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1. Introduction

Hypergroups were introduced in 1934 by a French mathematician Marty [17] at the 8"
Congress of Scandinavian Mathematicians. Since then, hundreds of papers and several
books have been written set on this topic. Nowadays, hyperstructures have a lot of appli-
cations to several domains of mathematics and computer science [18, 20]. One of the first
books, dedicated especially to hypergroups, is “Prolegomena of Hypergroup”, written by
Corsini in 1993 [3]. A recent book [4] on hyperstructures points out on their applications in
cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and
hypergraphs. Another book [7] is devoted especially to the study of hyperring theory; sev-
eral kinds of hyperrings are introduced and analyzed, and the volume ends with an outline
of applications in chemistry and physics, analyzing several special kinds of hyperstructures:
e-hyperstructures and transposition hypergroups. As an extension of index a subgroup in a
group, the theory of index of a subhypergroup in a hypergroup has been recently developed
by Zhan et al. [24] and generalized orbit-stabilizer theorem by them. Also Jafarabadi et al.
[13] introduced the notions of simple and completely simple semi hypergroups.

The fundamental relation B* was introduced on hypergroup by Koskas [14] for the first
time and studied by many author, for example see [3, 6, 12, 21]. The fundamental relation
B*is defined on hypergroups are smallest equivalence relation so that the quotient would be
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a group. Let H be a hypergroup and U be the set of all finite products of elements of H and
define the relation § on H as follows:

xPy <= {x,y} Cu, forsomeu € U.

Freni [11] proved in that for hypergroups we have * = 3.

Vougiouklis in [20] defined the fundamental relation y on hyperring R as the smallest
equivalence relation on R such that the quotient [R : ¥*] is aring. Let (R, +, ) be a hyperring.
Vougiouklis defined the relation y as follows:

ayb <= {a,b} Cu,

where u is a finite sum of finite products elements of R and proved that ¥* is the transitive
closure of y. The fundamental equivalence relation extended to some classes of hyperrings
by Spartalis and Vougiouklis [19].

In [23] Zhan et al. have considered three isomorphism theorems and the Jordan Holder
theorem for hypermodules. Moreover, a fundamental theorem of hypermodules was estab-
lished by them. Also Davvaz [5] generalized the classical isomorphism theorems of groups
to polygroups. By using a certain type of equivalence relations, we can connect general
I'-hypermodule to I'’-hypermodule. These equivalence relations are called strong regular re-
lations. More exactly, starting with a general I'-hypermodule and using regular relation, we
can construct a I'-module structure on the quotient set. Let M be a general I'-hypermodule
and p be an equivalence relation on M, M| and M; be non-empty subsets of M. Then,
M pM, meanies that for every m| € M| there exists my € M, such that m;pm; and MlﬁMg
meanies that for every m; € M| and my € M, mipmy.

In 1964, Nobusawa introduced I'-rings as a generalization of rings. Barnes [2] weak-
ened slightly the conditions in the definition of I'-ring in the sense of Nobusawa. Barnes
[2], Luh [16] and Kyuno [15] studied the structure of I'-rings and obtained various gen-
eralization analogous to corresponding parts in ring theory. Recently, Anvariyeh et al.[1]
discussed the basic properties of I'-hyperideals in I'-semihypergroups. After that, Dehkordi
et al. 8,9, 10] investigated the ideals, rough ideals, homomorphisms and regular relations
of I'-semihyperrings.

The plan of this paper is the following: in the next section, we are introduced and ana-
lyzed the isomorphism theorems to general I'-hypermodule. Also, it is observed that if N is
a normal I'-subhypermodules, then ([M : N*], @) is an abelian group. In Sec.3, we introduce
a relation ® and fundamental modules. Finally, we show that there is a covariant functor
between the category of I'-hypermodules and the category of modules.

2. Preliminaries

The purpose of this section is to introduce the basic concepts of algebraic hypergroups and
I'-hyperrings. First we shall present the fundamental definitions. LetH be a non-empty
set and let &2*(H) be the set of all non-empty subsets of H. A hyperoperation on H is a
map o : Hx H— Z7*(H) and the couple (H,o) is called a hypergroupoid. If A and B are
non-empty subsets in H, then we denote

AoB= U aob, {x}oA=x0Aand Bo{x} =Boux.
acA,beB
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A hypergroupoid (H, o) is called a semihypergroup if for all a, b, c in H we have (aob) o
¢=ao(boc). In addition, if for every a € H, ao H = H = H oa, then (H, o) is called a hy-
pergroup. A non-empty subset K of a semihypergroup (H, o) is called a subsemihypergroup
if it is a semihypergroup. In other words, a non-empty subset K of a semihypergroup (H, o)
is a subsemihypergroup if Ko K C K.

