Chromatic Equivalence Classes of Some Families of Complete Tripartite Graphs

${ }^{1}$ G. L. Chia and ${ }^{2}$ Chee-Kit Ho
${ }^{1}$ Institute of Mathematical Sciences, University Malaya, 50603 Kuala Lumpur, Malaysia
${ }^{2}$ Department of Financial Mathematics and Statistics, Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Malaysia
${ }^{1}$ glchia@um.edu.my, ${ }^{2}$ ckho@sunway.edu.my

Abstract

We obtain new necessary conditions on a graph which shares the same chromatic polynomial as that of the complete tripartite graph $K_{m, n, r}$. Using these, we establish the chromatic equivalence classes for $K_{1, n, n+1}$ (where $n \geq 2$). This gives a partial solution to a question raised earlier by the authors. With the same technique, we further show that $K_{n-3, n, n+1}$ is chromatically unique if $n \geq 5$. In the more general situation, we show that if $2 \leq m \leq n$, then $K_{m, n, n+1}$ is chromatically unique if n is sufficiently large.

2010 Mathematics Subject Classification: 05C31, 05C15
Keywords and phrases: Complete tripartite graph, chromatic polynomial, chromatic equivalence class.

1. Introduction

All graphs mentioned in this paper are finite, undirected having neither loops nor multiple edges. Let G be a graph and let $P(G ; \lambda)$ denote its chromatic polynomial. The chromatic equivalence class of G, denoted $\mathscr{C}(G)$, is the set of all graphs sharing the same chromatic polynomial with that of G. In the event that $\mathscr{C}(G)=\{G\}$, then G is said to be chromatically unique. The search for chromatic equivalence classes of graphs has been the subject of much interest in chromatic graph theory (see [5] for a review on the topic).

In what follows, we let K_{n} denote a complete graph on n vertices. Suppose G and H are two graphs. Let $G+H$ denote the graph obtained by joining every vertex of G to every vertex of H. Suppose $K_{m, n, r}$ denotes the complete tripartite graph whose partite sets have cardinalities m, n and r. Then clearly $K_{m, n, r}=\bar{K}_{m}+\bar{K}_{n}+\bar{K}_{r}$ where \bar{G} denotes the complement of the graph G. Note that the chromaticity of $K_{m}+G$ has also been studied earlier in [1], where G denotes some chromatically unique graphs. More about the chromatic equivalence class of (join of) graphs can also been found in [2].

While the chromatic equivalence classes for the complete bipartite graphs have been completely settled (see [5]), not much is known about the chromatic equivalence class for

[^0]the complete tripartite graphs although the problem has been studied since 1988 (see [3]). Some recent results on the chromaticity of complete multi-partite graphs can be found in [8]. In this paper, we focus our attention on finding the chromatic equivalence class for the complete tripartite graphs of the type $K_{m, n, n+1}$. For this purpose, some necessary conditions for a graph to share the same chromatic polynomial as that of $K_{m, n, n+1}$ are developed in Section 2, the main one being Theorem 2.1.

