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Abstract. The main purpose of this paper is to introduce the concept of general Γ-hyper-
modules as a generalization of Γ-hypermodules, as a generalization of Γ-modules and as
a generalization of modules. Then we extended the isomorphism theorems to general Γ-
hypermodules. Also, it is observer that if N is a normal Γ-subhypermodule of Γ-hypermodule
M, then, [M : N∗] is an abelian group. Finally, we show that there is a covariant functor be-
tween the category of general Γ-hypermodules and the category of modules.
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1. Introduction

Hypergroups were introduced in 1934 by a French mathematician Marty [17] at the 8th

Congress of Scandinavian Mathematicians. Since then, hundreds of papers and several
books have been written set on this topic. Nowadays, hyperstructures have a lot of appli-
cations to several domains of mathematics and computer science [18, 20]. One of the first
books, dedicated especially to hypergroups, is “Prolegomena of Hypergroup”, written by
Corsini in 1993 [3]. A recent book [4] on hyperstructures points out on their applications in
cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and
hypergraphs. Another book [7] is devoted especially to the study of hyperring theory; sev-
eral kinds of hyperrings are introduced and analyzed, and the volume ends with an outline
of applications in chemistry and physics, analyzing several special kinds of hyperstructures:
e-hyperstructures and transposition hypergroups. As an extension of index a subgroup in a
group, the theory of index of a subhypergroup in a hypergroup has been recently developed
by Zhan et al. [24] and generalized orbit-stabilizer theorem by them. Also Jafarabadi et al.
[13] introduced the notions of simple and completely simple semi hypergroups.

The fundamental relation β ∗ was introduced on hypergroup by Koskas [14] for the first
time and studied by many author, for example see [3, 6, 12, 21]. The fundamental relation
β ∗is defined on hypergroups are smallest equivalence relation so that the quotient would be

Communicated by Kar Ping Shum.
Received: May 12, 2012; Revised: January 21, 2013.



908 S. O. Dehkordi and M. Heidari

a group. Let H be a hypergroup and U be the set of all finite products of elements of H and
define the relation β on H as follows:

xβy⇐⇒{x,y} ⊆ u, for some u ∈U.

Freni [11] proved in that for hypergroups we have β ∗ = β .
Vougiouklis in [20] defined the fundamental relation γ on hyperring R as the smallest

equivalence relation on R such that the quotient [R : γ∗] is a ring. Let (R,+, ·) be a hyperring.
Vougiouklis defined the relation γ as follows:

aγb⇐⇒ {a,b} ⊆ u,

where u is a finite sum of finite products elements of R and proved that γ∗ is the transitive
closure of γ . The fundamental equivalence relation extended to some classes of hyperrings
by Spartalis and Vougiouklis [19].

In [23] Zhan et al. have considered three isomorphism theorems and the Jordan Holder
theorem for hypermodules. Moreover, a fundamental theorem of hypermodules was estab-
lished by them. Also Davvaz [5] generalized the classical isomorphism theorems of groups
to polygroups. By using a certain type of equivalence relations, we can connect general
Γ-hypermodule to Γ-hypermodule. These equivalence relations are called strong regular re-
lations. More exactly, starting with a general Γ-hypermodule and using regular relation, we
can construct a Γ-module structure on the quotient set. Let M be a general Γ-hypermodule
and ρ be an equivalence relation on M, M1 and M2 be non-empty subsets of M. Then,
M1ρM2 meanies that for every m1 ∈M1 there exists m2 ∈M2 such that m1ρm2 and M1ρM2
meanies that for every m1 ∈M1 and m2 ∈M2, m1ρm2.

In 1964, Nobusawa introduced Γ-rings as a generalization of rings. Barnes [2] weak-
ened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa. Barnes
[2], Luh [16] and Kyuno [15] studied the structure of Γ-rings and obtained various gen-
eralization analogous to corresponding parts in ring theory. Recently, Anvariyeh et al.[1]
discussed the basic properties of Γ-hyperideals in Γ-semihypergroups. After that, Dehkordi
et al. [8, 9, 10] investigated the ideals, rough ideals, homomorphisms and regular relations
of Γ-semihyperrings.

The plan of this paper is the following: in the next section, we are introduced and ana-
lyzed the isomorphism theorems to general Γ-hypermodule. Also, it is observed that if N is
a normal Γ-subhypermodules, then ([M : N∗],⊕) is an abelian group. In Sec.3, we introduce
a relation Θ and fundamental modules. Finally, we show that there is a covariant functor
between the category of Γ-hypermodules and the category of modules.

2. Preliminaries

The purpose of this section is to introduce the basic concepts of algebraic hypergroups and
Γ-hyperrings. First we shall present the fundamental definitions. LetH be a non-empty
set and let P∗(H) be the set of all non-empty subsets of H. A hyperoperation on H is a
map ◦ : H×H −→P∗(H) and the couple (H,◦) is called a hypergroupoid. If A and B are
non-empty subsets in H, then we denote

A◦B =
⋃

a∈A,b∈B

a◦b, {x}◦A = x◦A and B◦{x}= B◦ x.
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A hypergroupoid (H,◦) is called a semihypergroup if for all a,b,c in H we have (a◦b)◦
c = a◦ (b◦ c). In addition, if for every a ∈ H, a◦H = H = H ◦a, then (H,◦) is called a hy-
pergroup. A non-empty subset K of a semihypergroup (H,◦) is called a subsemihypergroup
if it is a semihypergroup. In other words, a non-empty subset K of a semihypergroup (H,◦)
is a subsemihypergroup if K ◦K ⊆ K.