Definition 2.1. A Krasner hyperring is an algebraic structure (R,+,-) which satisfies the
following axioms:
(1) (R,+) is a canonical hypergroup, i.e.,
(i) foreveryx,y,z€R x+(y+z)=(x+y)+z
(ii) forevery, x,y €ER x+y=y+x,
(iii) there exists O € R such that 0+ x = x, for every x € R,
(iv) for every x € R there exists a unique element x €R such that0 € x+x,
(v) z€x+y, implies thatx € z—yandy € —x+z.
(2) Relating to the multiplication, (R,-) is a semigroup having zero as a bilaterally
absorbing element.
(3) The multiplication is distributive with respect to the hyperoperation +.

Definition 2.2. [9] Let R be a commutative semihypergroup and I be a commutative group.
Then, R is called a T-semihyperring if there exists a map R x ' x R — Z7*(R) (image to
be denoted by aab for a,b € R and o € ') satisfying the following conditions:

(1) aa(b+c) =aab+aac,

(2) (a+b)oc=aac+bac,

(3) a(la+B)c=aac+afc,

4) aa(bBc) = (aad)Pec,
foralla,b,c e Rand o, €T

In this definition if (R,+) and (I',+) are canonical hypergroups, then R is called I'-
hyperring.

Definition 2.3. [22] Let (R,®,T) be a I'-hyperring and (M,®) be a canonical hypergroup.
M is called T'-hypermodule over R if there exists a mapping f : R X I' x M — M(the image
of (r,a,m) being denoted by ram) such that, for all ri,ry € R, m;,my € M and &, € T,
we have

(1) rla(ml +m2) =riomy +ri0omy,

2) (}’1 +r2)06m1 =rjom; +ryomy,

3) rl(OC —|—[3)m1 =ram;+ rlﬁml,

@) ria(rfm) = (riarz)Bm.

A subset M| in M is said to be a I'-subhypermodule of M if it satisfies the following

conditions:
(1) M is a subhypergroup of M;
(2) ram; e My, forallre R,ax € I',m; € M.

Let M and R be the additive commutative canonical hypergroup of all m x n matrices over
the canonical hypergroup G and I be the additive commutative canonical hypergroup of all
n X m matrices over the same set. Then, M is a I'-hypermodule if acth denotes the usual
matrix product of a;o;b, where a € R, a € I and b € M. In this example, M; = {(x;;) :
x1j=0,j=12,...,m} and M> = {(x;;) : x1 =0,i = 1,2,...,m} are I'-subhypermodules
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of M.
A T'-subhypermodule M| of M is called normal if m+M; —m C M, for allm € M.

3. General I'-hypermodules

In this section we introduce a new type of hypermodule in which both addition and mul-
tiplication are hyperoperations, that satisfy a set of conditions and we extended the iso-
morphism theorems to general I'-hypermodules. Also, it is observer that if N is a normal
I'-subhypermodule, then the quotient [M : N*] considered in the isomorphism theorems by
Zhan et al. [22] are groups.

Let (R,®,T) be a [-hyperring, (M, +) be a canonical hypergroup and I' = {@ : o € T'}
be a canonical hypergroup with respect the hyperoperation & & E =a+ B where a,f €T.
Then, M is called general left r hypermodule if there exists a hyperoperation R x IxM—s
22*(M)(the image (r, &, m) being denoted by rom ) such that for every ry,r, € R, my,m; €
M satisfies the following conditions:

(1) rla(nﬂ +my)=nr omy +ridmy,
(i) (}’1 + rzlaml =r &ml + rggml,
(ii1) rl(&GBﬁA)ml =r am1j—r1ﬁm1,
(iv) (rlarz)ﬁml/\: ra(r.fmy).
(v) 0 € 0amnra0, forevery r € Rand m € M.
Throughout this paper, by a lA"—hypermodule we mean a general f-hypermodule.

