BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

General Γ- Hypermodules: Θ Relation, *T*- Functor and Fundamental Modules

¹S. Ostadhadi-Dehkordi and ²M. Heidari

^{1,2}Department of Mathematics, Hormozgan University, Bandar Abbas, Iran ¹Ostadhadi@hormozgan.ac.ir, ¹Ostadhadi-Dehkordi@hotmail.com, ²mheidari@basu.ac.ir

Abstract. The main purpose of this paper is to introduce the concept of general Γ -hypermodules as a generalization of Γ -hypermodules, as a generalization of Γ -modules and as a generalization of modules. Then we extended the isomorphism theorems to general Γ -hypermodules. Also, it is observer that if *N* is a normal Γ -subhypermodule of Γ -hypermodule *M*, then, $[M : N^*]$ is an abelian group. Finally, we show that there is a covariant functor between the category of general Γ -hypermodules and the category of modules.

2010 Mathematics Subject Classification: 20N20, 16Y99.

Keywords and phrases: General Γ- hypermodule, fundamental module, T-functor.

1. Introduction

Hypergroups were introduced in 1934 by a French mathematician Marty [17] at the 8th Congress of Scandinavian Mathematicians. Since then, hundreds of papers and several books have been written set on this topic. Nowadays, hyperstructures have a lot of applications to several domains of mathematics and computer science [18, 20]. One of the first books, dedicated especially to hypergroups, is "Prolegomena of Hypergroup", written by Corsini in 1993 [3]. A recent book [4] on hyperstructures points out on their applications in cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs. Another book [7] is devoted especially to the study of hyperring theory; several kinds of hyperrings are introduced and analyzed, and the volume ends with an outline of applications in chemistry and physics, analyzing several special kinds of hyperstructures: e-hyperstructures and transposition hypergroups. As an extension of index a subgroup in a group, the theory of index of a subhypergroup in a hypergroup has been recently developed by Zhan *et al.* [24] and generalized orbit-stabilizer theorem by them. Also Jafarabadi *et al.* [13] introduced the notions of simple and completely simple semi hypergroups.

The *fundamental relation* β^* was introduced on hypergroup by Koskas [14] for the first time and studied by many author, for example see [3, 6, 12, 21]. The fundamental relation β^* is defined on hypergroups are smallest equivalence relation so that the quotient would be

Communicated by Kar Ping Shum.

Received: May 12, 2012; Revised: January 21, 2013.

a group. Let *H* be a hypergroup and *U* be the set of all finite products of elements of *H* and define the relation β on *H* as follows:

$$x\beta y \iff \{x,y\} \subseteq u$$
, for some $u \in U$.

Freni [11] proved in that for hypergroups we have $\beta^* = \beta$.

Vougiouklis in [20] defined the fundamental relation γ on hyperring R as the smallest equivalence relation on R such that the quotient $[R : \gamma^*]$ is a ring. Let $(R, +, \cdot)$ be a hyperring. Vougiouklis defined the relation γ as follows:

$$a\gamma b \iff \{a,b\} \subseteq u,$$

where *u* is a finite sum of finite products elements of *R* and proved that γ^* is the transitive closure of γ . The fundamental equivalence relation extended to some classes of hyperrings by Spartalis and Vougiouklis [19].

In [23] Zhan *et al.* have considered three isomorphism theorems and the Jordan Holder theorem for hypermodules. Moreover, a fundamental theorem of hypermodules was established by them. Also Davvaz [5] generalized the classical isomorphism theorems of groups to polygroups. By using a certain type of equivalence relations, we can connect *general* Γ -hypermodule to Γ -hypermodule. These equivalence relations are called *strong regular* relations. More exactly, starting with a general Γ -hypermodule and using regular relation, we can construct a Γ -module structure on the quotient set. Let M be a general Γ -hypermodule and ρ be an equivalence relation on M, M_1 and M_2 be non-empty subsets of M. Then, $M_1\overline{\rho}M_2$ meanies that for every $m_1 \in M_1$ there exists $m_2 \in M_2$ such that $m_1\rho m_2$ and $M_1\overline{\rho}M_2$ meanies that for every $m_1 \in M_1$ and $m_2 \in M_2$, $m_1\rho m_2$.

In 1964, Nobusawa introduced Γ -*rings* as a generalization of rings. Barnes [2] weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa. Barnes [2], Luh [16] and Kyuno [15] studied the structure of Γ -rings and obtained various generalization analogous to corresponding parts in ring theory. Recently, Anvariyeh *et al.*[1] discussed the basic properties of Γ -*hyperideals* in Γ -*semihypergroups*. After that, Dehkordi *et al.* [8, 9, 10] investigated the ideals, rough ideals, homomorphisms and regular relations of Γ -*semihyperrings*.

The plan of this paper is the following: in the next section, we are introduced and analyzed the isomorphism theorems to general Γ -hypermodule. Also, it is observed that if *N* is a normal Γ -subhypermodules, then $([M : N^*], \oplus)$ is an abelian group. In Sec.3, we introduce a relation Θ and fundamental modules. Finally, we show that there is a covariant functor between the category of Γ -hypermodules and the category of modules.

2. Preliminaries

The purpose of this section is to introduce the basic concepts of algebraic hypergroups and Γ -hyperrings. First we shall present the fundamental definitions. Let *H* be a non-empty set and let $\mathscr{P}^*(H)$ be the set of all non-empty subsets of *H*. A hyperoperation on *H* is a map $\circ : H \times H \longrightarrow \mathscr{P}^*(H)$ and the couple (H, \circ) is called a hypergroupoid. If *A* and *B* are non-empty subsets in *H*, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \ \{x\} \circ A = x \circ A \text{ and } B \circ \{x\} = B \circ x.$$

A hypergroupoid (H, \circ) is called a *semihypergroup* if for all a, b, c in H we have $(a \circ b) \circ c = a \circ (b \circ c)$. In addition, if for every $a \in H$, $a \circ H = H = H \circ a$, then (H, \circ) is called a *hypergroup*. A non-empty subset K of a semihypergroup (H, \circ) is called a *subsemihypergroup* if it is a semihypergroup. In other words, a non-empty subset K of a semihypergroup (H, \circ) is a subsemihypergroup if $K \circ K \subseteq K$.

Definition 2.1. A Krasner hyperring is an algebraic structure $(R, +, \cdot)$ which satisfies the following axioms:

- (1) (R,+) is a canonical hypergroup, i.e.,
 - (i) for every $x, y, z \in R$, x + (y + z) = (x + y) + z,
 - (ii) for every, $x, y \in R$, x + y = y + x,
 - (iii) there exists $0 \in R$ such that 0 + x = x, for every $x \in R$,
 - (iv) for every $x \in R$ there exists a unique element $x' \in R$ such that $0 \in x + x'$,
 - (v) $z \in x + y$, implies that $x \in z y$ and $y \in -x + z$.
- (2) Relating to the multiplication, (R, \cdot) is a semigroup having zero as a bilaterally absorbing element.
- (3) The multiplication is distributive with respect to the hyperoperation +.

Definition 2.2. [9] Let *R* be a commutative semihypergroup and Γ be a commutative group. Then, *R* is called a Γ -semihyperring if there exists a map $R \times \Gamma \times R \longrightarrow \mathscr{P}^*(R)$ (image to be denoted by $a\alpha b$ for $a, b \in R$ and $\alpha \in \Gamma$) satisfying the following conditions:

- (1) $a\alpha(b+c) = a\alpha b + a\alpha c$,
- (2) $(a+b)\alpha c = a\alpha c + b\alpha c$,
- (3) $a(\alpha + \beta)c = a\alpha c + a\beta c$,
- (4) $a\alpha(b\beta c) = (a\alpha b)\beta c$,

for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$

In this definition if (R,+) and $(\Gamma,+)$ are canonical hypergroups, then R is called Γ -hyperring.