Let \mathscr{T}_{m} denote the set of all trees on m vertices and let $\mathscr{J}(m, n)=\left\{T+\bar{K}_{m}, S+\bar{K}_{n} \mid T \in\right.$ $\left.\mathscr{T}_{n+1}, S \in \mathscr{T}_{m+1}\right\}$. Since $K_{1, m, n}=\bar{K}_{1}+\bar{K}_{m}+\bar{K}_{n}$, it follows readily that $K_{1, m, n}, T+\bar{K}_{m}$ and $S+\bar{K}_{n}$ all have the same chromatic polynomial. Hence $\mathscr{J}(m, n) \subseteq \mathscr{C}\left(K_{1, m, n}\right)$. In [4] it was shown that $\mathscr{C}\left(K_{1, n, n}\right)=\mathscr{J}(n, n)$ for any positive integer n and that $\mathscr{C}\left(K_{1, r, 4}\right)=\mathscr{J}(r, 4)$ if $r \in\{2,3\}$. Further it was asked whether or not $\mathscr{C}\left(K_{1, m, n}\right)=\mathscr{J}(m, n)$. In the present paper, we show that $\mathscr{C}\left(K_{1, n, n+1}\right)=\mathscr{J}(n, n+1)$ (Theorem 3.1). It looks very much likely that $\mathscr{C}\left(K_{1, m, n}\right)=\mathscr{J}(m, n)$.
Conjecture 1.1. $\mathscr{C}\left(K_{1, m, n}\right)=\mathscr{J}(m, n)$ for all positive integers $m, n \geq 2$.
Using the same method, we move on to show that (i) $K_{n-3, n, n+1}$ is chromatically unique if $n \geq 5$ (Theorem 3.2) and that (ii) $K_{m, n, n+1}$, where $2 \leq m \leq n$, is chromatically unique if n is sufficiently large (Theorem 3.3).

2. Some necessary conditions

Let G be a graph on p vertices and q edges and let $n\left(A^{*}, G\right)$ denote the number of induced subgraphs in G that are isomorphic to A. A spanning subgraph is called special if its connected components are complete graphs. Let $s_{i}(G)$ denote the number of special spanning subgraphs of G with i components, $i=1,2, \ldots, p$. Then, following Frucht [7], the chromatic polynomial of G may be expressed as

$$
P(G ; \lambda)=\sum_{i=1}^{p} s_{i}(\bar{G})(\lambda)_{i}
$$

where $(\lambda)_{i}=\lambda(\lambda-1) \cdots(\lambda-i+1)$ is the falling factorial and \bar{G} is the complement of G. It is clear that $s_{p}(\bar{G})=1$ and $s_{p-1}(\bar{G})=\bar{q}$ if \bar{G} has \bar{q} edges.

Note that if $Y \in \mathscr{C}(G)$, then $s_{i}(\bar{Y})=s_{i}(\bar{G})$ for all $\chi(G) \leq i \leq p$, where $\chi(G)$ is the chromatic number of G. Thus, it follows that Y and G have the same numbers of vertices and edges. Furthermore, in the event that G contains no K_{4}, it follows from Theorem 1 of [6] that $n\left(C_{4}^{*}, Y\right)=n\left(C_{4}^{*}, G\right)$. Here C_{4} denotes a cycle with 4 vertices.

Let $\mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right)$ denote the set of all connected tripartite graphs obtained by deleting e edges from the complete tripartite graph $K_{s_{1}, s_{2}, s_{3}}$. Note that, for any graph $Y \in$ $\mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right), \bar{Y}$ is the disjoint union of three complete subgraphs $K_{s_{1}}, K_{s_{2}}$ and $K_{s_{3}}$ with e edges joining these subgraphs.

Suppose, for any triplet (i, j, k) where $\{i, j, k\}=\{1,2,3\}$, that there are a_{i} edges joining the subgraphs $K_{s_{j}}$ and $K_{s_{k}}$. Then $a_{1}+a_{2}+a_{3}=e$. Let E_{i} denote the set of all the a_{i} edges joining $K_{s_{j}}$ and $K_{s_{k}}$ where $i=1,2,3$. Two edges $\alpha \in E_{r}$ and $\beta \in E_{s}$, where $r \neq s$, are said to be a coincidence pair of Y if they are incident with each other in \bar{Y}.

Suppose $Y \in \mathscr{C}(G)$. We shall now record some known necessary conditions on Y as well as develop new ones.