Definition 2.1. A Krasner hyperring is an algebraic structure (R,+, ·) which satisfies the
following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,
(i) for every x,y,z ∈ R, x+(y+ z) = (x+ y)+ z,

(ii) for every, x,y ∈ R, x+ y = y+ x,
(iii) there exists 0 ∈ R such that 0+ x = x, for every x ∈ R,
(iv) for every x ∈ R there exists a unique element x

′ ∈ R such that 0 ∈ x+ x
′
,

(v) z ∈ x+ y, implies that x ∈ z− y and y ∈ −x+ z.
(2) Relating to the multiplication, (R, ·) is a semigroup having zero as a bilaterally

absorbing element.
(3) The multiplication is distributive with respect to the hyperoperation +.

Definition 2.2. [9] Let R be a commutative semihypergroup and Γ be a commutative group.
Then, R is called a Γ-semihyperring if there exists a map R×Γ×R −→P∗(R) (image to
be denoted by aαb for a,b ∈ R and α ∈ Γ) satisfying the following conditions:

(1) aα(b+ c) = aαb+aαc,
(2) (a+b)αc = aαc+bαc,
(3) a(α +β )c = aαc+aβc,
(4) aα(bβc) = (aαb)βc,

for all a,b,c ∈ R and α,β ∈ Γ

In this definition if (R,+) and (Γ,+) are canonical hypergroups, then R is called Γ-
hyperring.

Definition 2.3. [22] Let (R,⊕,Γ) be a Γ-hyperring and (M,⊕) be a canonical hypergroup.
M is called Γ-hypermodule over R if there exists a mapping f : R×Γ×M −→M(the image
of (r,α,m) being denoted by rαm) such that, for all r1,r2 ∈ R, m1,m2 ∈ M and α,β ∈ Γ,
we have

(1) r1α(m1 +m2) = r1αm1 + r1αm2,
(2) (r1 + r2)αm1 = r1αm1 + r2αm1,
(3) r1(α +β )m1 = r1αm1 + r1βm1,
(4) r1α(r2βm1) = (r1αr2)βm1.

A subset M1 in M is said to be a Γ-subhypermodule of M if it satisfies the following
conditions:

(1) M1 is a subhypergroup of M;
(2) rαm1 ∈M1, for all r ∈ R,α ∈ Γ,m1 ∈M1.

Let M and R be the additive commutative canonical hypergroup of all m×n matrices over
the canonical hypergroup G and Γ be the additive commutative canonical hypergroup of all
n×m matrices over the same set. Then, M is a Γ-hypermodule if aαb denotes the usual
matrix product of a;α;b, where a ∈ R, α ∈ Γ and b ∈ M. In this example, M1 = {(xi j) :
x1 j = 0, j = 1,2, . . . ,m} and M2 = {(xi j) : xi1 = 0, i = 1,2, . . . ,m} are Γ-subhypermodules
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of M.
A Γ-subhypermodule M1 of M is called normal if m+M1−m⊆M1, for all m ∈M.

3. General Γ-hypermodules

In this section we introduce a new type of hypermodule in which both addition and mul-
tiplication are hyperoperations, that satisfy a set of conditions and we extended the iso-
morphism theorems to general Γ-hypermodules. Also, it is observer that if N is a normal
Γ-subhypermodule, then the quotient [M : N∗] considered in the isomorphism theorems by
Zhan et al. [22] are groups.

Let (R,⊕,Γ) be a Γ-hyperring, (M,+) be a canonical hypergroup and Γ̂ = {α̂ : α ∈ Γ}
be a canonical hypergroup with respect the hyperoperation α̂⊕ β̂ = α +β where α,β ∈ Γ.
Then, M is called general left Γ̂ hypermodule if there exists a hyperoperation R× Γ̂×M−→
P∗(M)(the image (r, α̂,m) being denoted by rα̂m ) such that for every r1,r2 ∈ R, m1,m2 ∈
M satisfies the following conditions:

(i) r1α̂(m1 +m2) = r1α̂m1 + r1α̂m2,
(ii) (r1 + r2)α̂m1 = r1α̂m1 + r2α̂m1,

(iii) r1(α̂⊕ β̂ )m1 = r1α̂m1 + r1β̂m1,
(iv) (r1αr2)β̂m1 = r1α̂(r2β̂m1).
(v) 0 ∈ 0α̂m∩ rα̂0, for every r ∈ R and m ∈M.

Throughout this paper, by a Γ̂-hypermodule we mean a general Γ̂-hypermodule.

Example 3.1. Let (M,+) be a Γ-module and M1 be a Γ-submodule of M. We define the
hyperoperation on M as follows:

m1α̂m2 = m1αm2 +M1.

Then, M is a Γ̂-hypermodule.

Example 3.2. Let R be a Γ-hyperring and I be an ideal of R. Then, I is a Γ-hypermodule
under the hyperoperation � : R×Γ× I −→P∗(I), such that (r,γ,a)−→ rγa.

Example 3.3. Let R be a Γ-hyperring and R[x] be the set of all polynomial over R. Then,
R[x] is a Γ-hypermodule under the following hyperoperation:

R×Γ×R[x] −→ R[x](
r,α,

n

∑
i=1

aixi

)
−→

{
n

∑
i=1

cixi : ci ∈ rαai

}
.

Example 3.4. Let M be a Γ-hypermodule and N ⊆M. Then, NΓ∑M is a Γ- hypermodule
with respect the following hyperoperations:

R×Γ×NΓ∑M −→P∗(NΓ∑M)(
r,α,

n

∑
i=1

niαimi

)
−→

{
n

∑
i=1

niαici : ci ∈ rαmi

}
.