Example 3.1. Let (M,+) be a I'-module and M| be a I-submodule of M. We define the
hyperoperation on M as follows:

mQnmy = myamy + M.
Then, M is a lA“—hypermodule.

Example 3.2. Let R be a I'-hyperring and / be an ideal of R. Then, [ is a I'-hypermodule
under the hyperoperation ® : R x I' x I — 97*(I), such that (r,y,a) — rya.

Example 3.3. Let R be a I'-hyperring and R[x] be the set of all polynomial over R. Then,
RI[x] is a [-hypermodule under the following hyperoperation:

RXxT xR[x] — R[x|

n n
(r, o, Za,x’) — {Zcixl i¢ € r(xa,} .
i=1 i=1

Example 3.4. Let M be a I-hypermodule and N C M. Then, NTXM is a I'- hypermodule
with respect the following hyperoperations:

RxT xNIEM — 2*(NTEM)
n n
(r, o, Zn,a,m,) — {Zl’liaici S rOtm,} .
i=1 i=1

Example 3.5. Let R; and R, be a I'’-hyperrings and M be a left ["-hypermodule over R and
right I'-hypermodule over R,. Then,

TH r(; " } r ERl,mEM,rzeRz},
rn
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is a I'-hyperring and I'-hypermodule under following hyperoperation:
TxTxT — Z%T)

rom v sy my N 1 i L1 € FLYs1 b € FLYmy +maYsa, 1y € 1 Ys
0 n ' 0 s 0 13 |LENBLRENYM 2752,13 €122 (-

Definition 3.1. Let X be a subset of M and {M; : i € J} be a family of all f-subhypermodule
of M which contain X. Then, (\;c;M; is called the f‘-hypermodule generated by X and
denoted by < X >. If X = {m,my,...,m,}, then the T-hypermodule < X > denoted by
<mp,my,...,my >.

Proposition 3.1. Let X be a non-empty subset of M. Then, <x >= {x eEM:xeZX +Rf2X},
where

n
ZX{xeM:ern,»x,», neN,n€Z, x,»eX},
i=1
and
e n
RILX ={xeM:x€ Zr,'&ixi, neN,ogel, x;,cX .
i=1

Proof. The proof is straightforward. 1

Definition 3.2. Let M, and M, be T'\- and fz-hypermodules, respectively. A map ¢ : M; —
M, is called a homomorphism if there exist a homomorphism f : 'y — 'y and a homo-
morphism g : R| — Ry such that

(@) @(my +m2) = @(m) +@(my),

(i) @(ram)=g(r)f(a)p(m).

Definition 3.3. Let M be a f‘—hypermodule and p be an equivalence relation on M. Then,
p is called
(i) regular if for allm € M, o € T and r € R, mypmy implies that (roim; )p(ramy) and
(my +m)p(my +m). B
(ii) strongly regular if for allmy,my € M, o € T and r € R implies that (raimy)p (ramy)
and (my +m)p (my +m).
(iii) additive strong regular if and only if for all m € M and m; € M, m1pmy implies
that (m+my)p(m+my).

Proposition 3.2. Let p be an equivalence relation on M.

(i) If p is regular, then [M : p]is a f‘-hypermodule, with respect to the following hy-
peroperation:

p1(m1) & p1(mz) = {p(m) :m € my +ma}, p3(r)p2()p1(m) = {p(t) : 1 € rotm},
where py and p;y are regular relations on T and R, respectively.
(ii) The equivalence relation p is strongly regular if and only if [R : p] is a T'-module.

Proof. The proof is straightforward. 1

Let ¢ be a homomorphism from f] - hypermodule M into a fz-hypermodule M,. Then,
the set {x € M) : @(x) = 0} is called Kernel of ¢ and is denoted by Ker¢ and the set
{@(x) : x € M1} is called image of ¢ and denoted by Ime.
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Suppose that N is a f‘—subhypermodule of M. In this section, we define quotient [M : N*|
and prove that when N is normal the hyperaddition in [M : N*] is operation.
Suppose that N is a I'-subhypermodule of M. We define the relation N* by

X=y<=xeN+y.

Proposition 3.3. Let N be a f—subhypermodule of M. Then, = is an equivalence relation
onM.

