,d) -type-I at z∗,

(iii) ρ1
1

α1(x∗,z∗) +
∑

r
β=1 ρ2

β

α2(x∗,z∗) > 0.

Then z∗ = x∗, that is, z∗ is an optimal solution of (P).

Proof. Suppose to contrary that z∗ 6= x∗ and exhibit a contradiction. Since x∗ and (z∗,µ∗,λ ∗,
s∗, t∗, ȳ∗, p∗) are optimal solutions of (P) and (GMD), respectively, and ∇g j(x∗), j ∈ J(x∗),
are linearly independent, therefore, by Theorem 3.3, we obtain

sup
y∗∈Y

f (x∗,y∗)
h(x∗,y∗)

= λ
∗.

Therefore, we have
f (x∗, ȳ∗i )−λ ∗h(x∗, ȳ∗i ) 6 0 for all ȳ∗i ∈ Y (x∗), i = 1,2, ...,s∗.
It follows from t∗i > 0, i = 1,2, ...,s∗, that

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i )) 6 0,

with at least one strict inequality, since t∗ = (t∗1 , t∗2 , ..., t∗s ) 6= 0. Taking summation over i, we
have

s∗

∑
i=1

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i )) < 0,

which by the feasibility of x for (P), µ∗ ∈ Rm
+ and (3.2) gives

s∗

∑
i=1

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i ))+ ∑

j∈J0

µ jg j(x∗) < 0 6
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))

+ ∑
j∈J0

µ jg j(z∗)−
1
2

p∗T ∇
2[

s

∑
i=1

ti( f (z∗, ȳ∗i )−λh(z∗, ȳ∗i ))+ ∑
j∈J0

µ jg j(z∗)]p∗.



Second Order Duality for Minmax Fractional Programming Problem 901

That is,
s∗

∑
i=1

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i ))+ ∑

j∈J0

µ jg j(x∗)−
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))− ∑

j∈J0

µ jg j(z∗)

(3.9) +
1
2

p∗T ∇
2

[
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+ ∑

j∈J0

µ jg j (z∗)

]
p∗ < 0.

Using (3.3), (3.9) and hypothesis (ii), we obtain

0 >
s∗

∑
i=1

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i ))+ ∑

j∈J0

µ
∗
j g j (x∗)−

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))

− ∑
j∈J0

µ
∗
j g j (z∗)+

1
2

p∗T ∇
2

[
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+ ∑

j∈J0

µ
∗
j g j (z∗)

]
p∗

> F

(
x∗,z∗;α

1 (x∗,z∗)

(
∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )

−λ
∗h(z∗, ȳ∗i )) p∗+∇ ∑

j∈J0

µ
∗
j g j (z∗)+∇

2
∑
j∈J0

µ
∗
j g j (z∗) p∗

))
+ρ

1
1 d2 (x∗,z∗) ,

and

0 >− ∑
j∈Jβ

µ
∗
j g j (z∗)+

1
2

p∗T ∇
2

∑
j∈Jβ

µ
∗
j g j (z∗)p∗,

>F

x∗,z∗;α
2 (x∗,z∗)

∇ ∑
j∈Jβ

µ
∗
j g j (z∗)+∇

2
∑
j∈Jβ

µ
∗
j g j (z∗)p∗


+ρ

2
β

d2 (x∗,z∗) , β = 1,2, ...,r.

Since α1 (x∗,z∗) > 0 and α2 (x∗,z∗) > 0, by using the sublinearity of F , the above two
inequalities imply

F

(
x∗,z∗;

(
∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗

)

(3.10) +∇ ∑
j∈J0

µ
∗
j g j (z∗)+∇

2
∑
j∈J0

µ
∗
j g j (z∗)p∗

)
<−ρ1

1 d2 (x∗,z∗)
α1 (x∗,z∗)

,

and

(3.11) F

x∗,z∗;