Example 3.5. Let R1 and R2 be a Γ-hyperrings and M be a left Γ-hypermodule over R1 and
right Γ-hypermodule over R2. Then,

T =
{[

r1 m
0 r2

]
: r1 ∈ R1,m ∈M,r2 ∈ R2

}
,
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is a Γ-hyperring and Γ-hypermodule under following hyperoperation:
T ×Γ×T −→P∗(T )([

r1 m1
0 r2

]
,γ,

[
s1 m2
0 s2

])
−→

{[
t1 t2
0 t3

]
: t1 ∈ r1γs1, t2 ∈ r1γm1 +m2γs2, t3 ∈ r2γs2

}
.

Definition 3.1. Let X be a subset of M and {Mi : i∈ J} be a family of all Γ̂-subhypermodule
of M which contain X. Then,

⋂
i∈J Mi is called the Γ̂-hypermodule generated by X and

denoted by < X >. If X = {m1,m2, . . . ,mn}, then the Γ̂-hypermodule < X > denoted by
< m1,m2, . . . ,mn >.

Proposition 3.1. Let X be a non-empty subset of M. Then, < x >=
{

x ∈M : x ∈ ZX +RΓ̂∑X
}

,
where

ZX =

{
x ∈M : x ∈

n

∑
i=1

nixi, n ∈ N,ni ∈ Z, xi ∈ X

}
,

and

RΓ̂∑X =

{
x ∈M : x ∈

n

∑
i=1

riα̂ixi, n ∈ N, αi ∈ Γ, xi ∈ X

}
.

Proof. The proof is straightforward.

Definition 3.2. Let M1 and M2 be Γ̂1- and Γ̂2-hypermodules, respectively. A map ϕ : M1−→
M2 is called a homomorphism if there exist a homomorphism f : Γ̂1 −→ Γ̂2 and a homo-
morphism g : R1 −→ R2 such that

(i) ϕ(m1 +m2) = ϕ(m1)+ϕ(m2),
(ii) ϕ(rα̂m) = g(r) f (α̂)ϕ(m).

Definition 3.3. Let M be a Γ̂-hypermodule and ρ be an equivalence relation on M. Then,
ρ is called

(i) regular if for all m∈M, α ∈ Γ and r ∈ R, m1ρm2 implies that (rα̂m1)ρ(rα̂m2) and
(m1 +m)ρ(m2 +m).

(ii) strongly regular if for all m1,m2 ∈M, α ∈Γ and r ∈R implies that (rα̂m1)ρ(rα̂m2)
and (m1 +m)ρ(m2 +m).

(iii) additive strong regular if and only if for all m ∈ M and m1 ∈ M, m1ρm2 implies
that (m+m1)ρ(m+m2).

Proposition 3.2. Let ρ be an equivalence relation on M.

(i) If ρ is regular, then [M : ρ] is a Γ̂-hypermodule, with respect to the following hy-
peroperation:

ρ1(m1)⊕ρ1(m2) = {ρ(m) : m ∈ m1 +m2}, ρ3(r)ρ̂2(α̂)ρ1(m) = {ρ(t) : t ∈ rα̂m},

where ρ1 and ρ2 are regular relations on Γ̂ and R, respectively.
(ii) The equivalence relation ρ is strongly regular if and only if [R : ρ] is a Γ̂-module.

Proof. The proof is straightforward.
Let ϕ be a homomorphism from Γ̂1- hypermodule M1 into a Γ̂2-hypermodule M2. Then,

the set {x ∈ M1 : ϕ(x) = 0} is called Kernel of ϕ and is denoted by Kerϕ and the set
{ϕ(x) : x ∈M1} is called image of ϕ and denoted by Imϕ .
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Suppose that N is a Γ̂-subhypermodule of M. In this section, we define quotient [M : N∗]
and prove that when N is normal the hyperaddition in [M : N∗] is operation.

Suppose that N is a Γ̂-subhypermodule of M. We define the relation N∗ by

x≡ y⇐⇒ x ∈ N + y.

Proposition 3.3. Let N be a Γ̂-subhypermodule of M. Then, ≡ is an equivalence relation
on M.

Proof. Suppose that x ∈M. Since x = x+0 ∈ x+N, the relation≡ is reflexive. Let x,y ∈M
such that x ≡ y. Then, x ∈ y + n, for some n ∈ N. Hence, y ∈ x− n ⊆ x + N. So, ≡, is
symmetric relation. Let x,y,z ∈M such that x≡ y and y≡ z. Then, x ∈ y+n1 and y ∈ z+n2
for some n1,n2 ∈ N. So, x ∈ y + n1 ⊆ z + n1 + n2 ⊆ z + N. Therefore, the relation ≡ is
transitive. This completes the proof.

Proposition 3.4. Let N be a normal Γ̂-subhypermodule. Then, for every x,y ∈M, following
statements are equivalent:

(1) y ∈ x+N,
(2) x− y⊆ N,
(3) (x− y)∩N 6= /0.

Proof. (1) =⇒ (2). Since y∈ x+N and N is normal, we have y−x⊆ x+N−x⊆N. Hence,
y− x⊆ N and x− y =−(y− x)⊆ N.
(2) =⇒ (3). Obvious.
(3) =⇒ (1). Since (x− y)∩N 6= /0, there exists n ∈ N such that n ∈ x− y. Thus, −y + x ⊆
−y+n+ y⊆ N. Let z ∈ −y+ x. Then, z ∈ N. This implies that −y ∈ z− x and y ∈ x− z⊆
x+N.

Let N be a Γ-subhypermodule of M. Then, equivalence relation defined by J. Zhan et al.
[22], coincide with the following equivalence relation:

xN∗y(modN)⇐⇒ x− y⊆ N.

Definition 3.4. Let M be a Γ-hypermodule defined by Zhan [22] and N be a Γ

-subhypermodule of M . We define Ω(N) = {x ∈M : x− x⊆ N}.