Definition 2.3. [22] Let (R, \oplus, Γ) be a Γ -hyperring and (M, \oplus) be a canonical hypergroup. *M* is called Γ -hypermodule over *R* if there exists a mapping $f : R \times \Gamma \times M \longrightarrow M$ (the image of (r, α, m) being denoted by $r\alpha m$) such that, for all $r_1, r_2 \in R$, $m_1, m_2 \in M$ and $\alpha, \beta \in \Gamma$, we have

- (1) $r_1 \alpha(m_1 + m_2) = r_1 \alpha m_1 + r_1 \alpha m_2$,
- (2) $(r_1+r_2)\alpha m_1 = r_1\alpha m_1 + r_2\alpha m_1$,
- (3) $r_1(\alpha + \beta)m_1 = r_1\alpha m_1 + r_1\beta m_1$,
- (4) $r_1\alpha(r_2\beta m_1) = (r_1\alpha r_2)\beta m_1.$

A subset M_1 in M is said to be a Γ -subhypermodule of M if it satisfies the following conditions:

(1) M_1 is a subhypergroup of M;

(2) $r\alpha m_1 \in M_1$, for all $r \in R, \alpha \in \Gamma, m_1 \in M_1$.

Let *M* and *R* be the additive commutative canonical hypergroup of all $m \times n$ matrices over the canonical hypergroup *G* and Γ be the additive commutative canonical hypergroup of all $n \times m$ matrices over the same set. Then, *M* is a Γ -hypermodule if $a\alpha b$ denotes the usual matrix product of $a; \alpha; b$, where $a \in R$, $\alpha \in \Gamma$ and $b \in M$. In this example, $M_1 = \{(x_{ij}) : x_{1j} = 0, j = 1, 2, ..., m\}$ and $M_2 = \{(x_{ij}) : x_{i1} = 0, i = 1, 2, ..., m\}$ are Γ -subhypermodules of *M*.

A Γ -subhypermodule M_1 of M is called *normal* if $m + M_1 - m \subseteq M_1$, for all $m \in M$.

3. General *Γ*-hypermodules

In this section we introduce a new type of hypermodule in which both addition and multiplication are hyperoperations, that satisfy a set of conditions and we extended the isomorphism theorems to general Γ -hypermodules. Also, it is observer that if N is a normal Γ -subhypermodule, then the quotient $[M : N^*]$ considered in the isomorphism theorems by Zhan *et al.* [22] are groups.

Let (R, \oplus, Γ) be a Γ -hyperring, (M, +) be a canonical hypergroup and $\widehat{\Gamma} = \{\widehat{\alpha} : \alpha \in \Gamma\}$ be a canonical hypergroup with respect the hyperoperation $\widehat{\alpha} \oplus \widehat{\beta} = \alpha + \beta$ where $\alpha, \beta \in \Gamma$. Then, *M* is called *general left* $\widehat{\Gamma}$ *hypermodule* if there exists a hyperoperation $R \times \widehat{\Gamma} \times M \longrightarrow \mathscr{P}^*(M)$ (the image $(r, \widehat{\alpha}, m)$ being denoted by $r\widehat{\alpha}m$) such that for every $r_1, r_2 \in R, m_1, m_2 \in M$ satisfies the following conditions:

(i)
$$r_1\widehat{\alpha}(m_1+m_2) = r_1\widehat{\alpha}m_1 + r_1\widehat{\alpha}m_2$$
,
(ii) $(r_1+r_2)\widehat{\alpha}m_2 = r_1\widehat{\alpha}m_1 + r_1\widehat{\alpha}m_2$,

(ii)
$$(r_1 + r_2)\alpha m_1 = r_1\alpha m_1 + r_2\alpha m_1$$

(iii)
$$r_1(\alpha \oplus \beta)m_1 = r_1\alpha m_1 + r_1\beta m_1$$
,

(iv)
$$(r_1 \alpha r_2)\beta m_1 = r_1 \widehat{\alpha} (r_2 \beta m_1)$$

(v) $0 \in 0 \hat{\alpha} m \cap r \hat{\alpha} 0$, for every $r \in R$ and $m \in M$.

Throughout this paper, by a $\widehat{\Gamma}$ -hypermodule we mean a general $\widehat{\Gamma}$ -hypermodule.

Example 3.1. Let (M, +) be a Γ -module and M_1 be a Γ -submodule of M. We define the hyperoperation on M as follows:

$$m_1\widehat{\alpha}m_2=m_1\alpha m_2+M_1$$

Then, *M* is a $\widehat{\Gamma}$ -hypermodule.

Example 3.2. Let *R* be a Γ -hyperring and *I* be an ideal of *R*. Then, *I* is a Γ -hypermodule under the hyperoperation $\odot : R \times \Gamma \times I \longrightarrow \mathscr{P}^*(I)$, such that $(r, \gamma, a) \longrightarrow r\gamma a$.

Example 3.3. Let *R* be a Γ -hyperring and R[x] be the set of all polynomial over *R*. Then, R[x] is a Γ -hypermodule under the following hyperoperation:

$$\begin{cases} R \times \Gamma \times R[x] & \longrightarrow R[x] \\ \left(r, \alpha, \sum_{i=1}^{n} a_i x^i\right) & \longrightarrow \left\{\sum_{i=1}^{n} c_i x^i : c_i \in r \alpha a_i\right\}. \end{cases}$$

Example 3.4. Let *M* be a Γ -hypermodule and $N \subseteq M$. Then, $N\Gamma^{\Sigma}M$ is a Γ -hypermodule with respect the following hyperoperations:

$$\begin{cases} R \times \Gamma \times N\Gamma^{\Sigma}M & \longrightarrow \mathscr{P}^*(N\Gamma^{\Sigma}M) \\ \left(r, \alpha, \sum_{i=1}^n n_i \alpha_i m_i\right) & \longrightarrow \left\{\sum_{i=1}^n n_i \alpha_i c_i : c_i \in r \alpha m_i\right\}. \end{cases}$$

Example 3.5. Let R_1 and R_2 be a Γ -hyperrings and M be a left Γ -hypermodule over R_1 and right Γ -hypermodule over R_2 . Then,

$$T = \left\{ \left[\begin{array}{cc} r_1 & m \\ 0 & r_2 \end{array} \right] : r_1 \in R_1, m \in M, r_2 \in R_2 \right\},$$

is a Γ -hyperring and Γ -hypermodule under following hyperoperation:

$$\begin{pmatrix} T \times T \times T & \longrightarrow \mathscr{P}^*(T) \\ \begin{pmatrix} r_1 & m_1 \\ 0 & r_2 \end{pmatrix}, \gamma, \begin{bmatrix} s_1 & m_2 \\ 0 & s_2 \end{bmatrix} \end{pmatrix} \longrightarrow \left\{ \begin{bmatrix} t_1 & t_2 \\ 0 & t_3 \end{bmatrix} : t_1 \in r_1 \gamma s_1, t_2 \in r_1 \gamma m_1 + m_2 \gamma s_2, t_3 \in r_2 \gamma s_2 \right\}$$

Definition 3.1. Let X be a subset of M and $\{M_i : i \in J\}$ be a family of all $\widehat{\Gamma}$ -subhypermodule of M which contain X. Then, $\bigcap_{i \in J} M_i$ is called the $\widehat{\Gamma}$ -hypermodule generated by X and denoted by $\langle X \rangle$. If $X = \{m_1, m_2, \dots, m_n\}$, then the $\widehat{\Gamma}$ -hypermodule $\langle X \rangle$ denoted by $\langle m_1, m_2, \dots, m_n \rangle$.

Proposition 3.1. Let X be a non-empty subset of M. Then, $\langle x \rangle = \{x \in M : x \in \mathbb{Z}X + R\widehat{\Gamma}^{\Sigma}X\}$, where

$$\mathbb{Z}X = \left\{ x \in M : x \in \sum_{i=1}^{n} n_i x_i, \ n \in \mathbb{N}, n_i \in \mathbb{Z}, \ x_i \in X \right\},\$$

and

$$R\widehat{\Gamma}^{\Sigma}X = \left\{ x \in M : x \in \sum_{i=1}^{n} r_i \widehat{\alpha}_i x_i, \ n \in \mathbb{N}, \ \alpha_i \in \Gamma, \ x_i \in X \right\}.$$

Proof. The proof is straightforward.