∇ ∑
j∈Jβ

µ
∗
j g j (z∗)+∇

2
∑
j∈Jβ

µ
∗
j g j (z∗)p∗

6−
ρ2

β
d2 (x∗,z∗)

α2 (x∗,z∗)

β = 1,2, ...,r.
From (3.1), (3.10), (3.11) and the sublinearity of F , we get

0 = F

(
x∗,z∗;∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗
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+ ∇

m

∑
j=1

µ
∗
j g j (z∗)+∇

2
m

∑
j=1

µ
∗
j g j (z∗) p∗

)

≤ F

(
x∗,z∗;

(
∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗

)

+∇ ∑
j∈J0

µ
∗
j g j (z∗)+∇

2
∑
j∈J0

µ
∗
j g j (z∗)p∗

)

+
r

∑
β=1

F

x∗,z∗;

∇ ∑
j∈Jβ

µ
∗
j g j (z∗)+∇

2
∑
j∈Jβ

µ
∗
j g j (z∗)p∗


<−

(
ρ1

α1 (x∗,z∗)
+

∑
r
β=1 ρ2

β

α2 (x∗,z∗)

)
d2 (x∗,z∗)≤ 0. (by(iii))

Thus, we have a contradiction. Hence z∗ = x∗.

Theorem 3.5. (Strict converse duality) Let x∗ be an optimal solution to (P) and (z∗,µ∗,λ ∗,
s∗, t∗, ȳ∗, p∗) be optimal solution to (GMD). Assume that the following conditions are satis-
fied:

(i) ∇g j(x∗), j ∈ J(x∗), are linearly independent,

(ii)

(
s∗

∑
i=1

t∗i ( f (·, ȳi)−λ ∗h(·, ȳi))+ ∑
j∈J0

µ∗j g j (·) , ∑
j∈Jβ

µ∗j g j (·)

)
is second order strictly

pseudoquasi (F,α,ρ,d) -type I at z∗,

(iii) ρ1
1

α1(x∗,z∗) +
∑

r
β=1 ρ2

β

α2(x∗,z∗) > 0.

Then, z∗ = x∗; that is, z∗ is an optimal solution of (P).

Proof. We proceed as in the proof of Theorem 3.4 and obtain
s∗

∑
i=1

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i ))+ ∑

j∈J0

µ jg j (x∗)<
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+ ∑

j∈J0

µ jg j (z∗)

(3.12) −1
2

p∗T ∇
2

[
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+ ∑

j∈J0

µ jg j (z∗)

]
p∗.

From (3.3), and by the second part of the hypothesis on(
s∗

∑
i=1

t∗i ( f (·, ȳi)−λ ∗h(·, ȳi))+ ∑
j∈J0

µ∗j g j (·) , ∑
j∈Jβ

µ∗j g j (·)

)
at z∗, we have

F

x∗,z∗;α
2 (x∗,z∗)

∇ ∑
j∈Jβ

µ
∗
j g j (z∗)+∇

2
∑
j∈Jβ

µ
∗
j g j (z∗)p∗

6−ρ
2
β

d2 (x∗,z∗) ,

β = 1,2, ...,r. As α2 (x∗,z∗) > 0 and as F is sublinear, it follows that

(3.13) F

x∗,z∗;

∇ ∑
j∈Jβ

µ
∗
j g j (z∗)+∇

2
∑
j∈Jβ

µ
∗
j g j (z∗)p∗

6−
ρ2

β
d2 (x∗,z∗)

α2 (x∗,z∗)
,
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β = 1,2, ...,r. On the other hand from relation (3.1) and the sublinearity of F , we obtain

0 = F

(
x∗,z∗;∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗

+∇

m

∑
j=1

µ
∗
j g j (z∗)+∇

2
m

∑
j=1

µ
∗
j g j (z∗) p∗

)

6 F

(
x∗,z∗;∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i )) +∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗

+∇ ∑
j∈J0

µ
∗
j g j (z∗)+∇

2
∑
j∈J0

µ
∗
j g j (z∗)p∗

)

+
r

∑
β=1

F

x∗,z∗; ∇ ∑
j∈Jβ

µ
∗
j g j (z∗)+∇

2
∑
j∈Jβ

µ
∗
j g j (z∗)p∗

 .