Lemma 2.1. [4] Let G be the complete tripartite graph $K_{m_{1}, m_{2}, m_{3}}$.
(i) If $Y \in \mathscr{C}(G)$, then $Y \in \mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right)$ where $e=\sum_{i<j} s_{i} s_{j}-\sum_{i<j} m_{i} m_{j}$.
(ii) Suppose $Y \in \mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right)$ and $s_{1}+s_{2}+s_{3}=m_{1}+m_{2}+m_{3}$. Then, for each $j \in$ $\{1,2,3\}$,

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq \prod_{i=1}^{3}\left(s_{i}-m_{j}\right)-\sum_{i=1}^{3} a_{i}\left(s_{i}-m_{j}\right)
$$

and equality holds if and only if Y has no coincidence pair.
Corollary 2.1. Let G be the complete tripartite graph $K_{m_{1}, m_{2}, m_{3}}$ and $Y \in \mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right)$ where $s_{1} \leq s_{2} \leq s_{3}$. Then

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq\left(s_{3}-m_{1}\right)\left(s_{3}-m_{2}\right)\left(s_{3}-m_{3}\right) .
$$

Proof. From Lemma 2.1(ii) with $j=1$, we have

$$
\begin{aligned}
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) & \geq \prod_{i=1}^{3}\left(s_{i}-m_{1}\right)-\sum_{i=1}^{3} a_{i}\left(s_{i}-m_{1}\right) \\
& \geq \prod_{i=1}^{3}\left(s_{i}-m_{1}\right)-\left(a_{1}+a_{2}+a_{3}\right)\left(s_{3}-m_{1}\right) \\
& =\left(s_{3}-m_{1}\right)\left\{\left(s_{1}-m_{1}\right)\left(s_{2}-m_{1}\right)-e\right\}
\end{aligned}
$$

Since $e=s_{1} s_{2}+s_{1} s_{3}+s_{2} s_{3}-m_{1} m_{2}-m_{1} m_{3}-m_{2} m_{3}\left(\right.$ by Lemma 2.1(i)) and $s_{1}+s_{2}+s_{3}=$ $m_{1}+m_{2}+m_{3}$, the expression $\left(s_{1}-m_{1}\right)\left(s_{2}-m_{1}\right)-e$ can readily be simplified to ($s_{3}-$ $\left.m_{2}\right)\left(s_{3}-m_{3}\right)$ and the proof is complete.
Lemma 2.2. Let G be the complete tripartite graph $K_{m_{1}, m_{2}, m_{3}}$ and $Y \in \mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right)$. Suppose further that $Y \in \mathscr{C}(G)$ and $1 \leq m_{1} \leq m_{2} \leq m_{3}$ and $e>0$. Then $s_{2}<m_{3}$ or $s_{3}<m_{3}$ if $s_{1} \leq s_{2} \leq s_{3}$.

Proof. Let $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$. Then we can show that if $s_{1}+s_{2}+s_{3}=m_{1}+$ $m_{2}+m_{3}$ and $s_{2} \geq m_{2}, s_{3} \geq m_{3}$, then

$$
f\left(s_{1}, s_{2}, s_{3}\right) \leq f\left(m_{1}, m_{2}, m_{3}\right)
$$

where equality holds only if $s_{i}=m_{i}$ for $i=1,2,3$. Moreover, under the condition $s_{1}+$ $s_{2}+s_{3}=m_{1}+m_{2}+m_{3}$ and $s_{2} \geq m_{2}, s_{3} \geq m_{3}, f\left(s_{1}, s_{2}, s_{3}\right)$ attains its maximum value when $s_{2}+s_{3}=m_{2}+m_{3}$.

To see this, suppose $s_{2}>m_{2}$ and $s_{3} \geq m_{3}$. Then $s_{1}<m_{1} \leq m_{2}<s_{2}$ implying that $s_{2}-s_{1} \geq 2$. Hence
$f\left(s_{1}+1, s_{2}-1, s_{3}\right)=\left(s_{1}+1\right)\left(s_{2}-1\right)+s_{1} s_{3}+s_{2} s_{3}=f\left(s_{1}, s_{2}, s_{3}\right)+s_{2}-s_{1}-1>f\left(s_{1}, s_{2}, s_{3}\right)$.
Similarly, if $s_{2} \geq m_{2}$ and $s_{3}>m_{3}$, we also have

$$
f\left(s_{1}+1, s_{2}, s_{3}-1\right)>f\left(s_{1}, s_{2}, s_{3}\right)
$$

Hence $f\left(s_{1}, s_{2}, s_{3}\right) \leq f\left(m_{1}, m_{2}, m_{3}\right)$ whenever $s_{1}+s_{2}+s_{3}=m_{1}+m_{2}+m_{3}$ and $s_{2} \geq m_{2}, s_{3} \geq$ m_{3}.