Definition 3.2. Let M_1 and M_2 be $\widehat{\Gamma}_1$ - and $\widehat{\Gamma}_2$ -hypermodules, respectively. A map $\varphi : M_1 \longrightarrow M_2$ is called a homomorphism if there exist a homomorphism $f : \widehat{\Gamma}_1 \longrightarrow \widehat{\Gamma}_2$ and a homomorphism $g : R_1 \longrightarrow R_2$ such that

(i)
$$\varphi(m_1 + m_2) = \varphi(m_1) + \varphi(m_2)$$
,

(ii)
$$\varphi(r\widehat{\alpha}m) = g(r)f(\widehat{\alpha})\varphi(m).$$

Definition 3.3. Let *M* be a $\widehat{\Gamma}$ -hypermodule and ρ be an equivalence relation on *M*. Then, ρ is called

- (i) regular if for all $m \in M$, $\alpha \in \Gamma$ and $r \in R$, $m_1 \rho m_2$ implies that $(r \widehat{\alpha} m_1) \overline{\rho}(r \widehat{\alpha} m_2)$ and $(m_1 + m) \overline{\rho}(m_2 + m)$.
- (ii) strongly regular if for all $m_1, m_2 \in M$, $\alpha \in \Gamma$ and $r \in R$ implies that $(r\widehat{\alpha}m_1)\overline{\overline{\rho}}(r\widehat{\alpha}m_2)$ and $(m_1 + m)\overline{\overline{\rho}}(m_2 + m)$.
- (iii) additive strong regular if and only if for all $m \in M$ and $m_1 \in M$, $m_1\rho m_2$ implies that $(m+m_1)\rho(m+m_2)$.

Proposition 3.2. Let ρ be an equivalence relation on *M*.

(i) If ρ is regular, then [M : ρ] is a Γ-hypermodule, with respect to the following hyperoperation:

$$\rho_1(m_1) \oplus \rho_1(m_2) = \{\rho(m) : m \in m_1 + m_2\}, \ \rho_3(r) \widehat{\rho_2}(\widehat{\alpha}) \rho_1(m) = \{\rho(t) : t \in r \widehat{\alpha} m\},$$

where ρ_1 and ρ_2 are regular relations on Γ and R, respectively.

(ii) The equivalence relation ρ is strongly regular if and only if $[R : \rho]$ is a $\widehat{\Gamma}$ -module.

Proof. The proof is straightforward.

Let φ be a homomorphism from $\widehat{\Gamma}_1$ -hypermodule M_1 into a $\widehat{\Gamma}_2$ -hypermodule M_2 . Then, the set $\{x \in M_1 : \varphi(x) = 0\}$ is called *Kernel* of φ and is denoted by *Ker* φ and the set $\{\varphi(x) : x \in M_1\}$ is called *image* of φ and denoted by $Im\varphi$.

Suppose that *N* is a $\widehat{\Gamma}$ -subhypermodule of *M*. In this section, we define quotient $[M : N^*]$ and prove that when *N* is normal the hyperaddition in $[M : N^*]$ is operation.

Suppose that *N* is a $\widehat{\Gamma}$ -subhypermodule of *M*. We define the relation N^* by

$$x \equiv y \iff x \in N + y.$$

Proposition 3.3. Let N be a $\widehat{\Gamma}$ -subhypermodule of M. Then, \equiv is an equivalence relation on M.

Proof. Suppose that $x \in M$. Since $x = x + 0 \in x + N$, the relation \equiv is reflexive. Let $x, y \in M$ such that $x \equiv y$. Then, $x \in y + n$, for some $n \in N$. Hence, $y \in x - n \subseteq x + N$. So, \equiv , is symmetric relation. Let $x, y, z \in M$ such that $x \equiv y$ and $y \equiv z$. Then, $x \in y + n_1$ and $y \in z + n_2$ for some $n_1, n_2 \in N$. So, $x \in y + n_1 \subseteq z + n_1 + n_2 \subseteq z + N$. Therefore, the relation \equiv is transitive. This completes the proof.

Proposition 3.4. Let N be a normal $\widehat{\Gamma}$ -subhypermodule. Then, for every $x, y \in M$, following statements are equivalent:

- (1) $y \in x + N$,
- (2) $x y \subseteq N$,
- (3) $(x-y) \cap N \neq \emptyset$.

Proof. (1) \Longrightarrow (2). Since $y \in x + N$ and N is normal, we have $y - x \subseteq x + N - x \subseteq N$. Hence, $y - x \subseteq N$ and $x - y = -(y - x) \subseteq N$.

 $(2) \Longrightarrow (3)$. Obvious.

(3) \Longrightarrow (1). Since $(x-y) \cap N \neq \emptyset$, there exists $n \in N$ such that $n \in x-y$. Thus, $-y+x \subseteq -y+n+y \subseteq N$. Let $z \in -y+x$. Then, $z \in N$. This implies that $-y \in z-x$ and $y \in x-z \subseteq x+N$.

Let *N* be a Γ -subhypermodule of *M*. Then, equivalence relation defined by J. Zhan *et al.* [22], coincide with the following equivalence relation:

$$xN^*y(modN) \iff x - y \subseteq N.$$

Definition 3.4. Let M be a Γ -hypermodule defined by Zhan [22] and N be a Γ -subhypermodule of M. We define $\Omega(N) = \{x \in M : x - x \subseteq N\}$.

Proposition 3.5. Let N be a Γ -subhypermodule of M. Then, $\Omega(N)$ is a Γ -subhypermodule of M and for every $x, y \in \Omega(<0>)$, x + y is singleton.

Proof. Suppose that $x, y \in \Omega(N)$ and $r \in R$. Since, N is a Γ -subhypermodule, $\Omega(N)$ is nonempty. Let $s \in x - y$ and $s_1 \in r\widehat{\alpha}x$. Then, $s - s \subseteq (x - y) - (x - y) = (x - x) + (y - y) \subseteq N$. Therefore, $\Omega(N)$ is a Γ -subhypermodule. Let $x, y \in \Omega(\{0\})$. If $a, b \in x + y$, then $a - b \subseteq (x + y) - (x + y) = (x - x) + (y - y) = 0$. Hence, a = b. This means that x + y is singleton.

Corollary 3.1. Let M be a Γ -hypermodule. Then, (M, +) is an abelian group if and only if $\Omega(\{0\}) = M$.

Corollary 3.2. Let N be a Γ -subhypermodule. Then, N is normal if and only if $\Omega(N) = M$.

Proposition 3.6. Let *M* be a Γ -hypermodule and there exist $r \in R$ and $m \in \Omega(\{0\})$ such that $|r\alpha m| = 1$. Then, $|0\alpha 0| = 1$.

Proof. we have $r\hat{\alpha}0 = r\hat{\alpha}(m-m) = r\hat{\alpha}m - r\hat{\alpha}m$. On the other hand $0\hat{\alpha}0 \subseteq (r-r)\hat{\alpha}0 = r\hat{\alpha}0 - r\hat{\alpha}0$. This implies that $|0\hat{\alpha}0| = 1$.

Remark 3.1. Let *M* be a general Γ -hypermodule and *N* be a normal Γ -subhypermodule of *M*. Then, the zero element $\{N\}$ is normal and by Proposition 3.6, the hyperoperation $R\widehat{\Gamma}M$ is a operation.

Proposition 3.7. Let N be a Γ -subhypermodule of M and

$$F(M) = \left\{ x \in M : x \in \sum_{i=1}^{n} (x_i - x_i), \text{ for some, } n \in \mathbb{N}, x_i \in M \right\}.$$

Then, F(M) is a subcanonical hypergroup of M and N is normal if and only if $F(M) \subseteq N$. Moreover, F(M) is a $\widehat{\Gamma}$ -subhypermodule.

Proof. Suppose that $x, y \in F(M)$. Hence, $x \in \sum_{i=1}^{n} (x_i - x_i)$ and $y \in \sum_{j=1}^{m} (y_j - y_j)$. Then

$$x-y \subseteq \sum_{i=1}^{n} (x_i - x_i) + \sum_{j=1}^{m} (y_j - y_j) \subseteq F(M).$$

This implies that F(M) is a subcanonical hypergroup of M. Let M be a $\widehat{\Gamma}$ -hypermodule and $r \in R$. Then,

$$r\widehat{\alpha}x = r\widehat{\alpha}\sum_{i=1}^{n} (x_i - x_i) = \sum_{i=1}^{n} (r\widehat{\alpha}x_i - r\widehat{\alpha}x_i) \subseteq F(M),$$

Hence F(M) is a $\widehat{\Gamma}$ -subhypermodule.