Proof. Suppose that x € M. Since x =x+0 € x+ N, the relation = is reflexive. Letx,y € M
such that x =y. Then, x € y+n, for some n € N. Hence, yc x—n Cx+N. So, =, is
symmetric relation. Let x,y,z € M such thatx =y and y=z. Then,x € y+njandy € z+ny
for some ny,ny € N. So, x € y+n; C z+n; +ny C z+ N. Therefore, the relation = is
transitive. This completes the proof. 1

Proposition 3.4. Let N be a normal f-subhypermodule. Then, for every x,y € M, following
statements are equivalent:

(1) yex+N,

(2) x—yCN,

3) (x—y)NN #£0.
Proof. (1)=(2). Sincey € x+ N and N is normal, we have y—x C x+N —x C N. Hence,
y—xCNandx—y=—(y—x) CN.
(2) = (3). Obvious.
(3) = (1). Since (x —y) NN # 0, there exists n € N such that n € x —y. Thus, —y+x C
—y+n+yCN. Letz € —y+x. Then, z € N. This implies that -y € z—xandyex—z C
xX+N. 1

Let N be a I'-subhypermodule of M. Then, equivalence relation defined by J. Zhan et al.

[22], coincide with the following equivalence relation:

xN*y(modN) <= x—y CN.
Definition 3.4. Let M be a T'-hypermodule defined by Zhan [22] and N be a T
-subhypermodule of M . We define Q(N) ={xe M :x—x C N}.
Proposition 3.5. Let N be a T'-subhypermodule of M. Then, Q(N) is a I'-subhypermodule
of M and for every x,y € Q(< 0 >), x+ is singleton.

Proof. Suppose that x,y € Q(N) and r € R. Since, N is a I'-subhypermodule, Q(N) is non-
empty. Let s € x—y and 51 € rax. Then,s—s C (x—y) — (x—y) = (x—x)+ (y—y) CN.
Therefore, Q(N) is a I'-subhypermodule. Let x,y € Q({0}). If a,b € x+y, thena—b C
(x+y)—(x+y) = (x—x)+ (y—y) =0. Hence, a = b. This means that x+y is singleton. 1

Corollary 3.1. Let M be a T'-hypermodule. Then, (M,+) is an abelian group if and only if
o({0}) = M.

Corollary 3.2. Let N be a I'-subhypermodule. Then, N is normal if and only if Q(N) = M.

Proposition 3.6. Let M be a T'-hypermodule and there exist r € R and m € Q({0}) such
that | rom |= 1. Then,| 000 |= 1.

Proof. we have ra0 = ra(m —m) = ram — rdm. On the other hand 000 C (r — )00 =
ra0 — ra0. This implies that | 00 |= 1. |
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Remark 3.1. Let M be a general I-hypermodule and N be a normal I'-subhypermodule of
M. Then, the zero element {N} is normal and by Proposition 3.6, the hyperoperation RTM
is a operation.

Proposition 3.7. Let N be a I'-subhypermodule of M and

F(M)= {xEM xGZ ), for some, n € N, x,EM}
i=1

Then, F(M) is a subcanonical hypergroup of M and N is normal if and only if F(M) C N.

Moreover, F (M) is a I'-subhypermodule.

Proof. Suppose that x,y € F(M). Hence, x € 1| (x; —x;) and y € Y7 (y; — ;). Then

n

—yC —X; —i—Z F(M).
l=1

This implies that F (M) is a subcanonical hypergroup of M. Let M be a f-hypermodule and
r € R. Then,

~

rox =ro

M=
=

(% —x;) =

1 i

(rox; —rotx;) C F(M),

I
-

i

Hence F (M) is a I'-subhypermodule.

Now, for any x € F(M) and m € M, there existn € N, x; € M such thatx € Y7 | (x; — x;).
Hence, m+x—m Cm—m+Y}_,(x;—x;). Thus, F (M) is a normal subcanonical hypergroup
of M. Let N be a normal T of M. Then, for aﬂ meM,neN, wehave m+n—m C
N. This implies that m —m C N. Since, N is a I'-subhypermodule of M, for all m; € M,
Y (mj—m;) C N, for every n € N. This implies that F (M) C N.

Conversely, assume that F(M) C N. Then for every me M and n € N, m+n—m =
m—m+nC F(M)+nC F(M)+N C N. Therefore, N is a normal I'-hypermodule. 1

Proposition 3.8. Let N1 and N, be two f—subhypermodule of M such that N C N, and N,
is normal. Then, N> is also normal.