Theorem 2.1. Let G be the complete tripartite graph $K_{m_{1}, m_{2}, m_{3}}$ and $Y \in \mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right)$ where $s_{1} \leq s_{2} \leq s_{3}$. Suppose further that $Y \in \mathscr{C}(G)$ and $1 \leq m_{1} \leq m_{2}<m_{3}$. Then $m_{2} \leq$ $s_{3} \leq m_{3}$. Furthermore,
(i) if $s_{3}=m_{2}$, then either $Y \cong H+\bar{K}_{m_{2}}$ for some bipartite graph H or else $Y \in$ $\mathscr{K}^{e}\left(m_{1}+m_{3}-m_{2}, m_{2}, m_{2}\right)$ where $e=\left(m_{3}-m_{2}\right)\left(m_{2}-m_{1}\right)$, and
(ii) if $s_{3}=m_{3}$, then $Y \cong H+\bar{K}_{m_{3}}$ for some bipartite graph H.

Proof. Suppose $s_{3}>m_{3}$. Then $s_{3}>m_{3} \geq m_{2} \geq m_{1}$. By Corollary 2.1, we have $s_{p-2}(\bar{G})-$ $s_{p-2}(\bar{Y})>0$, a contradiction because $Y \in \mathscr{C}(G)$. Therefore $s_{3} \leq m_{3}$.

Suppose on the contrary that $s_{3}<m_{2}$. Then we have $s_{1} \leq s_{2} \leq s_{3}<m_{2} \leq m_{3}$. By Corollary 2.1, we have

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq\left(s_{3}-m_{1}\right)\left(s_{3}-m_{2}\right)\left(s_{3}-m_{3}\right)
$$

Now, if $s_{3}>m_{1}$, then $s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})>0$, a contradiction because $Y \in \mathscr{C}(G)$. On the other hand, if $s_{3} \leq m_{1}$, then $s_{1} \leq s_{2} \leq m_{1}$ implies $s_{1}+s_{2}+s_{3} \leq 3 m_{1}<m_{1}+m_{2}+m_{3}$ which is impossible. Therefore $s_{3} \geq m_{2}$.
(i) Suppose $s_{3}=m_{2}$.

If $s_{2} \neq m_{2}$, then $s_{1}, s_{2}<m_{2}$. By Lemma 2.1(ii) with $j=2$, we have

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq-a_{1}\left(s_{1}-m_{2}\right)-a_{2}\left(s_{2}-m_{2}\right)
$$

Since $Y \in \mathscr{C}(G), s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$ and this implies $a_{1}=a_{2}=0$. Therefore $e=a_{3}$ and $Y \cong H+\bar{K}_{s_{3}} \cong H+\bar{K}_{m_{2}}$ for some bipartite graph H. On the other hand, if $s_{2}=m_{2}$, then $s_{1}=$ $m_{1}+m_{2}+m_{3}-\left(s_{2}+s_{3}\right)=m_{1}+m_{3}-m_{2}$ and this implies $Y \in \mathscr{K}^{e}\left(m_{1}+m_{3}-m_{2}, m_{2}, m_{2}\right)$ where $e=\left(m_{3}-m_{2}\right)\left(m_{2}-m_{1}\right)$ by Lemma 2.1(i).
(ii) Suppose $s_{3}=m_{3}$.