Now, for any $x \in F(M)$ and $m \in M$, there exist $n \in \mathbb{N}$, $x_i \in M$ such that $x \in \sum_{i=1}^n (x_i - x_i)$. Hence, $m + x - m \subseteq m - m + \sum_{i=1}^n (x_i - x_i)$. Thus, F(M) is a normal subcanonical hypergroup of M. Let N be a normal $\widehat{\Gamma}$ of M. Then, for all $m \in M$, $n \in N$, we have $m + n - m \subseteq$ N. This implies that $m - m \subseteq N$. Since, N is a $\widehat{\Gamma}$ -subhypermodule of M, for all $m_i \in M$, $\sum_{i=1}^n (m_i - m_i) \subseteq N$, for every $n \in \mathbb{N}$. This implies that $F(M) \subseteq N$.

Conversely, assume that $F(M) \subseteq N$. Then for every $m \in M$ and $n \in N$, $m + n - m = m - m + n \subseteq F(M) + n \subseteq F(M) + N \subseteq N$. Therefore, N is a normal $\widehat{\Gamma}$ -hypermodule.

Proposition 3.8. Let N_1 and N_2 be two $\widehat{\Gamma}$ -subhypermodule of M such that $N_1 \subseteq N_2$ and N_1 is normal. Then, N_2 is also normal.

Proof. Suppose that N_1 is normal. Then, by Corollary 3.2, $\Omega(N_1) = M$. This implies that $\Omega(N_2) = M$ and by Corollary 3.2, N_2 is normal.

Corollary 3.3. Let < 0 > is a normal $\widehat{\Gamma}$ -hypermodule. Then, all $\widehat{\Gamma}$ -subhypermodule of M are normal.

Theorem 3.1. The Γ -subhypermodule generated by $\{0\}$ of M is normal if and only if M is an abelian group and F(M) = <0 > if and only if (M, +) is a abelian group.

Proof. By Corollary 3.1, (M, +) is abelian group if and only if $\Omega(<0>) = M$ and by Corollary 3.2, $\Omega(<0>) = M$ if and only if <0> is a normal Γ -subhypermodule of M. Hence, (M, +) is an abelian group if and only if <0> is normal.

By Proposition 3.7, F(M), is smallest normal subcanonical hypergroup of (M, +). Therefore, < 0 > is normal if and only if F(M) = < 0 >.

Remark 3.2. Let *N* be a $\widehat{\Gamma}$ -subhypermodule of *M*. By Theorem 3.1, all $\widehat{\Gamma}$ -subhypermodule of *M* are normal if and only if (M, +) is an abelian group. For the quotient $\widehat{\Gamma}$ -hypermodule

 $[M: N^*]$, the zero element $\{N\}$ is normal. On the other hand if N is a normal $\widehat{\Gamma}$ -subhypermodule, then the relation defined by Zhan *et al.* [22], is additive strong regular.

Theorem 3.2. (First Isomorphism Theorem).

Let ψ be a homomorphism from a $\widehat{\Gamma}_1$ -hypermodule M_1 into a $\widehat{\Gamma}_2$ -hypermodule M_2 . Then, $[M_1 : Ker \psi^*]$ is isomorphic to $Im \psi$.

Proof. Suppose that $\varphi : [M_1 : Ker \psi^*] \longrightarrow Im \psi$ by $\varphi(K^*(m)) = \psi(m)$, for all $m \in M$, where $K = Ker \psi$. Let $K^*(m_1) = K^*(m_2)$, where $m_1, m_2 \in M_1$. This implies that $m_1 \in m_2 + k$, for some $k \in K$. Hence,

$$\varphi(m_1) \in \varphi(m_2 + k) = \varphi(m_1) + \varphi(k) = \varphi(m_2) + 0 = \varphi(m_2).$$

So $\varphi(m_1) = \varphi(m_2)$. Thus, φ is well defined. If $m_1, m_2 \in M_1$, then

$$\begin{aligned} \varphi(K^*(m_1) + K^*(m_2)) &= \varphi(\{K^*(m) : m \in m_1 + m_2\}) &= \{\varphi(K^*(m)) : m \in m_1 + m_2\} \\ &= \{\varphi(m) : m \in m_1 + m_2\} \\ &= \varphi(K^*(m_1)) + \varphi(K^*(m_2)). \end{aligned}$$

$$\varphi(r\widehat{\alpha}K^*(m)) = \varphi(\{K^*(m_1) : m_1 \in r\widehat{\alpha}m\}) = \{\psi(m_1) : m_1 \in r\widehat{\alpha}m\} = r\widehat{\alpha}\varphi(K^*(m)).$$

Hence, ψ is homomorphism. One can see that φ is one to one and onto. Therefore, φ is a isomorphism.

Theorem 3.3. (Second Isomorphism Theorem)

Let M_1 and M_2 be $\widehat{\Gamma}_1$ – and $\widehat{\Gamma}_2$ – hypermodules. Then,

 $[M_1: (M_1 \cap M_2)^*] \cong [M_1 + M_2: M_2^*].$

Proof. By the First isomorphism, proof is straightforward.

Theorem 3.4. (Third Isomorphism Theorem)

If M_1 and M_2 be $\widehat{\Gamma}$ -subhypermodule of M, such that $M_1 \subseteq M_2$, then

$$[M: M_2^*] \cong [[M: M_1^*]: [M_2: M_1]^*].$$

Proof. By the First isomorphism theorem, proof is straightforward.

I

4. Fundamental modules and Θ relation

The category $G\Gamma M$ of general Γ - hypermodules in which the objects are Γ -hypermodules. For Γ_1 - and Γ_2 - hypermodule M_1 and M_2 respectively, $Mor(M_1, M_2)$, are epimorphism from M_1 to M_2 and Mod is the category of all modules. The purpose of this section is to introduce the concept of fundamental modules and T- functor. First we shall present the fundamental definitions.

We define the relation β as follows:

$$a\beta b$$
 if and only if $a, b \subseteq u$,

where *u* is a finite sum of finite hyperproduct of *R* and *M*. On the other hand, $u \in U$, where

$$U = \left\{ x \in M : x \in \sum_{i=1}^n x_i + \sum_{j=1}^m \prod_{i=1}^{n_i} r_{ji} \widehat{\alpha}_{ji} y_{ji}, \ n, m, n_i \in \mathbb{N}, \ r_{ji} \in R, y_{ji} \in M, \alpha_{ji} \in \Gamma \right\}.$$

We denote the transitive closure of β by β^* . The equivalence relation β^* is called *fundamental equivalence relation* on *M*. We denote the equivalence class of the element $m \in M$ by $\beta^*(m)$. Let γ^* and v^* be fundamental relations on *R* and Γ , respectively. We define

$$[M:\Gamma] = \left\{ \Theta_1 \left(\prod_{i=1}^n (\beta^*(m_i), \mathbf{v}^*(\alpha_i)) \right) : m_i \in M, \alpha_i \in \Gamma, n \in \mathbb{N} \right\},\$$

where the relation Θ_1 defined as follows:

$$\left(\prod_{i=1}^n (\beta^*(m_i), \mathbf{v}^*(\alpha_i)), \prod_{j=1}^m (\beta^*(n_j), \mathbf{v}^*(\beta_j))\right) \in \Theta_1,$$

if and only if

$$\bigoplus_{i=1}^{n} \gamma^{*}(a) \widehat{\mathbf{v}^{*}(\alpha_{i})} \beta^{*}(m_{i}) = \bigoplus_{j=1}^{m} \gamma^{*}(a) \widehat{\mathbf{v}^{*}(\beta_{j})} \beta^{*}(n_{j}).$$

for every $\gamma^*(a) \in [R : \gamma^*]$. Obviously, this relation is congruence on $[M : \Gamma]$. We define congruence class contain $\prod_{i=1}^n (\beta^*(m_i), \mathbf{v}^*(\alpha_i))$ by $\Theta_1\left(\prod_{i=1}^n (\beta^*(m_i), \mathbf{v}^*(\alpha_i))\right)$. Suppose that

$$[R:\Gamma] = \left\{ \prod_{i=1}^{n} (\mathbf{v}^*(\alpha_i), \gamma^*(x_i)) : \alpha_i \in \Gamma, n \in \mathbb{N}, x_i \in R \right\}.$$