Proposition 3.5. Let N be a Γ-subhypermodule of M. Then, Ω(N) is a Γ-subhypermodule
of M and for every x,y ∈Ω(< 0 >), x+ y is singleton.

Proof. Suppose that x,y ∈Ω(N) and r ∈ R. Since, N is a Γ-subhypermodule, Ω(N) is non-
empty. Let s ∈ x− y and s1 ∈ rα̂x. Then, s− s⊆ (x− y)− (x− y) = (x− x)+(y− y)⊆ N.
Therefore, Ω(N) is a Γ-subhypermodule. Let x,y ∈ Ω({0}). If a,b ∈ x + y, then a− b ⊆
(x+y)−(x+y) = (x−x)+(y−y) = 0. Hence, a = b. This means that x+y is singleton.

Corollary 3.1. Let M be a Γ-hypermodule. Then, (M,+) is an abelian group if and only if
Ω({0}) = M.

Corollary 3.2. Let N be a Γ-subhypermodule. Then, N is normal if and only if Ω(N) = M.

Proposition 3.6. Let M be a Γ-hypermodule and there exist r ∈ R and m ∈ Ω({0}) such
that | rαm |= 1. Then,| 0α0 |= 1.

Proof. we have rα̂0 = rα̂(m−m) = rα̂m− rα̂m. On the other hand 0α̂0 ⊆ (r− r)α̂0 =
rα̂0− rα̂0. This implies that | 0α̂0 |= 1.
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Remark 3.1. Let M be a general Γ-hypermodule and N be a normal Γ-subhypermodule of
M. Then, the zero element {N} is normal and by Proposition 3.6, the hyperoperation RΓ̂M
is a operation.

Proposition 3.7. Let N be a Γ-subhypermodule of M and

F(M) =

{
x ∈M : x ∈

n

∑
i=1

(xi− xi), for some, n ∈ N, xi ∈M

}
.

Then, F(M) is a subcanonical hypergroup of M and N is normal if and only if F(M) ⊆ N.
Moreover, F(M) is a Γ̂-subhypermodule.

Proof. Suppose that x,y ∈ F(M). Hence, x ∈ ∑
n
i=1(xi− xi) and y ∈ ∑

m
j=1(y j− y j). Then

x− y⊆
n

∑
i=1

(xi− xi)+
m

∑
j=1

(y j− y j)⊆ F(M).

This implies that F(M) is a subcanonical hypergroup of M. Let M be a Γ̂-hypermodule and
r ∈ R. Then,

rα̂x = rα̂

n

∑
i=1

(xi− xi) =
n

∑
i=1

(rα̂xi− rα̂xi)⊆ F(M),

Hence F(M) is a Γ̂-subhypermodule.
Now, for any x ∈ F(M) and m ∈M, there exist n ∈N, xi ∈M such that x ∈∑

n
i=1(xi−xi).

Hence, m+x−m⊆m−m+∑
n
i=1(xi−xi). Thus, F(M) is a normal subcanonical hypergroup

of M. Let N be a normal Γ̂ of M. Then, for all m ∈ M, n ∈ N, we have m + n−m ⊆
N. This implies that m−m ⊆ N. Since, N is a Γ̂-subhypermodule of M, for all mi ∈ M,
∑

n
i=1(mi−mi)⊆ N, for every n ∈ N. This implies that F(M)⊆ N.
Conversely, assume that F(M) ⊆ N. Then for every m ∈ M and n ∈ N, m + n−m =

m−m+n⊆ F(M)+n⊆ F(M)+N ⊆ N. Therefore, N is a normal Γ̂-hypermodule.

Proposition 3.8. Let N1 and N2 be two Γ̂-subhypermodule of M such that N1 ⊆ N2 and N1
is normal. Then, N2 is also normal.

Proof. Suppose that N1 is normal. Then, by Corollary 3.2, Ω(N1) = M. This implies that
Ω(N2) = M and by Corollary 3.2, N2 is normal.

Corollary 3.3. Let < 0 > is a normal Γ̂-hypermodule. Then, all Γ̂-subhypermodule of M
are normal.

Theorem 3.1. The Γ-subhypermodule generated by {0} of M is normal if and only if M is
an abelian group and F(M) =< 0 > if and only if (M,+) is a abelian group.

Proof. By Corollary 3.1, (M,+) is abelian group if and only if Ω(< 0 >) = M and by
Corollary 3.2, Ω(< 0 >) = M if and only if < 0 > is a normal Γ-subhypermodule of M.
Hence, (M,+) is an abelian group if and only if < 0 > is normal.

By Proposition 3.7, F(M), is smallest normal subcanonical hypergroup of (M,+). There-
fore, < 0 > is normal if and only if F(M) =< 0 >.

Remark 3.2. Let N be a Γ̂-subhypermodule of M. By Theorem 3.1, all Γ̂-subhypermodule
of M are normal if and only if (M,+) is an abelian group. For the quotient Γ̂-hypermodule
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[M : N∗], the zero element {N} is normal. On the other hand if N is a normal Γ̂

-subhypermodule, then the relation defined by Zhan et al. [22], is additive strong regular.

Theorem 3.2. ( First Isomorphism Theorem).
Let ψ be a homomorphism from a Γ̂1-hypermodule M1 into a Γ̂2-hypermodule M2. Then,
[M1 : Kerψ∗] is isomorphic to Imψ .

Proof. Suppose that ϕ : [M1 : Kerψ∗]−→ Imψ by ϕ(K∗(m)) = ψ(m), for all m∈M, where
K = Kerψ . Let K∗(m1) = K∗(m2), where m1,m2 ∈M1. This implies that m1 ∈ m2 + k, for
some k ∈ K. Hence,

ϕ(m1) ∈ ϕ(m2 + k) = ϕ(m1)+ϕ(k) = ϕ(m2)+0 = ϕ(m2).