Proof. Suppose that N; is normal. Then, by Corollary 3.2, Q(N;) = M. This implies that
Q(N2) = M and by Corollary 3.2, N, is normal. 1

Corollary 3.3. Let < 0 > is a normal f-hypermodule. Then, all f—subhypermodule of M
are normal.

Theorem 3.1. The [-subhypermodule generated by {0} of M is normal if and only if M is
an abelian group and F(M) =< 0 > if and only if (M, +) is a abelian group.

Proof. By Corollary 3.1, (M,+) is abelian group if and only if Q(< 0 >) = M and by
Corollary 3.2, Q(< 0 >) = M if and only if < 0 > is a normal I'"-subhypermodule of M.
Hence, (M, +) is an abelian group if and only if < 0 > is normal.

By Proposition 3.7, F (M), is smallest normal subcanonical hypergroup of (M, +). There-
fore, < 0 > is normal if and only if F(M) =< 0 >. 1

Remark 3.2. Let N be a f-subhypermodule of M. By Theorem 3.1, all f-subhypermodule
of M are normal if and only if (M,+) is an abelian group. For the quotient I'-hypermodule



914 S. O. Dehkordi and M. Heidari

[M : N*], the zero element {N} is normal. On the other hand if N is a normal T'
-subhypermodule, then the relation defined by Zhan et al. [22], is additive strong regular.

Theorem 3.2. ( First Isomorphlsm Theorem).
Let y be a homomorphism from a r 1-hypermodule M, into a 1"2 -hypermodule M,. Then,
[M; : Kery™*] is isomorphic to Imy.

Proof. Suppose that @ : [M : Kery*] — Imy by @(K*(m)) = y(m), for all m € M, where
K = Kery. Let K*(m;) = K*(my), where m,my € M;. This implies that m; € my + k, for
some k € K. Hence,

@(m1) € @(my+k) = @(m1) + (k) = @(m2) +0 = @(m2).
So @(m;) = @(my). Thus, ¢ is well defined. If m;,my € M,, then

QK" (m1) +K*(my)) = ({K*(m) :m € my+mp}) = {@(K"(m)) :m e mi+ma}
={p(m):mem +my}
= @(K*(m1)) + @(K*(m2)).
o(raK*(m)) = @({K*(my) : my € ram}) = {y(my) : my € ram} = rae(K*(m)).
Hence, v is homomorphism. One can see that ¢ is one to one and onto. Therefore, ¢ is a
isomorphism. 1

Theorem 3.3. ( Second Isomorphism Theorem)
Let My and M be I'1— and I'y— hypermodules. Then,

[M] s (M ﬂMz)*] = [Ml + M, M;]
Proof. By the First isomorphism, proof is straightforward. 1

Theorem 3.4. ( Third Isomorphism Theorem)
If My and My be I"-subhypermodule of M, such that M| C M,, then

M : M3 [[M:M{]: [Mp: M]"].

Proof. By the First isomorphism theorem, proof is straightforward. 1

4. Fundamental modules and © relation

The category GI'M of general I'- hypermodules in which the objects are I'-hypermodules.
For I'1- and I';- hypermodule M, and M, respectively, Mor(M;,M), are epimorphism from
M, to M, and Mod is the category of all modules. The purpose of this section is to introduce
the concept of fundamental modules and 7'- functor. First we shall present the fundamental
definitions.

We define the relation 3 as follows:

aPb if and only if a,b C u,
where u is a finite sum of finite hyperproduct of R and M. On the other hand, u € U, where

m n;
U= {xEM xEleJrZHr],a,ly,l,nmn,EN rji €R,yji €M, aﬂEF}
i=1 j=li=1
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We denote the transitive closure of § by *. The equivalence relation §* is called funda-
mental equivalence relation on M. We denote the equivalence class of the element m € M
by B*(m). Let " and v* be fundamental relations on R and I, respectively. We define

[M : F] = {@1 (ﬁ(ﬁ*(m,),v*(a,))) mieM, o €l,ne N} ,
i=1

where the relation ®; defined as follows:
n m
[1B*(m N, [ T8 Bj)) | €©1,
i=1 j=1

if and only if
D7 (@v(ap( @y B (n)).