We define a relation Θ_2 on $[R : \Gamma]$ as follows:

$$\left(\prod_{i=1}^{n}(\boldsymbol{v}^{*}(\boldsymbol{\alpha}_{i}),\boldsymbol{\gamma}^{*}(\boldsymbol{x}_{i})),\prod_{j=1}^{m}(\boldsymbol{v}^{*}(\boldsymbol{\alpha}_{j}),\boldsymbol{\gamma}^{*}(\boldsymbol{y}_{j}))\right)\in\Theta_{2}$$

if and only if

$$\bigoplus_{i=1}^{n} \gamma^{*}(a) \widehat{\boldsymbol{v}^{*}(\boldsymbol{\alpha}_{i})} \gamma^{*}(x_{i}) = \bigoplus_{j=1}^{m} \gamma^{*}(a) \widehat{\boldsymbol{v}^{*}(\boldsymbol{\beta}_{j})} \gamma^{*}(y_{j}),$$

for every $\gamma^*(a) \in [R : \gamma^*]$. Obviously, this relation is congruence and $[R : \Gamma]$ form a ring with the following multiplication:

$$\Theta_2\left(\prod_{i=1}^n (\mathbf{v}^*(\alpha_i), \gamma^*(x_i))\right) \Theta_2\left(\prod_{j=1}^m \left(\mathbf{v}^*(\beta_j), \gamma^*(y_j)\right)\right) = \Theta_2\left(\prod_{i,j} (\mathbf{v}^*(\alpha_i), \gamma^*(x_i)\widehat{\mathbf{v}^*(\beta_j)}\gamma^*(y_j))\right).$$

Obviously, $[M : \Gamma]$ is a $[R : \Gamma]$ -module with respect the following operation:

$$\Theta_2\left(\prod_{i=1}^n (\mathbf{v}^*(\alpha_i), \gamma^*(x_i))\right) \Theta_1\left(\prod_{j=1}^m (\mathbf{v}^*(\beta_j), \beta^*(m_j))\right) = \Theta_1\left(\prod_{i,j} (\mathbf{v}^*(\alpha_i), \gamma^*(x_i)\widehat{\mathbf{v}^*(\beta_j)}\beta^*(m_j))\right).$$

This operation is well defined. Indeed, suppose that

This operation is well-defined. Indeed, suppose that

$$\Theta_2\left(\prod_{i=1}^{n_1}(\boldsymbol{v}^*(\boldsymbol{\alpha}_i),\boldsymbol{\gamma}^*(x_i))\right) = \Theta_2\left(\prod_{j=1}^{n_2}(\boldsymbol{v}^*(\boldsymbol{\alpha}_j),\boldsymbol{\gamma}^*(y_j))\right),$$

and

$$\Theta_1\left(\prod_{r=1}^{m_1}(\mathbf{v}^*(\beta_r),\beta^*(m_r))\right) = \Theta_1\left(\prod_{s=1}^{m_2}(\mathbf{v}^*(\beta_s),\beta^*(m_s))\right).$$

This implies that

$$\sum_{i=1}^{n_1} \gamma^*(x) \widehat{\mathbf{v}^*(\alpha_i)} \gamma^*(x_i) = \sum_{j=1}^{n_2} \gamma^*(x) \widehat{\mathbf{v}^*(\alpha_j)} \gamma^*(y_j),$$

and

$$\sum_{r=1}^{m_1} \gamma^*(y) \widehat{\nu^*(\beta_r)} \beta^*(m_r) = \sum_{s=1}^{m_2} \gamma^*(y) \widehat{\nu^*(\beta_s)} \beta^*(m_s)$$

for every $\gamma^*(x), \gamma^*(y) \in [R : \gamma^*]$. Hence,

$$\sum_{i,r} \gamma^*(x) \widehat{\nu^*(\alpha_i)} \gamma^*(x_i) \widehat{\nu^*(\beta_r)} \beta^*(m_r) = \sum_{s,j} \gamma^*(x) \widehat{\nu^*(\alpha_j)} \gamma^*(y_j) \widehat{\nu^*(\beta_s)} \beta^*(m_s)$$

for every $\gamma^*(x) \in [R : \gamma^*]$. This implies that

$$\Theta_1\left(\prod_{i,r} \mathbf{v}^*(\alpha_i), \boldsymbol{\gamma}^*(x_i)\widehat{\mathbf{v}^*(\beta_r)}\boldsymbol{\beta}^*(m_r)\right) = \Theta_1\left(\prod_{j,s} (\boldsymbol{\gamma}^*(\alpha_j), \boldsymbol{\gamma}^*(y_j)\widehat{\mathbf{v}^*(\beta_s)}\boldsymbol{\beta}^*(m_s))\right).$$

Theorem 4.1. Let M be a $\widehat{\Gamma}$ -hypermodule, γ^* , ν^* , β^* be fundamental relations on R, Γ and M, respectively. Then, $[M : \beta^*]$ is a $[R : \gamma^*]$ -module.

Proof. Suppose that $m_1, m_2 \in M$, $r \in R$ and $\alpha \in \Gamma$. We define

$$\beta^*(m_1) \oplus \beta^*(m_2) = \{\beta^*(m) : m \in \beta^*(m_1) + \beta^*(m_2)\},\$$

$$\gamma^*(r) \odot \boldsymbol{\nu}^*(\boldsymbol{\gamma}) \odot \beta^*(m) = \{\beta^*(m) : m \in \gamma^*(r) \boldsymbol{\nu}^*(\boldsymbol{\gamma}) \beta^*(m)\}.$$

Let $m'_1 \in \beta^*(m_1)$ and $m'_2 \in \beta^*(m_2)$. Then, we have $m'_1\beta^*m_1$ if and only if there exist $x_1, x_2, \ldots, x_{n+1}$ with $x_1 = m'_1, x_{n+1} = m_1$ and $u_1, u_2, \ldots, u_n \in U$ such that $\{x_i, x_{i+1}\} \subseteq u_i$, for $1 \le i \le n$ and $m'_2 \in \beta^*(m_2)$ if and only if $y_1, y_2, \ldots, y_{t+1}$ with $y_1 = m'_2, y_{t+1} = m_2$ and $v_1, v_2, \ldots, v_n \in U_M$ such that $\{y_j, y_{j+1}\} \subseteq v_j$. Now, we obtain

$$\{x_i, x_{i+1}\} + y_1 \subseteq u_i + v_1, x_{n+1} + \{y_j, y_{j+1}\} \subseteq u_n + v_j.$$

The sums $u_i + v_1 = t_i$, $1 \le i \le m - 1$ and $u_m + v_j = t_{m+j-1}$, $1 \le j \le n$ are polynomial and so $t_k \in U$ for all $k \in \{1, 2, ..., n+t-1\}$. Now, pick up the elements $z_1, z_2, ..., z_{n+t}$ such that $z_i \in x_i + y_1$, $1 \le i \le n$ and $z_{m+j} \in x_{n+1} + y_{j+1}$. Hence we obtain $\{z_k, z_{k+1}\} \subseteq t_k$ for $1 \le k \le$ m+n-1. Therefore, every element $z_1 \in x_1 + y_1 = m'_1 + m'_2$ is β^* equivalent to every element $z_{m+n} \in m_{n+1} + m_{m+1}$. Then, $\beta^*(m_1) \oplus \beta^*(m_2) = \beta^*(m)$, for all $m \in \beta^*(m_1) + \beta^*(m_2)$ $m \in \beta^*(m_1) + \beta^*(m_2)$. In a same way, it prove that $\gamma^*(r) \odot v^*(\gamma) \odot \beta^*(m) = \beta^*(d)$, for $d \in$ $\gamma^*(r)v^*(\gamma)\beta^*(m)$. For any $\beta^*(m_1), \beta^*(m_2) \in [M : \beta^*], \gamma^*(r) \in [R : \gamma^*]$ and $v^*(\gamma) \in [\Gamma : v^*]$, we have

$$\begin{split} &\beta^*(m) \in \gamma^*(r) \odot \mathbf{v}^*(\gamma) \odot (\beta^*(m_1) \oplus \beta^*(m_2)) \\ \iff &m \in \gamma^*(r) \mathbf{v}^*(\gamma) (\beta^*(m_1) + \beta^*(m_2)) \\ \iff &m \in \gamma^*(r) \mathbf{v}^*(\gamma) \beta^*(m_1) + \gamma^*(r) \mathbf{v}^*(\gamma) \beta^*(m_2) \\ \iff &\beta^*(m) \in \gamma^*(r) \mathbf{v}^*(\gamma) \beta^*(m_1) + \gamma^*(r) \mathbf{v}^*(\gamma) \beta^*(m_2). \end{split}$$

The proof of other property are similar.