Then $s_{1}, s_{2}<m_{3}=s_{3}$ by Lemma 2.2 (because $s_{1} \leq s_{2}<m_{3}=s_{3}$). By Lemma 2.1(ii) with $j=3$, we have

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq-a_{1}\left(s_{1}-m_{3}\right)-a_{2}\left(s_{2}-m_{3}\right) .
$$

Since $Y \in \mathscr{C}(G), s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$ and hence $a_{1}=a_{2}=0$. This implies that $e=a_{3}$ and $Y \cong H+\bar{K}_{s_{3}} \cong H+\bar{K}_{m_{3}}$ for some bipartite graph H. This completes the proof.

3. Results

Recall the following result from [4].
Lemma 3.1. [4] Let G be the complete tripartite graph $K_{m_{1}, m_{2}, m_{3}}$ and $Y \in \mathscr{K}^{e}\left(s_{1}, s_{2}, s_{3}\right)$.
(i) Suppose further that $Y \in \mathscr{C}(G), 2 \leq m_{1} \leq m_{2} \leq m_{3}$ and $Y \cong H+\bar{K}_{t}$ for some bipartite graph H and some $t \in\left\{m_{1}, m_{2}, m_{3}\right\}$. Then Y is isomorphic to G.
(ii) Suppose further that $Y \cong H+\bar{K}_{n}$ where H is a bipartite graph and n is a positive integer. If H is disconnected, then $s_{3}(\bar{Y})>s_{3}(\bar{G})$.

We can now prove that Conjecture 1.1 is true for the complete tripartite graph $K_{1, n, n+1}$.
Theorem 3.1. For any positive integer $n \geq 2, \mathscr{C}\left(K_{1, n, n+1}\right)=\mathscr{J}(n, n+1)$.
Proof. We need only to show that $\mathscr{C}\left(K_{1, n, n+1}\right) \subseteq \mathscr{J}(n, n+1)$. Let G denote the complete tripartite graph $K_{1, n, n+1}$ and suppose $Y \in \mathscr{C}(G)$. By Theorem 2.1, either $Y \cong H_{1}+\bar{K}_{n}$ or $Y \cong H_{2}+\bar{K}_{n+1}$ for some bipartite graphs H_{1} and H_{2} or else $Y \in \mathscr{K}^{e}(2, n, n)$ where $e=n-1$. By Lemma 3.1(ii), either of the subgraphs H_{1} and H_{2} is connected. Hence $H_{1} \in \mathscr{T}_{n+2}$ and $H_{2} \in \mathscr{T}_{n+1}$ because the numbers of edges in H_{1} and H_{2} are $n+1$ and n respectively. But this
means that $Y \in \mathscr{J}(n, n+1)$. On the other hand, if $Y \in \mathscr{K}^{e}(2, n, n)$ where $e=a_{1}+a_{2}+a_{3}=$ $n-1$, then by Lemma 2.1(ii) with $j=2$, we have

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq-a_{1}(2-n) .
$$

Since $Y \in \mathscr{C}(G), s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$ and this implies that either $n=2$ or else $n>2$ and $a_{1}=0$. If $n=2$, then $e=1$ and $Y \cong T+\bar{K}_{2}$ where T is a path on 4 vertices and hence $Y \in \mathscr{J}(2,3)$.

Therefore assume that $n>2$ and $a_{1}=0$. Since $s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$, by Lemma 2.1(ii), Y has no coincidence pair. As such, the subgraph induced by the a_{2} edges in E_{2} (respectively the a_{3} edges in E_{3}) in \bar{Y} is isomorphic to $K_{1, a_{2}}$ (respectively $K_{1, a_{3}}$). Therefore we have,

$$
\begin{aligned}
n\left(C_{4}^{*}, Y\right) & =\binom{n}{2}^{2}+2\binom{n}{2}+\left(a_{2}+a_{3}\right)\binom{n}{2}-\sum_{i=2}^{3} a_{i}\left(n-a_{i}\right)-\sum_{i=2}^{3}\binom{a_{i}}{2} \\
& =\binom{n}{2}^{2}+2\binom{n}{2}+\left(a_{2}+a_{3}\right)\left(\binom{n}{2}-n\right)+\binom{a_{2}+1}{2}+\binom{a_{3}+1}{2} \\
& =\binom{n}{2}^{2}+n\binom{n}{2}-a_{2} a_{3} \\
& =n\left(C_{4}^{*}, G\right)-a_{2} a_{3}
\end{aligned}
$$