So ϕ(m1) = ϕ(m2). Thus, ϕ is well defined. If m1,m2 ∈M1, then

ϕ(K∗(m1)+K∗(m2)) = ϕ({K∗(m) : m ∈ m1 +m2}) = {ϕ(K∗(m)) : m ∈ m1 +m2}
= {ϕ(m) : m ∈ m1 +m2}
= ϕ(K∗(m1))+ϕ(K∗(m2)).

ϕ(rα̂K∗(m)) = ϕ({K∗(m1) : m1 ∈ rα̂m}) = {ψ(m1) : m1 ∈ rα̂m}= rα̂ϕ(K∗(m)).

Hence, ψ is homomorphism. One can see that ϕ is one to one and onto. Therefore, ϕ is a
isomorphism.

Theorem 3.3. ( Second Isomorphism Theorem)
Let M1 and M2 be Γ̂1− and Γ̂2− hypermodules. Then,

[M1 : (M1∩M2)∗]∼= [M1 +M2 : M∗2 ].

Proof. By the First isomorphism, proof is straightforward.

Theorem 3.4. ( Third Isomorphism Theorem)
If M1 and M2 be Γ̂-subhypermodule of M, such that M1 ⊆M2, then

[M : M∗2 ]∼= [[M : M∗1 ] : [M2 : M1]∗].

Proof. By the First isomorphism theorem, proof is straightforward.

4. Fundamental modules and Θ relation

The category GΓM of general Γ- hypermodules in which the objects are Γ-hypermodules.
For Γ1- and Γ2- hypermodule M1 and M2 respectively, Mor(M1,M2), are epimorphism from
M1 to M2 and Mod is the category of all modules. The purpose of this section is to introduce
the concept of fundamental modules and T - functor. First we shall present the fundamental
definitions.

We define the relation β as follows:

aβb if and only if a,b⊆ u,

where u is a finite sum of finite hyperproduct of R and M. On the other hand, u ∈U , where

U =

{
x ∈M : x ∈

n

∑
i=1

xi +
m

∑
j=1

ni

∏
i=1

r jiα̂ jiy ji, n,m,ni ∈ N, r ji ∈ R,y ji ∈M,α ji ∈ Γ

}
.
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We denote the transitive closure of β by β ∗. The equivalence relation β ∗ is called funda-
mental equivalence relation on M. We denote the equivalence class of the element m ∈M
by β ∗(m). Let γ∗ and ν∗ be fundamental relations on R and Γ, respectively. We define

[M : Γ] =

{
Θ1

(
n

∏
i=1

(β ∗(mi),ν∗(αi))

)
: mi ∈M,αi ∈ Γ,n ∈ N

}
,

where the relation Θ1 defined as follows:(
n

∏
i=1

(β ∗(mi),ν∗(αi)),
m

∏
j=1

(β ∗(n j),ν∗(β j))

)
∈Θ1,

if and only if
n⊕

i=1

γ
∗(a)ν̂∗(αi)β ∗(mi) =

m⊕
j=1

γ
∗(a)ν̂∗(β j)β ∗(n j),

for every γ∗(a) ∈ [R : γ∗]. Obviously, this relation is congruence on [M : Γ]. We define

congruence class contain
n

∏
i=1

(β ∗(mi),ν∗(αi)) by Θ1

(
n

∏
i=1

(β ∗(mi),ν∗(αi))

)
. Suppose that

[R : Γ] =

{
n

∏
i=1

(ν∗(αi),γ∗(xi)) : αi ∈ Γ,n ∈ N,xi ∈ R

}
.

We define a relation Θ2 on [R : Γ] as follows:(
n

∏
i=1

(ν∗(αi),γ∗(xi)),
m

∏
j=1

(ν∗(α j),γ∗(y j))

)
∈Θ2,

if and only if
n⊕

i=1

γ
∗(a)ν̂∗(αi)γ∗(xi) =

m⊕
j=1

γ
∗(a)ν̂∗(β j)γ∗(y j),

for every γ∗(a)∈ [R : γ∗]. Obviously, this relation is congruence and [R : Γ] form a ring with
the following multiplication:

Θ2

(
n

∏
i=1

(ν∗(αi),γ∗(xi))

)
Θ2

(
m

∏
j=1

(
ν
∗(β j),γ∗(y j)

))
= Θ2

(
∏
i, j

(ν∗(αi),γ∗(xi)ν̂∗(β j)γ∗(y j))

)
.

Obviously, [M : Γ] is a [R : Γ]-module with respect the following operation:

Θ2

(
n

∏
i=1

(ν∗(αi),γ∗(xi))

)
Θ1

(
m

∏
j=1

(ν∗(β j),β ∗(m j)

)
= Θ1

(
∏
i, j

(ν∗(αi),γ∗(xi)ν̂∗(β j)β ∗(m j))

)
.

This operation is well-defined. Indeed, suppose that

Θ2

(
n1

∏
i=1

(ν∗(αi),γ∗(xi))

)
= Θ2

(
n2

∏
j=1

(ν∗(α j),γ∗(y j))

)
,

and

Θ1

(
m1

∏
r=1

(ν∗(βr),β ∗(mr))

)
= Θ1

(
m2

∏
s=1

(ν∗(βs),β ∗(ms))

)
.
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This implies that
n1

∑
i=1

γ
∗(x)ν̂∗(αi)γ∗(xi) =

n2

∑
j=1

γ
∗(x)ν̂∗(α j)γ∗(y j),

and
m1

∑
r=1

γ
∗(y)ν̂∗(βr)β ∗(mr) =

m2

∑
s=1

γ
∗(y)ν̂∗(βs)β ∗(ms),

for every γ∗(x),γ∗(y) ∈ [R : γ∗]. Hence,

∑
i,r

γ
∗(x)ν̂∗(αi)γ∗(xi)ν̂∗(βr)β ∗(mr) = ∑

s, j
γ
∗(x)ν̂∗(α j)γ∗(y j)ν̂∗(βs)β ∗(ms),

for every γ∗(x) ∈ [R : γ∗]. This implies that

Θ1

(
∏
i,r

ν
∗(αi),γ∗(xi)ν̂∗(βr)β ∗(mr)

)
= Θ1

(
∏
j,s

(γ∗(α j),γ∗(y j)ν̂∗(βs)β ∗(ms))

)
.