Theorem 4.2. Let M_1 and M_2 be $\widehat{\Gamma}$ -hypermodules, respectively, and $\psi : M_1 \longrightarrow M_2$ be a epimorphism. Then, there exists a $[R : \gamma^*]$ -module homomorphism $\overline{\psi} : [M_1 : \Gamma] \longrightarrow [M_2 : \Gamma]$. Moreover, if ψ is an isomorphism then, $\overline{\psi}$ is isomorphism.

Proof. We define

$$\overline{\psi}\left(\Theta_1\left(\prod_{i=1}^n(\boldsymbol{v}^*(\boldsymbol{\alpha}_i),\boldsymbol{\beta}^*(m_i))\right)\right) = \Theta_1\left(\prod_{i=1}^n(\boldsymbol{v}^*(\boldsymbol{\alpha}_i),\boldsymbol{\beta}^*(\boldsymbol{\psi}(m_i))\right)$$

First we prove that ψ is well-defined. Let

$$\Theta_1\left(\prod_{i=1}^n(\boldsymbol{v}^*(\boldsymbol{\alpha}_i),\boldsymbol{\beta}^*(m_i))\right)=\Theta_1\left(\prod_{j=1}^m(\boldsymbol{v}^*(\boldsymbol{\delta}_j),\boldsymbol{\beta}^*(n_j))\right).$$

We define

$$\begin{array}{ll} \Lambda: ([\Gamma: \boldsymbol{v}^*], [M_1: \boldsymbol{\beta}^*]) & \longrightarrow ([\Gamma: \boldsymbol{v}^*], [M_2: \boldsymbol{\beta}^*]) \\ (\boldsymbol{v}^*(x), \boldsymbol{\beta}^*(m_1)) & \longrightarrow (\boldsymbol{v}^*(x), \boldsymbol{\beta}^*(\boldsymbol{\psi}(m_1))) \end{array}$$

Let $(\gamma^*(y), \beta^*(m_1)) = (\gamma^*(y), \beta^*(m_2))$. Then, there exist x_1, x_2, \dots, x_n such that $x_1 = m_1, x_n = m_2$ and $u_1, u_2, \dots, u_n \in U$ such that $\{x_i, x_{i+1}\} \subseteq u_i$. Since, ψ is a homomorphism $\beta^*(x_i) = \beta^*(x_{i+1})$. This implies that Λ is well-defined. We have Λ is a homomorphism. Because

$$\Lambda(\beta^*(m_1)\oplus\beta^*(m_2))=\Lambda(\beta^*(m_3))$$

for some $m_3 \in \beta^*(m_1) + \beta^*(m_2)$. We know that $\beta^*(m_3) = \beta^*(m)$, for some $m \in m_1 + m_2$. Hence,

$$\Lambda(\beta^*(m_1)\oplus\beta^*(m_2))=\beta^*(m)=\Lambda(\beta^*(m_1))\oplus\Lambda(\beta^*(m_2)).$$

In a same way, we can see that

$$\begin{split} \Lambda(\gamma^*(x)\widehat{\nu^*}(\alpha)\widehat{\beta^*}(m)) &= \{\Lambda(t) : t \in x\widehat{\alpha}y\} \\ &= \beta^*(\chi\widehat{\alpha}\psi(m)) \\ &= \gamma^*(x)\widehat{\nu^*(\alpha)}\beta^*(\psi(m)). \end{split}$$

Hence,

$$\bigoplus_{i=1}^{n} \gamma^{*}(x) \widehat{\boldsymbol{\nu}^{*}(\alpha_{i})} \beta^{*}(\boldsymbol{\psi}(m_{i})) = \bigoplus_{j=1}^{m} \gamma^{*}(x) \widehat{\boldsymbol{\nu}^{*}(\delta_{j})} \beta^{*}(n_{j}).$$

Since ψ is onto,

$$\overline{\psi}\left(\Theta_1\left(\prod_{i=1}^n(\boldsymbol{v}^*(\boldsymbol{\alpha}_i),\boldsymbol{\beta}^*(m_i)\right)\right)=\overline{\psi}\left(\Theta_1\left(\prod_{j=1}^m(\boldsymbol{v}^*(\boldsymbol{\delta}_j),\boldsymbol{\beta}^*(n_j)\right)\right).$$

This implies that ψ is well-defined. ψ is a homomorphism. Indeed,

$$\begin{split} &\overline{\psi}\left(\Theta_{1}\left(\prod_{i=1}^{n}(\mathbf{v}^{*}(\alpha_{i}),\beta^{*}(m_{i}))\right)\oplus\Theta_{1}\left(\prod_{j=1}^{m}(\mathbf{v}^{*}(\beta_{j}),\beta^{*}(n_{j}))\right)\right)\\ &=\overline{\psi}\left(\Theta_{1}\left(\prod_{i=1}^{n}\prod_{j=1}^{m}(\mathbf{v}^{*}(\alpha_{i}),\beta^{*}(m_{i}))(\mathbf{v}^{*}(\beta_{j}),\beta^{*}(n_{j}))\right)\right)\\ &=\Theta_{1}\left(\prod_{i=1}^{n}\prod_{j=1}^{m}(\mathbf{v}^{*}(\alpha_{i}),\beta^{*}(\psi(m_{i})))(\mathbf{v}^{*}(\beta_{j}),\beta^{*}(\psi(n_{j})))\right)\\ &=\overline{\psi}\left(\Theta_{1}\left(\prod_{i=1}^{n}(\mathbf{v}^{*}(\alpha_{i}),\beta^{*}(m_{i}))\right)\right)\oplus\overline{\psi}\left(\Theta_{1}\left(\prod_{j=1}^{m}(\mathbf{v}^{*}(\beta_{j}),\beta^{*}(n_{j}))\right)\right)\end{split}$$

$$\overline{\psi}\left(\Theta_1\left(\prod_{i=1}^n(\boldsymbol{v}^*(\boldsymbol{\alpha}_i),\boldsymbol{\gamma}^*(x_i))\right)\Theta_1\left(\prod_{j=1}^m(\boldsymbol{v}^*(\boldsymbol{\beta}_j),\boldsymbol{\beta}^*(n_j))\right)\right)$$
$$=\overline{\psi}\left(\Theta_1\left(\prod_{i,j}(\boldsymbol{v}^*(\boldsymbol{\alpha}_i),\boldsymbol{\gamma}^*(x_i)\widehat{\boldsymbol{v}^*(\boldsymbol{\beta}_j)}\boldsymbol{\beta}^*(n_j))\right)\right).$$

Hence, for $d_{ij} \in x_i \beta_j n_j$, $\gamma^*(x_i) \widehat{\gamma^*}(\widehat{\beta_j}) \beta^*(n_j) = \beta^*(d_{ij})$. This implies that

$$\overline{\psi}\left(\Theta_2\left(\prod_{i=1}^n(\mathbf{v}^*(\alpha_i),\gamma^*(x_i))\right)\Theta_1\left(\prod_{j=1}^m(\mathbf{v}^*(\beta_j),\beta^*(n_j))\right)\right) = \Theta_1\left(\prod_{i,j}(\mathbf{v}^*(\alpha_i),\beta^*(\psi(d_{ij}))\right).$$