for every y*(a) € [R: ¥*]. Obviously, this relatlon is congruence on [M : I']. We define

n

congruence class contain H(ﬁ*(m,), v¥(oy)) by ©; (H(ﬁ*(ml), v*(ai))>. Suppose that

i=1 i=1
R:T]= {H(v*(ai),)/k(x,')) ro;el,ne Ny € R} .
i=1
We define a relation ®; on [R : T'] as follows:
n m
[T« xi), [J(v* yj)) | €0,
i=1 j=1

if and only if
GBV* @y v (B 0).

for every y*(a) € [R: Yk ] Obviously, this relatlon is congruence and [R : I'] form a ring with
the following multiplication:

o (ﬁ(v*(ao,mx,-))) 0 (ﬁl (v*(ﬁ,),ﬂy,»))) — 6, <H<v*<ai),f<xi>v/w\mw<yj>>> .
i= J= bl

Obviously, [M : T is a [R : T']-module with respect the following operation:
0, (ﬁ(v*(a»,w(xi))) o (ﬁ(v*(ﬁ,-),ﬁ*(m») o <H<v*<ai>7w<xi>vflmﬁ*<mj>>) .
i= j= i,j
This operation is well-defined. Indeed, suppose that
0, (H(V*(ai),f(xf))> =0, (H(V*(%),Y*(yj))> ,
i=1 j=1

and

6 (ﬁ(v*(ﬁr)ﬁ*(mr))) =0, (ﬁ(v*(ﬁs)ﬁ*(ms))) :
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This implies that

and
zlly*<y>v?ﬁr>ﬁ*<mr> - zzly*<y>v/%\ﬁs>ﬁ*<ms),
for every y*(x),v*(y) € [R: y*]. Hence,
Zf W ()7 (i) v (B) B ZY* W)Y () v (Be) B (my),

for every y*(x) € [R: y*]. This implies that

(Hv (05), 7" (x1) @ﬁ*(m»)wl (Hw*(a,-»y*<yj>v/*<\ﬁs>ﬁ*<ms>>>.

Jss
Theorem 4.1. Let M be a f-hypermodule, Y, v¥, B* be fundamental relations on R, T and
M, respectively. Then, [M : B*] is a [R : y*]-module.

Proof. Suppose that my,my € M, r € R and a € I'. We define
B*(m1) @ B*(m2) = {B"(m) : m e B*(m1) + B*(m2)},
V() ovi(y)©B(m) ={B*(m) :mey(r)v:(y)B"(m)}.

Let m|, € B*(m;) and m, € B*(mp). Then, we have m,B*m; if and only if there exist
X1,X2, -, Xpr1 With x; = mll,x,,H =my and ujy,uy,...,u, € U such that {x;,x;+1} C u;,
for 1 <i<nand m; € B*(my) if and only if y,y,...,y,+1 With y; = m/z, Y1 = my and
V1,V2,...,V € Uy such that {y;,y;41} € v;. Now, we obtain

{xi,xip1}+y1 Cui+v,

Xn1 H{yjsyje1} S unt+v;.
The sums u; +vi =1, 1 <i<m—1and u, +v; =t,,yj—1, 1 < j < n are polynomial and
sofy €U forall k€ {1,2,...,n+¢—1}. Now, pick up the elements 1,22, .. .,2,4; such that
zi€xi+y1, 1 <i<nand z,4j € x,41 +yj41. Hence we obtain {z,zx41} C # for 1 <k <
m—+n— 1. Therefore, every element z; € x; +y; = m; —|—ml2 is B* equivalent to every element
Zntn € Myt1 + Mpyyy. Then, B*(my) @ B*(mp) = B*(m), for all m € B*(m;) + B*(m2)
m € *(my)+ B*(my). In a same way, it prove that v*(r) @ v*(y) © B*(m) = B*(d), ford €
Y (r)v*(y)B*(m). For any B*(m), " (mz) € [M : B*], v*(r) € [R: y"] and v*(y) € [[": v7],

we have
B*(m) € " (r)©v*(y) © (B*(m1) & B (m2))
= mey(r)v(y)(B*(mi)+B*(m2))
= mey (rvi(y)B (m)+ v (r)v:(y)B* (m)
= Br(m) € Y (v (V)B*(m1) + 7 (r)v*(y) B~ (m2).
The proof of other property are similar. 1