That is,

r

∑
β=1

F

x∗,z∗; ∇ ∑
j∈Jβ

µ
∗
j g j (z∗)+∇

2
∑
j∈Jβ

µ
∗
j g j (z∗)p∗


>−F

(
x∗,z∗;∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))

+∇
2

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗ +∇ ∑

j∈J0

µ
∗
j g j (z∗)+∇

2
∑
j∈J0

µ
∗
j g j (z∗)p∗

)
.

(3.14)

From relation (3.13), (3.14), we obtain

F

(
x∗,z∗;

(
∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i )) +∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗

+∇ ∑
j∈J0

µ
∗
j g j (z∗)+∇

2
∑
j∈J0

µ
∗
j g j (z∗)p∗

))
>

∑
r
β=1 ρ2

β
d2 (x∗,z∗)

α2 (x∗,z∗)
.

In view of ρ1
1

α1(x∗,z∗) +
∑

r
β=1 ρ2

β

α2(x∗,z∗) > 0, α1 (x∗,z∗) > 0 and the sublinearity of F , the above
inequality becomes

F

(
x∗,z∗;α

1 (x∗,z∗)

(
∇

s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i )) +∇

2
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))p∗

+∇ ∑
j∈J0

µ
∗
j g j (z∗)+∇

2
∑
j∈J0

µ
∗
j g j (z∗)p∗

))
>−ρ

1
1 d2 (x∗,z∗) .
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Using the first part of the hypothesis on

(
s∗

∑
i=1

t∗i ( f (·, ȳi)−λ ∗h(·, ȳi))+ ∑
j∈J0

µ∗j g j (·) , ∑
j∈Jβ

µ∗j g j (·)

)
at z∗, it follows that

s∗

∑
i=1

t∗i ( f (x∗, ȳ∗i )−λ
∗h(x∗, ȳ∗i ))+

µ jg j

∑
j∈J0

(x∗) >
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+ ∑

j∈J0

µ jg j (z∗)

−1
2

p∗T ∇
2

[
s∗

∑
i=1

t∗i ( f (z∗, ȳ∗i )−λ
∗h(z∗, ȳ∗i ))+ ∑

j∈J0

µ jg j (z∗)

]
p∗ ,

which is a contradiction to (3.12). Hence z∗ = x∗.

4. Conclusions

In this paper, we have discussed the second order duality to minmax fractional program-
ming problems under the assumptions of generalized (F,α,ρ,d)-type I convexity. It will
be interesting to see whether or not the second order duality results developed in this paper
still hold for the following nondifferentiable minmax fractional programming problems:

(P2) Min sup
y∈Y

φ(x,y)+(xT Bx)1/2

ψ(x,y)−(xT Dx)1/2

subject to g(x) 6 0, x ∈ Rn,
where Y is a compact subset of Rm, φ (., .) , ψ (., .) : Rn×Rm→ R and g(., .) : Rn→ R

are continuously differentiable function, and B and D are two positive semidefinite n× n
symmetric matrices.

(P3) Min sup
v∈W

Re
[
φ(ξ ,v)+(zT Bz)1/2

]
Re
[
ψ(ξ ,v)−(zT Dz)1/2

] ,

subject to −g(ξ ) ∈ S0, ξ ∈C2n,
where ξ = (z, z̄) , v = (w, w̄) for z ∈Cn, w ∈Cl , φ (·, ·) : C2n×C2l →C and ψ (·, ·) :

C2n×C2l → C are analytic with respect to ξ , W is a specified compact subset in C2l , S0

is a polyhedral cone in Cm and g : C2n → Cm is analytic. Also B,D ∈ Cn×n are positive
semidefinite Hermitian matrices.

This would be task of some of our forthcoming work.
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the paper.
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