On the other hand,

$$\Theta_{2}\left(\prod_{i=1}^{n}(\boldsymbol{v}^{*}(\boldsymbol{\alpha}_{i}),\boldsymbol{\gamma}^{*}(\boldsymbol{x}_{i}))\right)\overline{\boldsymbol{\psi}}\left(\Theta_{1}\left(\prod_{j=1}^{m}(\boldsymbol{v}^{*}(\boldsymbol{\beta}_{j}),\boldsymbol{\beta}^{*}(\boldsymbol{n}_{j}))\right)\right)$$
$$=\Theta_{2}\left(\prod_{i=1}^{n}(\boldsymbol{v}^{*}(\boldsymbol{\alpha}_{i}),\boldsymbol{\gamma}^{*}(\boldsymbol{x}_{i}))\right)\left(\Theta_{1}\left(\prod_{j=1}^{m}(\boldsymbol{v}^{*}(\boldsymbol{\beta}_{j}),\boldsymbol{\beta}^{*}(\boldsymbol{\psi}(\boldsymbol{n}_{j})))\right)\right)$$
$$=\Theta_{1}\left(\prod_{i,j}(\boldsymbol{v}^{*}(\boldsymbol{\alpha}_{i}),\boldsymbol{\gamma}^{*}(\boldsymbol{x}_{i})\widehat{\boldsymbol{v}^{*}(\boldsymbol{\beta}_{j})}\boldsymbol{\gamma}^{*}(\boldsymbol{\psi}(\boldsymbol{n}_{j})))\right)=\Theta_{1}\left(\prod_{i,j}(\boldsymbol{v}^{*}(\boldsymbol{\alpha}_{i}),\boldsymbol{\beta}^{*}(\boldsymbol{c}_{ij})\right)$$

where $c_{ij} \in x_i \beta_j \psi(n_j)$. Thus, ψ is a $[R : \gamma^*]$ -module homomorphism. Let ψ is an isomorphism. We prove that $\overline{\psi}$ is isomorphism. It is enough to prove that ψ is one to one. Firstly, we prove that Λ is one to one. Let

$$\Lambda(\gamma^*(x_1),\beta^*(m_1))=\Lambda(\gamma^*(x_2),\beta^*(m_2)).$$

Then, $\beta^*(\psi(m_1)) = \beta^*(\psi(m_2))$. Hence, there exist $y_1, y_2, \ldots, y_{m+1} \in M_2$ and $u_i \in U_{M_2}$, for $i \in \{1, 2, \ldots, m\}$, such that $y_1 = \psi(m_1)$ and $y_{m+1} = \psi(m_2)$ and $\{y_i, y_{i+1}\} \subseteq u_i$, for $i \in \{1, 2, \ldots, m\}$. So, there exist $v_i \in U_{M_1}$ and $x_i \in M_1$ such that $\psi(x_i) = y_i$, for $i \in 1, 2, \ldots, m$ and $\{x_i, x_{i+1}\} \subseteq v_i$, for $i \in \{1, 2, \ldots, m\}$. So, $\beta^*(m_1) = \beta^*(m_2)$ and Λ is one to one. Obviously, Λ is onto. Let

$$\overline{\psi}\left(\Theta_1\left(\prod_{i=1}^n(\mathbf{v}^*(x_i),\boldsymbol{\beta}^*(m_i))\right)\right)=\overline{\psi}\left(\Theta_1\left(\prod_{j=1}^m(\mathbf{v}^*(y_j),\boldsymbol{\beta}^*(n_j))\right)\right).$$

Then,

$$\bigoplus_{i=1}^{n} \gamma^{*}(x) \widehat{\boldsymbol{\nu}^{*}(x_{i})} \beta^{*}(\boldsymbol{\psi}(m_{i})) = \bigoplus_{j=1}^{m} \gamma^{*}(x) \widehat{\boldsymbol{\nu}^{*}(y_{j})} \beta^{*}(\boldsymbol{\psi}(n_{j})).$$

This implies that

$$\Lambda\left(\bigoplus_{i=1}^{n}\gamma^{*}(x)\widehat{\nu^{*}(x_{i})}\beta^{*}(m_{i})\right)=\Lambda\left(\bigoplus_{j=1}^{m}\gamma^{*}(x)\widehat{\nu^{*}(y_{j})}\beta^{*}(n_{j})\right),$$

which implies that

$$\bigoplus_{i=1}^{n} \gamma^*(x) \widehat{\mathbf{v}^*(x_i)} \beta^*(m_i) = \bigoplus_{j=1}^{m} \gamma^*(x) \widehat{\mathbf{v}^*(y_j)} \beta^*(n_j),$$

for every $\gamma^*(x) \in [R : \gamma^*]$. Therefore, $\overline{\psi}$ is an isomorphism.

Proposition 4.1. Let M and Γ be canonical hypergroups and σ_1 and σ_2 be regular relations on M and Γ , respectively, such that $[M : \sigma_1]$ is a $[R : \sigma_3]$ -modules, where R is a Γ -hyperring and σ_3 is a regular relation on R. Then, M is a general Γ -hypermodule.

Proof. Suppose that the hyperoperation * defined as follows:

$$*: R \times \Gamma \times M \longrightarrow P^*(M)$$

$$r * \alpha * m \longrightarrow \sigma_3(r) \sigma_2(\alpha) \sigma_1(m)$$

We prove that $r * \alpha * (m_1 + m_2) = r * \alpha * m_1 + r * \alpha * m_2$. We know that $r * \alpha * (m_1 + m_2) = \{r * \alpha * m : m \in m_1 + m_2\}$. Let $m \in m_1 + m_2$. Then, $\sigma_1(m) = \sigma_1(m_1) + \sigma_1(m_2)$ and we have

$$\sigma_3(r) * \sigma_2(\alpha) * \sigma_1(m) = \sigma_3(r)\sigma_2(\alpha)\sigma_1(m) = \sigma_3(r)\sigma_2(\alpha)(\sigma_1(m_1) + \sigma_1(m_2))$$

$$\sigma_3(r)\sigma_2(\alpha)\sigma_1(m_1) + \sigma_3(r)\sigma_2(\alpha)\sigma_1(m_2) = r * \alpha * m_1 + r * \alpha * m_2$$

Thus, $r * \alpha * (m_1 + m_2) \subseteq r * \alpha * m_1 + r * \alpha * m_2$. Now, let

$$\sigma_1(m) = \sigma_3(r)\sigma_2(\alpha)\sigma_1(m_1) + \sigma_3(r)\sigma_2(\alpha)\sigma_1(m_2) = \sigma_3(r)\sigma_2(\alpha)(\sigma_1(m_1) + \sigma_1(m_2))$$

Then, there exists $\sigma_1(m_3) \in \sigma_1(m_1) + \sigma_1(m_2)$ such that $\sigma_1(m) = \sigma_3(r)\sigma_2(\alpha)\sigma_1(m_3) = r * \alpha * m_3 \subseteq r * \alpha * (m_1 + m_2)$. Hence, $r * \alpha * m_1 + r * \alpha * m_2 \subseteq r * \alpha * (m_1 + m_2)$. Therefore, $r * \alpha * m_1 + r * \alpha * m_2 = r * \alpha * (m_1 + m_2)$. In a same way, we can prove another properties. Therefore, *M* is a Γ -module.

Theorem 4.3. Let M_1 and M_2 be $\widehat{\Gamma}_1$ - and $\widehat{\Gamma}_2$ -hypermodules. Then, $[M_1 \times M_2 : \Gamma_1 \times \Gamma_2] \cong [M_1 : \Gamma_1] \times [M_2 : \Gamma_2].$

Proof. Suppose that β^* , β_1^* and β_2^* be fundamental relations on $M_1 \times M_2$, M_1 and M_2 , respectively. It is easy to see that

$$[M_1 \times M_2 : \boldsymbol{\beta}^*] \cong [M_1 : \boldsymbol{\beta}_1^*] \times [M_2 : \boldsymbol{\beta}_2^*].$$

We define

$$\begin{split} \psi &: [M_1 \times M_2 : \Gamma_1 \times \Gamma_2] \longrightarrow [M_1 : \Gamma_1] \times [M_2 : \Gamma_2] \\ \Theta \left(\prod_{i=1}^n ((\mathbf{v}_1^*(x_i), \mathbf{v}_2^*(y_i)), (\boldsymbol{\beta}_1^*(m_i), \boldsymbol{\beta}_2^*(n_i))) \right) \\ \longrightarrow \left(\Theta_1 \left(\prod_{i=1}^n (\mathbf{v}_1^*(x_i), \boldsymbol{\beta}_1^*(m_i)) \right), \Theta_2 \left(\prod_{i=1}^n (\mathbf{v}_2^*(y_i), \boldsymbol{\beta}_2^*(n_i)) \right) \right) \end{split}$$

Obviously, this function is well-defined. We proof ψ is a homomorphism.