Theorem 4.2. Let M| and M, be f-hypermodules, respectively, and v : My — M, be a
epimorphism. Then, there exists a [R : y*]-module homomorphism ¥ : [M; : T| — [M, : T].
Moreover, if y is an isomorphism then, Y is isomorphism.
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Proof. We define

v <@1 < )) o <,= ,B*(w(mo)) :

First we prove that y is well-defined. Let

0, ( ) 9 (ﬁ(”(@%ﬁ"(ﬂj))) :

A (Cove] My Br]) — ([T V7], [My 2 B])
(v*(x), B*(m1))  — (v*(x),B*(y(m1))).
Let (y*(y), B*(m1)) = (y*(y),B*(m2)). Then, there exist xj,x2, .. .,x, such that x; = m, x, =
my and uy,ua, ..., up € U such that {x;,x;11} C ;. Since, ¥ is a homomorphism *(x;) =
B*(xi+1). This implies that A is well-defined. We have A is a homomorphism. Because

A(B(m1) ® B (ma)) = A(B*(m3)),

for some m3 € B*(my) + B*(my). We know that §*(m3) = B*(m), for some m € m; + m.
Hence,

=
=

We define

A(B"(m1) © B*(m2)) = B*(m) = A(B"(m1)) ® A(B" (m2))-

In a same way, we can see that

Ay (x)VF(@)B* (m)) = {A(1) : 1 € xGiy}

Hence,

Since v is onto,

v <®1 (fIl(V*(ai)vﬁ*(mi)>> =V <®1 <ﬁl(v*(5j),ﬁ*(nj)>> :
i= J=

This implies that y is well-defined. y is a homomorphism. Indeed,

Vf(@l (ﬁ(v*(ao,ﬂ*(m,»))) 50, (ﬁ(v*(ﬁjm*(nn)))

i=1

—u/<®1 ﬁ m)) (v (B;), B*(n ))))
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( ( x,))>®1(ﬁ(v*(ﬁﬂﬁ*(m))))
w( (H( (o mx,)v?w*(nm)).

Hence, for d;; € x;fjn;, v*(xi)v (ﬁ,)B*(n,)) = *(d;;). This implies that

1z (Gz (ﬁ("*(ai)’y*(xi))> 0 ﬁ(V*(ﬁj)7ﬁ*("j))>> =0 (H(V*(ai)7ﬁ*(llf(dij))> :

i=1 ij

<

On the other hand,
©, (ﬁ(v*(am* (x»)) v (@n <H<v*<ﬂj>,ﬂ*<nj>>>>

o, (ﬁ(v*(a»,ﬂxn) (@n (ﬁ(v*(ﬁ,~>,ﬁ*<w<n,->>>>>

i=1
-0, (Hw*(a,-),wxi)v/*(\/mr%w(n,»)) ®, (H< <ai>,/3*<ci,»>>
iJj
where ¢;; € x;B;y(n;). Thus, y is a [R : y*]-module homomorphism. Let y is an isomor-

phism. We prove that ¥ is isomorphism. It is enough to prove that y is one to one. Firstly,
we prove that A is one to one. Let

A(Y (1), B (1)) = A(Y (x2), B (m2)).

Then, B*(y(mi)) = B*(w(my)). Hence, there exist yi,y2,...,Ym+1 € Mz and u; € Uy,
fori € {1,2,...,m}, such that y; = y(m;) and y,+1 = W(my) and {y;,yi+1} C u;, fori €
{1,2,...,m}. So, there exist v; € Uy, and x; € M; such that y(x;) =y;, fori € 1,2,...,mand
{xi,xit1} Cvy, fori € {1,2,...,m}. So, B*(m;) = B*(my) and A is one to one. Obviously,
A is onto. Let

v (@)1 (ﬁ(v*@»ﬁ*@»))) v <@1 (ﬁ(v*@j),ﬁ*(m»)) .
i= j=

Dy (v () B (wm) = DY v () B (w(ny).
i=1

This implies that

A(rortim) - (@V* ).

which implies that

Then,

EBf )V (x)B EBY* B*(n)),

for every y*(x) € [R: ¥*]. Therefore, ¥ is an 1somorph1sm. 1
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Proposition 4.1. Let M and T be canonical hypergroups and 6 and 6, be regular relations
on M and T, respectively, such that [M : 6] is a [R : 63)-modules, where R is a T-hyperring
and o3 is a regular relation on R. Then, M is a general T'-hypermodule.
Proof. Suppose that the hyperoperation * defined as follows:
* :RxTxM — P*(M)
rxoxm — o03(r)oz(a)oy(m),