This implies that either $a_{2}=0$ and $a_{3}=e=n-1$ or else $a_{3}=0$ and $a_{2}=e=n-1$. Either case implies that $Y \cong H+\bar{K}_{n}$ for some bipartite graph H. By Lemma 3.1(ii), H is connected. Note that H has $n+2$ vertices and $2 n-e=n+1$ edges. That is, $H \in \mathscr{T}_{n+2}$ and hence $Y \in \mathscr{J}(n, n+1)$. The proof is now complete.

Next, we show that $K_{n-3, n, n+1}$ is chromatically unique if $n \geq 5$. In what follows, we let $A(m, n)=\binom{n}{2}^{2}+2\binom{m+1}{2}\binom{n}{2}+(n-m)\binom{n}{2}$. Then we have $A(m, n)=n\left(C_{4}^{*}, K_{m, n, n+1}\right)+$ $\frac{1}{2} m n(n-m)$.

Theorem 3.2. For any integer $n \geq 5, K_{n-3, n, n+1}$ is chromatically unique.
Proof. Let G denote the graph $K_{n-3, n, n+1}$. Assume that $Y \in \mathscr{C}(G)$ and Y is not isomorphic to G. Applying Theorem 2.1 and Lemma 3.1(i), it follows that $Y \in \mathscr{K}^{3}(n-2, n, n)$. By Lemma 2.1(ii) with $j=2$, we have

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq 2 a_{1}
$$

Since $Y \in \mathscr{C}(G)$, we must have $s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$ and this implies that $a_{1}=0$. Note that $e=3$, that is, $a_{2}+a_{3}=3$. Let $E_{2} \cup E_{3}=\left\{e_{1}, e_{2}, e_{3}\right\}$. Note that neither E_{2} nor E_{3} is an empty set because otherwise $Y \cong H+\bar{K}_{n}$ for some bipartite graph H, which by Lemma 3.1(i), implies Y is isomorphic to G. Without loss of generality, we may assume that $e_{1}, e_{2} \in$ E_{2} and $e_{3} \in E_{3}$. Since $s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$, by Lemma 2.1(ii), Y has no coincidence pair. Thus there are three possible cases for $Y: e_{1}$ and e_{2} are not incident, or they have a common vertex in the partite set having n vertices, or a common vertex in the partite set having $n-2$ vertices. Let X_{1}, X_{2}, X_{3} represent Y corresponding to these three cases.

It is routine to check that for each $i \in\{1,2,3\}, n\left(C_{4}^{*}, X_{i}\right)=A(n-3, n)-x_{i}$ where $x_{1}=$ $3 n^{2}-12 n+8, x_{2}=3 n^{2}-13 n+10$ and $x_{3}=3 n^{2}-13 n+12$. Since $A(n-3, n)=n\left(C_{4}^{*}, K_{n-3}\right.$, $n, n+1)+3 n(n-3) / 2$, it follows that $n\left(C_{4}^{*}, X_{i}\right)<n\left(C_{4}^{*}, G\right)$ for each $i \in\{1,2,3\}$ and the proof is complete.

Theorem 3.3. Suppose m and n are natural numbers such that $2 \leq m \leq n$. Then there exists a natural number $N(m)$ (depending on m) such that $K_{m, n, n+1}$ is chromatically unique whenever $n \geq N(m)$.