$$\begin{split} &\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i}))\right)\Theta\left(\prod_{j=1}^{m}((\mathbf{v}_{1}^{*}(x_{j}^{'}),\mathbf{v}_{2}^{*}(y_{j}^{'})),(\beta_{1}^{*}(m_{j}^{'}),\beta_{2}^{*}(n_{j}^{'}))\right)\right)\\ &=\psi\left(\Theta\left(\prod_{i,j}(\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{1}^{*}(d_{i}),\gamma_{2}^{*}(s_{i})\widehat{\mathbf{v}_{2}^{*}(y_{j}^{'})}\beta_{2}^{*}(n_{j}^{'}))\right)\right)\\ &=\psi\left(\Theta\left(\prod_{i,j}(\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(c_{i}),\gamma^{*}(d_{i}))\right)\right)\\ &=\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i}))\right)\right)\psi\left(\Theta\left(\prod_{j=1}^{m}((\mathbf{v}_{1}^{*}(x_{j}^{'}),\mathbf{v}_{2}^{*}(y_{j}^{'})),(\beta_{1}^{*}(m_{j}^{'}),\beta_{2}^{*}(n_{j}^{'}))\right)\right))\\ &=\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i}))\right)\right)\psi\left(\Theta\left(\prod_{j=1}^{m}((\mathbf{v}_{1}^{*}(x_{j}^{'}),\mathbf{v}_{2}^{*}(y_{j}^{'})),(\beta_{1}^{*}(m_{j}^{'}),\beta_{2}^{*}(n_{j}^{'}))\right)\right))\\ &=\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i}))\right)\right)\psi\left(\Theta\left(\prod_{j=1}^{m}((\mathbf{v}_{1}^{*}(x_{j}^{'}),\mathbf{v}_{2}^{*}(y_{j}^{'})),(\beta_{1}^{*}(m_{j}^{'}),\beta_{2}^{*}(n_{j}^{'}))\right)\right)\right)\\ &=\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i}))\right)\right)\psi\left(\Theta\left(\prod_{j=1}^{m}((\mathbf{v}_{1}^{*}(x_{j}^{'}),\mathbf{v}_{2}^{*}(y_{j}^{'})),(\beta_{1}^{*}(m_{j}^{'}),\beta_{2}^{*}(n_{j}^{'}))\right)\right)\right)\\ &=\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i}))\right)\right)\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}^{'}),\mathbf{v}_{2}^{*}(y_{i}^{'})),(\beta_{1}^{*}(y_{i}^{'}),\beta_{2}^{*}(y_{i}^{'}))\right)\right)\right)\\ &=\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(x_{i}),\mathbf{v}_{2}^{*}(y_{i})),(\gamma_{1}^{*}(t_{i}),\gamma_{2}^{*}(s_{i}))\right)\right)\psi\left(\Theta\left(\prod_{i=1}^{n}((\mathbf{v}_{1}^{*}(y_{i}^{'}),\mathbf{v}_{2}^{*}(y_{i}^{'})),(\beta_{1}^{*}(y_{i}^{'}),\beta_{2}^{*}(y_{i}^{'}),(\beta_{1}^{*}(y_{i}^{'}),\beta_{2}^{*}(y_{i}^{'}))\right)\right)$$

where $c_{ij} \in \gamma_1^*(t_i) v_1^*(x'_j) \beta_1^*(m'_j)$ and $d_{ij} \in \gamma_2^*(s_i) v_2^*(y'_j) \beta_2^*(n'_j)$. This completes the proof.

Theorem 4.4. There exists a covariant functor between the category of $\widehat{\Gamma}$ -hypermodules and the category of modules.

Proof. Suppose that M_1 , M_2 and M_3 be $\widehat{\Gamma}$ -hypermodules. We define $T(M_1) = [M_1 : \Gamma]$, $T(M_2) = [M_2 : \Gamma]$ and $T(M_3) = [M_3 : \Gamma]$. Let $\psi_1 : M_1 \longrightarrow M_2$ and $\psi_2 : M_2 \longrightarrow M_3$ be homomorphisms. We define $T(\psi_1) = \overline{\psi}_1$, $T(\psi_2) = \overline{\psi}_2$ and $T(\psi_3) = \overline{\psi}_3$. Then, for $\Theta_1 \left(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(m_i))\right) \in [M_1 : \Gamma]$, we have $\overline{\psi}_2 \circ \overline{\psi}_1 \left(\Theta_1 \left(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(m_i))\right)\right) = \Theta_3 \left(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\psi_2 \circ \psi_1(m_i))\right)$

$$\Psi_2 \circ \Psi_1 \left(\Theta_1 \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(m_i)) \right) \right) = \Theta_3 \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\Psi_2 \circ \Psi_1(m_i))) \right)$$
$$= \Theta_3 \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\Psi_2(\Psi_1(m_i)))) \right)$$

Thus, $T(\psi_2 \circ \psi_1) = T(\psi_2) \circ T(\psi_1)$. On the other hand, if Id_M is an identity homomorphism, then T(Id) is an identity homomorphism. Therefore, T is a covariant functor.

5. Conclusion

In this paper, we have considered the general Γ -hypermodules as a generalization of Γ -hypermodules, as a generalization of Γ -modules and as a generalization of modules. In particular, we have given three isomorphism theorems of general Γ -hypermodules and we have discussed about Θ relations on general Γ -hypermodules. Also we show that there is a covariant functor between the category of general Γ -hypermodules and the category of modules. A possible future study could be devoted to the introduction and analysis of (m, n)- ary Γ -hypermodules.

Acknowledgement. The authors are highly grateful to referees and Professor Rosihan Ali, Editor-in-Chief, for their valuable comments and suggestions for improving the paper.

References

- S. M. Anvariyeh, S. Mirvakili and B. Davvaz, On Γ-hyperideals in Γ-semihypergroups, *Carpathian J. Math.* 26 (2010), no. 1, 11–23.
- [2] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411–422.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
- [4] P. Corsini and V. Leoreanu, *Applications of Hyperstructure Theory*, Advances in Mathematics (Dordrecht), 5, Kluwer Acad. Publ., Dordrecht, 2003.
- [5] B. Davvaz, Isomorphism theorems of polygroups, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 385-392.
- [6] B. Davvaz and M. Karimian, On the γ_n^* -complete hypergroups, European J. Combin. 28 (2007), no. 1, 86–93.
- [7] B. Davvaz and V. Leoreanu-Fotea, *Hyperring Theory and Applications*, International Academic Press, USA 2007.
- [8] S. O. Dehkordi and B. Davvaz, A strong regular relation on Γ-semihyperrings, J. Sci. Islam. Repub. Iran 22 (2011), no. 3, 257–266, 293.
- [9] S. O. Dehkordi and B. Davvaz, Γ-semihyperrings: Approximations and rough ideals, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 1035–1047.
- [10] S. O. Dehkordi and B. Davvaz, Γ-semihyperrings: Ideals, homomorphisms and regular relations, preprint.
- [11] D. Freni, Une note sur le cœur d'un hypergroupe et sur la cl' oture transitive β^* de β , *Riv. Mat. Pure Appl.* (1991), no. 8, 153–156.
- [12] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, *Comm. Algebra* 30 (2002), no. 8, 3977–3989.

- [13] H. M. Jafarabadi, N. H. Sarmin and M. R. Molaei, Completely simple and regular semi hypergroups, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 335–343.
- [14] M. Koskas, Groupoïdes, demi-hypergroupes et hypergroupes, J. Math. Pures Appl. (9) 49 (1970), 155-192.
- [15] S. Kyuno, On prime gamma rings, *Pacific J. Math.* **75** (1978), no. 1, 185–190.
- [16] J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969), 65–75.
- [17] F. Marty, Sur une generalization de la notion de group, 8th Congres Math. Scandinaves (1934), 45-49.
- [18] W. Prenowitz and J. Jantosciak, Join Geometries, Springer, New York, 1979.
- [19] S. Spartalis and V. Vougiouklis, The fundamental relations on H_v-rings, Riv. Math. Pura. 13 (1994), 7–20.
- [20] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Monographs in Mathematics, Hadronic Press, Palm Harbor, FL, 1994.
- [21] T. Vougiouklis, Groups in hypergroups, in Combinatorics '86, Ann. Discrete Math. 37 (1986), 459-467.
- [22] J. Zhan and I. Cristea, Γ-Hypermodules: Isomorphisms and regular relations, *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.* 73 (2011), no. 4, 71–78.
- [23] J. M. Zhan, B. Davvaz and K. P. Shum, Isomorphism theorems for hypermodules, Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 4, 909–914.
- [24] J. Zhan, S. Sh. Mousavi and M. Jafarpour, On hyperactions of hypergroups, *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.* 73 (2011), no. 1, 117–128.