We prove that r* o (my +mp) = r* o xmy +r* Q xmy. We know that r+ ot (m; +mp) =
{rxoxm:méem;+my}. Let m € m; +my. Then, o1(m) = 61(m;) 4+ 01 (my) and we have
03(r) x o2(@) x 61 (m) = 03(r) o2 (@) 01 (M) = 03(r) o2 (@) (01 (M1) + 01 (M2)).
0'3(}’)(72(06)0'1 (ml) + 0'3(}’)(72(06)0'1 (mz) =r*x0*m)+r*x0*xmp

Thus, r+ o * (m; +my) C rxaxmy +r* o xmy. Now, let
01(m) = 03(r)02() 01 (m1) + 03(r) 02 (@) 01 (m2) = 03(r) G2 (@) (01 (1) + G4 (m2))

Then, there exists o1 (m3) € 61(m1) + 61(my) such that 61 (m) = o3(r)c2(0t) 01 (m3) = r=
oxms Crx ok (m)+my). Hence, rx o xmy +rxoxmy Crx o (my+my). Therefore,
rRokmy 4 rxQxkmy =rxa*(m; +my). In a same way, we can prove another properties.
Therefore, M is a I'-module. 1

Theorem 4.3. Let M and M, be f‘l- and f‘z-hypermodules. Then,
My x My : Ty xTp] & [M) : '] x [M : T].

Proof. Suppose that B*, B and 5 be fundamental relations on M; x M,, M; and M,
respectively. It is easy to see that

[My x My 2 B7] = [My : By] x [My : B5].
We define
y: [M[XMZ F1><F2] [ 1:F1}X[M22F2}
© <H((V1 (i), v2 (vi)), (Br (mi), By (i)

i=1

<®1 (fl(vﬁx,-),ﬁf(mi») 0, (ﬁ(Vz*(yi%ﬁz*(m)))) .

i=1 i=1

I

Obviously, this function is well-defined. We proof y is a homomorphism.

V/(@ <IEI((Vf(xi),V£‘(yi))-,(V*(t, ) (fnl (7)) (B (m)), Bz*(ﬁ,-))))

—

5 (si)v3 (9))B3 (n)))

P (m)), 7
)

)) v (@ (jf"[l«vr(x;w;(y;)),<B;‘<m}->.ﬁ;<n}>>>)
T

5 (si)V3 (y/]) B (n;) This completes the proof. 1

1,,<@ TIOVE G, V3G (7 Ve (0B

where ¢;j € ¥ (1;)V} ( X;)B;(m}) and d;; €

/\

xl V2 yl)) Cij)7

[(vi( (7 (cij), 7' (
(Vi (i), v (v0), (1 (1), ¥ (s:))

1:1=::1
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Theorem 4.4. There exists a covariant functor between the category of f-hypermodules
and the category of modules.

Proof. Suppose that My, M, and M3 be lA"—hypermodules. We define 7(M;) = [M; : T,

T(My)=[Mp:T]and T(M3) = [M3 :T]. Let y; : M; — M and y, : M, — M3 be homo-

morphisms. We define T(y1) = ¥,, T(y2) = ¥, and T(y3) = W;. Then, for
n

0, H(f(x,-),[)’*(m,-)) € [M; : T, we have

i=1

woow, @ [T0r (. B m) q ).B* (y2o wi (m))

H B (wa (w1 (mi)))

Thus, T(y20y;) =T (ya)oT(y1). On the other hand, if Id), is an identity homomorphism,
then T'(Id) is an identity homomorphism. Therefore, T is a covariant functor. 1

5. Conclusion

In this paper, we have considered the general I'-hypermodules as a generalization of I'-
hypermodules, as a generalization of I'-modules and as a generalization of modules. In
particular, we have given three isomorphism theorems of general I'-hypermodules and we
have discussed about ® relations on general I'-hypermodules. Also we show that there
is a covariant functor between the category of general I'-hypermodules and the category
of modules. A possible future study could be devoted to the introduction and analysis of
(m,n)- ary I'-hypermodules.

Acknowledgement. The authors are highly grateful to referees and Professor Rosihan Ali,
Editor-in-Chief, for their valuable comments and suggestions for improving the paper.
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