Theorem 4.1. Let M be a Γ̂-hypermodule, γ∗, ν∗, β ∗ be fundamental relations on R, Γ and
M, respectively. Then, [M : β ∗] is a [R : γ∗]-module.

Proof. Suppose that m1,m2 ∈M, r ∈ R and α ∈ Γ. We define

β
∗(m1)⊕β

∗(m2) = {β ∗(m) : m ∈ β
∗(m1)+β

∗(m2)},

γ
∗(r)�ν

∗(γ)�β
∗(m) = {β ∗(m) : m ∈ γ

∗(r)ν∗(γ)β ∗(m)}.
Let m

′
1 ∈ β ∗(m1) and m

′
2 ∈ β ∗(m2). Then, we have m

′
1β ∗m1 if and only if there exist

x1,x2, . . . ,xn+1 with x1 = m
′
1,xn+1 = m1 and u1,u2, . . . ,un ∈ U such that {xi,xi+1} ⊆ ui,

for 1 ≤ i ≤ n and m
′
2 ∈ β ∗(m2) if and only if y1,y2, . . . ,yt+1 with y1 = m

′
2, yt+1 = m2 and

v1,v2, . . . ,vn ∈UM such that {y j,y j+1} ⊆ v j. Now, we obtain

{xi,xi+1}+ y1 ⊆ ui + v1,

xn+1 +{y j,y j+1} ⊆ un + v j.

The sums ui + v1 = ti, 1 ≤ i ≤ m− 1 and um + v j = tm+ j−1, 1 ≤ j ≤ n are polynomial and
so tk ∈U for all k ∈ {1,2, . . . ,n+ t−1}. Now, pick up the elements z1,z2, . . . ,zn+t such that
zi ∈ xi + y1, 1≤ i≤ n and zm+ j ∈ xn+1 + y j+1. Hence we obtain {zk,zk+1} ⊆ tk for 1≤ k ≤
m+n−1. Therefore, every element z1 ∈ x1 +y1 = m

′
1 +m

′
2 is β ∗ equivalent to every element

zm+n ∈ mn+1 + mm+1. Then, β ∗(m1)⊕ β ∗(m2) = β ∗(m), for all m ∈ β ∗(m1) + β ∗(m2)
m ∈ β ∗(m1)+β ∗(m2). In a same way, it prove that γ∗(r)�ν∗(γ)�β ∗(m) = β ∗(d), for d ∈
γ∗(r)ν∗(γ)β ∗(m). For any β ∗(m1),β ∗(m2) ∈ [M : β ∗], γ∗(r) ∈ [R : γ∗] and ν∗(γ) ∈ [Γ : ν∗],
we have

β ∗(m) ∈ γ∗(r)�ν∗(γ)� (β ∗(m1)⊕β ∗(m2))
⇐⇒ m ∈ γ∗(r)ν∗(γ)(β ∗(m1)+β ∗(m2))
⇐⇒ m ∈ γ∗(r)ν∗(γ)β ∗(m1)+ γ∗(r)ν∗(γ)β ∗(m2)
⇐⇒ β ∗(m) ∈ γ∗(r)ν∗(γ)β ∗(m1)+ γ∗(r)ν∗(γ)β ∗(m2).

The proof of other property are similar.

Theorem 4.2. Let M1 and M2 be Γ̂-hypermodules, respectively, and ψ : M1 −→ M2 be a
epimorphism. Then, there exists a [R : γ∗]-module homomorphism ψ : [M1 : Γ]−→ [M2 : Γ].
Moreover, if ψ is an isomorphism then, ψ is isomorphism.
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Proof. We define

ψ

(
Θ1

(
n

∏
i=1

(ν∗(αi),β ∗(mi))

))
= Θ1

(
n

∏
i=1

(ν∗(αi),β ∗(ψ(mi))

)
.

First we prove that ψ is well-defined. Let

Θ1

(
n

∏
i=1

(ν∗(αi),β ∗(mi))

)
= Θ1

(
m

∏
j=1

(ν∗(δ j),β ∗(n j))

)
.

We define
Λ : ([Γ : ν∗], [M1 : β ∗]) −→ ([Γ : ν∗], [M2 : β ∗])

(ν∗(x),β ∗(m1)) −→ (ν∗(x),β ∗(ψ(m1))) .

Let (γ∗(y),β ∗(m1))= (γ∗(y),β ∗(m2)). Then, there exist x1,x2, . . . ,xn such that x1 = m1, xn =
m2 and u1,u2, . . . ,un ∈U such that {xi,xi+1} ⊆ ui. Since, ψ is a homomorphism β ∗(xi) =
β ∗(xi+1). This implies that Λ is well-defined. We have Λ is a homomorphism. Because

Λ(β ∗(m1)⊕β
∗(m2)) = Λ(β ∗(m3)),

for some m3 ∈ β ∗(m1)+ β ∗(m2). We know that β ∗(m3) = β ∗(m), for some m ∈ m1 + m2.
Hence,

Λ(β ∗(m1)⊕β
∗(m2)) = β

∗(m) = Λ(β ∗(m1))⊕Λ(β ∗(m2)).