Proof. Let G denote the graph $K_{m, n, n+1}$. Assume that $Y \in \mathscr{C}(G)$ and Y is not isomorphic to G. Applying Theorem 2.1 and Lemma 3.1(i), it follows that $Y \in \mathscr{K}^{e}(m+1, n, n)$ where $e=n-m$. We shall obtain a contradiction by showing that if n is sufficiently large, then $n\left(C_{4}^{*}, Y\right)<n\left(C_{4}^{*}, K_{m, n, n+1}\right)$ for any $Y \in \mathscr{K}^{e}(m+1, n, n)$ where $e=n-m$. By Lemma 2.1(ii) with $j=2$, we have

$$
s_{p-2}(\bar{G})-s_{p-2}(\bar{Y}) \geq(n-(m+1)) a_{1} .
$$

Since $Y \in \mathscr{C}(G)$, we must have $s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$ and this implies that either $n=m+1$ or else $a_{1}=0$. If $n=m+1$ then G is chromatically unique by Theorem 2 of [3] (see also Theorem 3 of [4]). Hence assume that $a_{1}=0$. Note that if $E_{2}=\emptyset$ or if $E_{3}=\emptyset$, then $Y \cong H+$ \bar{K}_{n} for some bipartite graph H, which by Lemma 3.1(i), implies Y is isomorphic to G. Hence $a_{2} \neq 0$ and $a_{3} \neq 0$. Since $s_{p-2}(\bar{G})-s_{p-2}(\bar{Y})=0$, by Lemma 2.1(ii), Y has no coincidence pair. Now, for any $Y \in \mathscr{K}^{e}(m+1, n, n)$, we see that $n\left(C_{4}^{*}, Y\right)=A(m, n)-e n^{2}+g(n)$ for some linear function $g(n)$. Since $A(m, n)=n\left(C_{4}^{*}, K_{m, n, n+1}\right)+m n(n-m) / 2$, and $e=n-m$, it follows that $n\left(C_{4}^{*}, Y\right)=n\left(C_{4}^{*}, K_{m, n, n+1}\right)-e n^{2} / 2-e^{2} n / 2+g(n)$.

Hence, it follows that $-e n^{2} / 2-e^{2} n / 2+g(n)<0$ if $n \geq N(m)$ for some natural number $N(m)$ (which depends on m). Consequently, $n\left(C_{4}^{*}, Y\right)<n\left(C_{4}^{*}, K_{m, n, n+1}\right)$.

Acknowledgement. The authors wish to thank the referees for the constructive comments, in particular to the first referee which gave a simpler proof for Lemma 2.2 (which is stronger than the original statement and does not make use of an earlier result from [4]).

References

[1] G. L. Chia, On the join of graphs and chromatic uniqueness, J. Graph Theory 19 (1995), no. 2, 251-261.
[2] G. L. Chia, On the chromatic equivalence class of graphs, Discrete Math. 178 (1998), no. 1-3, 15-23.
[3] G. L. Chia, B.-H. Goh and K.-M. Koh, The chromaticity of some families of complete tripartite graphs, Sci. Ser. A Math. Sci. (N.S.) 2 (1988), 27-37.
[4] G. L. Chia and C.-K. Ho, Chromatic equivalence classes of complete tripartite graphs, Discrete Math. 309 (2009), no. 1, 134-143.
[5] F. M. Dong, K. M. Koh and K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[6] E. J. Farrell, On chromatic coefficients, Discrete Math. 29 (1980), no. 3, 257-264.
[7] R. W. Frucht, A new method of computing chromatic polynomials of graphs, in Analysis, Geometry, and Probability (Valparaíso, 1981), 69-77, Lecture Notes in Pure and Appl. Math., 96, Dekker, New York.
[8] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Chromaticity of complete 6-partite graphs with certain star or matching deleted, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 15-24.

[^0]: Communicated by Xueliang Li.
 Received: May 7, 2013; Revised: August 1, 2013.