In a same way, we can see that

Λ(γ∗(x)ν̂∗(α)β ∗(m)) = {Λ(t) : t ∈ xα̂y} = β ∗(ψ(xα̂m))
= β ∗(xα̂ψ(m))
= γ∗(x)ν̂∗(α)β ∗(ψ(m)).

Hence,
n⊕

i=1

γ
∗(x)ν̂∗(αi)β ∗(ψ(mi)) =

m⊕
j=1

γ
∗(x)ν̂∗(δ j)β ∗(n j).

Since ψ is onto,

ψ

(
Θ1

(
n

∏
i=1

(ν∗(αi),β ∗(mi)

))
= ψ

(
Θ1

(
m

∏
j=1

(ν∗(δ j),β ∗(n j)

))
.

This implies that ψ is well-defined. ψ is a homomorphism. Indeed,

ψ

(
Θ1

(
n

∏
i=1

(ν∗(αi),β ∗(mi))

)
⊕Θ1

(
m

∏
j=1

(ν∗(β j),β ∗(n j))

))

= ψ

(
Θ1

(
n

∏
i=1

m

∏
j=1

(ν∗(αi),β ∗(mi))(ν∗(β j),β ∗(n j))

))

= Θ1

(
n

∏
i=1

m

∏
j=1

(ν∗(αi),β ∗(ψ(mi)))(ν∗(β j),β ∗(ψ(n j)))

)

= ψ

(
Θ1

(
n

∏
i=1

(ν∗(αi),β ∗(mi))

))
⊕ψ

(
Θ1

(
m

∏
j=1

(ν∗(β j),β ∗(n j))

))
.
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ψ

(
Θ1

(
n

∏
i=1

(ν∗(αi),γ∗(xi))

)
Θ1

(
m

∏
j=1

(ν∗(β j),β ∗(n j))

))

= ψ

(
Θ1

(
∏
i, j

(ν∗(αi),γ∗(xi)ν̂∗(β j)β ∗(n j))

))
.

Hence, for di j ∈ xiβ jn j, γ∗(xi)ν̂∗(β j)β ∗(n j)) = β ∗(di j). This implies that

ψ

(
Θ2

(
n

∏
i=1

(ν∗(αi),γ∗(xi))

)
Θ1

(
m

∏
j=1

(ν∗(β j),β ∗(n j))

))
= Θ1

(
∏
i, j

(ν∗(αi),β ∗(ψ(di j))

)
.

On the other hand,

Θ2

(
n

∏
i=1

(ν∗(αi),γ∗(xi))

)
ψ

(
Θ1

(
m

∏
j=1

(ν∗(β j),β ∗(n j))

))

= Θ2

(
n

∏
i=1

(ν∗(αi),γ∗(xi))

)(
Θ1

(
m

∏
j=1

(ν∗(β j),β ∗(ψ(n j)))

))

= Θ1

(
∏
i, j

(ν∗(αi),γ∗(xi)ν̂∗(β j)γ∗(ψ(n j)))

)
= Θ1

(
∏
i, j

(ν∗(αi),β ∗(ci j)

)
where ci j ∈ xiβ jψ(n j). Thus, ψ is a [R : γ∗]-module homomorphism. Let ψ is an isomor-
phism. We prove that ψ is isomorphism. It is enough to prove that ψ is one to one. Firstly,
we prove that Λ is one to one. Let

Λ(γ∗(x1),β ∗(m1)) = Λ(γ∗(x2),β ∗(m2)).

Then, β ∗(ψ(m1)) = β ∗(ψ(m2)). Hence, there exist y1,y2, . . . ,ym+1 ∈ M2 and ui ∈ UM2 ,
for i ∈ {1,2, . . . ,m}, such that y1 = ψ(m1) and ym+1 = ψ(m2) and {yi,yi+1} ⊆ ui, for i ∈
{1,2, . . . ,m}. So, there exist vi ∈UM1 and xi ∈M1 such that ψ(xi) = yi, for i∈ 1,2, . . . ,m and
{xi,xi+1} ⊆ vi, for i ∈ {1,2, . . . ,m}. So, β ∗(m1) = β ∗(m2) and Λ is one to one. Obviously,
Λ is onto. Let

ψ

(
Θ1

(
n

∏
i=1

(ν∗(xi),β ∗(mi))

))
= ψ

(
Θ1

(
m

∏
j=1

(ν∗(y j),β ∗(n j))

))
.

Then,
n⊕

i=1

γ
∗(x)ν̂∗(xi)β ∗(ψ(mi)) =

m⊕
j=1

γ
∗(x)ν̂∗(y j)β ∗(ψ(n j)).

This implies that

Λ

(
n⊕

i=1

γ
∗(x)ν̂∗(xi)β ∗(mi)

)
= Λ

(
m⊕

j=1

γ
∗(x)ν̂∗(y j)β ∗(n j)

)
,

which implies that
n⊕

i=1

γ
∗(x)ν̂∗(xi)β ∗(mi) =

m⊕
j=1

γ
∗(x)ν̂∗(y j)β ∗(n j),

for every γ∗(x) ∈ [R : γ∗]. Therefore, ψ is an isomorphism.
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Proposition 4.1. Let M and Γ be canonical hypergroups and σ1 and σ2 be regular relations
on M and Γ, respectively, such that [M : σ1] is a [R : σ3]-modules, where R is a Γ-hyperring
and σ3 is a regular relation on R. Then, M is a general Γ-hypermodule.

Proof. Suppose that the hyperoperation ∗ defined as follows:

∗ : R×Γ×M −→ P∗(M)

r ∗α ∗m−→ σ3(r)σ2(α)σ1(m),
We prove that r ∗α ∗ (m1 +m2) = r ∗α ∗m1 + r ∗α ∗m2. We know that r ∗α ∗ (m1 +m2) =
{r ∗α ∗m : m ∈m1 +m2}. Let m ∈m1 +m2. Then, σ1(m) = σ1(m1)+σ1(m2) and we have

σ3(r)∗σ2(α)∗σ1(m) = σ3(r)σ2(α)σ1(m) = σ3(r)σ2(α)(σ1(m1)+σ1(m2)).

σ3(r)σ2(α)σ1(m1)+σ3(r)σ2(α)σ1(m2) = r ∗α ∗m1 + r ∗α ∗m2

Thus, r ∗α ∗ (m1 +m2)⊆ r ∗α ∗m1 + r ∗α ∗m2. Now, let

σ1(m) = σ3(r)σ2(α)σ1(m1)+σ3(r)σ2(α)σ1(m2) = σ3(r)σ2(α)(σ1(m1)+σ1(m2))

Then, there exists σ1(m3) ∈ σ1(m1)+ σ1(m2) such that σ1(m) = σ3(r)σ2(α)σ1(m3) = r ∗
α ∗m3 ⊆ r ∗α ∗ (m1 + m2). Hence, r ∗α ∗m1 + r ∗α ∗m2 ⊆ r ∗α ∗ (m1 + m2). Therefore,
r ∗α ∗m1 + r ∗α ∗m2 = r ∗α ∗ (m1 +m2). In a same way, we can prove another properties.
Therefore, M is a Γ-module.

Theorem 4.3. Let M1 and M2 be Γ̂1- and Γ̂2-hypermodules. Then,

[M1×M2 : Γ1×Γ2]∼= [M1 : Γ1]× [M2 : Γ2].

Proof. Suppose that β ∗, β ∗1 and β ∗2 be fundamental relations on M1 ×M2, M1 and M2,
respectively. It is easy to see that

[M1×M2 : β
∗]∼= [M1 : β

∗
1 ]× [M2 : β

∗
2 ].

We define
ψ : [M1×M2 : Γ1×Γ2]−→ [M1 : Γ1]× [M2 : Γ2]

Θ

(
n

∏
i=1

((ν∗1 (xi),ν∗2 (yi)),(β ∗1 (mi),β ∗2 (ni))

)

−→

(
Θ1

(
n

∏
i=1

(ν∗1 (xi),β ∗1 (mi))

)
,Θ2

(
n

∏
i=1

(ν∗2 (yi),β ∗2 (ni))

))
.

Obviously, this function is well-defined. We proof ψ is a homomorphism.

ψ

(
Θ

(
n

∏
i=1

((ν∗1 (xi),ν∗2 (yi)),(γ∗1 (ti),γ∗2 (si))

)
Θ

(
m

∏
j=1

((ν∗1 (x
′
j),ν

∗
2 (y

′
j)),(β

∗
1 (m

′
j),β

∗
2 (n

′
j))

))

= ψ

(
Θ

(
∏
i, j

(ν∗1 (xi),ν∗2 (yi)),(γ∗1 (ti)ν̂∗1 (x′j)β
∗
1 (m

′
j),γ

∗
2 (si)ν̂∗2 (y′j)β

∗
2 (n

′
j))

))

= ψ

(
Θ

(
∏
i, j

(ν∗1 (xi),ν∗2 (yi)),(γ∗1 (ci j),γ∗(di j)

))

= ψ

(
Θ

(
n

∏
i=1

((ν∗1 (xi),ν∗2 (yi)),(γ∗1 (ti),γ∗2 (si))

))
ψ

(
Θ

(
m

∏
j=1

((ν∗1 (x
′
j),ν

∗
2 (y

′
j)),(β

∗
1 (m

′
j),β

∗
2 (n

′
j))

))

where ci j ∈ γ∗1 (ti)ν̂∗1 (x′j)β
∗
1 (m

′
j) and di j ∈ γ∗2 (si)ν̂∗2 (y′j)β

∗
2 (n

′
j). This completes the proof.
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Theorem 4.4. There exists a covariant functor between the category of Γ̂-hypermodules
and the category of modules.

Proof. Suppose that M1, M2 and M3 be Γ̂-hypermodules. We define T (M1) = [M1 : Γ],
T (M2) = [M2 : Γ] and T (M3) = [M3 : Γ]. Let ψ1 : M1 −→M2 and ψ2 : M2 −→M3 be homo-
morphisms. We define T (ψ1) = ψ1, T (ψ2) = ψ2 and T (ψ3) = ψ3. Then, for

Θ1

(
n

∏
i=1

(γ∗(xi),β ∗(mi))

)
∈ [M1 : Γ], we have

ψ2 ◦ψ1

(
Θ1

(
n

∏
i=1

(γ∗(xi),β ∗(mi))

))
= Θ3

(
n

∏
i=1

(γ∗(xi),β ∗(ψ2 ◦ψ1(mi))

)

= Θ3

(
n

∏
i=1

(γ∗(xi),β ∗(ψ2(ψ1(mi)))

)
.

Thus, T (ψ2 ◦ψ1) = T (ψ2)◦T (ψ1). On the other hand, if IdM is an identity homomorphism,
then T (Id) is an identity homomorphism. Therefore, T is a covariant functor.

5. Conclusion

In this paper, we have considered the general Γ-hypermodules as a generalization of Γ-
hypermodules, as a generalization of Γ-modules and as a generalization of modules. In
particular, we have given three isomorphism theorems of general Γ-hypermodules and we
have discussed about Θ relations on general Γ-hypermodules. Also we show that there
is a covariant functor between the category of general Γ-hypermodules and the category
of modules. A possible future study could be devoted to the introduction and analysis of
(m,n)- ary Γ-hypermodules.
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