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Abstract. We obtain new necessary conditions on a graph which shares the same chromatic
polynomial as that of the complete tripartite graph Km,n,r . Using these, we establish the
chromatic equivalence classes for K1,n,n+1 (where n ≥ 2). This gives a partial solution to
a question raised earlier by the authors. With the same technique, we further show that
Kn−3,n,n+1 is chromatically unique if n ≥ 5. In the more general situation, we show that if
2≤ m≤ n, then Km,n,n+1 is chromatically unique if n is sufficiently large.
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1. Introduction

All graphs mentioned in this paper are finite, undirected having neither loops nor multiple
edges. Let G be a graph and let P(G;λ ) denote its chromatic polynomial. The chromatic
equivalence class of G, denoted C (G), is the set of all graphs sharing the same chromatic
polynomial with that of G. In the event that C (G) = {G}, then G is said to be chromatically
unique. The search for chromatic equivalence classes of graphs has been the subject of
much interest in chromatic graph theory (see [5] for a review on the topic).

In what follows, we let Kn denote a complete graph on n vertices. Suppose G and H
are two graphs. Let G + H denote the graph obtained by joining every vertex of G to
every vertex of H. Suppose Km,n,r denotes the complete tripartite graph whose partite sets
have cardinalities m,n and r. Then clearly Km,n,r = Km + Kn + Kr where G denotes the
complement of the graph G. Note that the chromaticity of Km + G has also been studied
earlier in [1], where G denotes some chromatically unique graphs. More about the chromatic
equivalence class of (join of) graphs can also been found in [2].

While the chromatic equivalence classes for the complete bipartite graphs have been
completely settled (see [5]), not much is known about the chromatic equivalence class for
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the complete tripartite graphs although the problem has been studied since 1988 (see [3]).
Some recent results on the chromaticity of complete multi-partite graphs can be found in [8].
In this paper, we focus our attention on finding the chromatic equivalence class for the
complete tripartite graphs of the type Km,n,n+1. For this purpose, some necessary conditions
for a graph to share the same chromatic polynomial as that of Km,n,n+1 are developed in
Section 2, the main one being Theorem 2.1.

Let Tm denote the set of all trees on m vertices and let J (m,n) = {T +Km, S+Kn | T ∈
Tn+1, S ∈Tm+1}. Since K1,m,n = K1 +Km +Kn, it follows readily that K1,m,n, T +Km and
S+Kn all have the same chromatic polynomial. Hence J (m,n)⊆ C (K1,m,n). In [4] it was
shown that C (K1,n,n) = J (n,n) for any positive integer n and that C (K1,r,4) = J (r,4) if
r ∈ {2,3}. Further it was asked whether or not C (K1,m,n) = J (m,n). In the present paper,
we show that C (K1,n,n+1) = J (n,n + 1) (Theorem 3.1). It looks very much likely that
C (K1,m,n) = J (m,n).

Conjecture 1.1. C (K1,m,n) = J (m,n) for all positive integers m,n≥ 2.

Using the same method, we move on to show that (i) Kn−3,n,n+1 is chromatically unique
if n≥ 5 (Theorem 3.2) and that (ii) Km,n,n+1, where 2≤ m≤ n, is chromatically unique if n
is sufficiently large (Theorem 3.3).

2. Some necessary conditions

Let G be a graph on p vertices and q edges and let n(A∗,G) denote the number of induced
subgraphs in G that are isomorphic to A. A spanning subgraph is called special if its con-
nected components are complete graphs. Let si(G) denote the number of special spanning
subgraphs of G with i components, i = 1,2, . . . , p. Then, following Frucht [7], the chromatic
polynomial of G may be expressed as

P(G;λ ) =
p

∑
i=1

si(G)(λ )i

where (λ )i = λ (λ −1) · · ·(λ − i+1) is the falling factorial and G is the complement of G.
It is clear that sp(G) = 1 and sp−1(G) = q if G has q edges.

Note that if Y ∈ C (G), then si(Y ) = si(G) for all χ(G) ≤ i ≤ p, where χ(G) is the
chromatic number of G. Thus, it follows that Y and G have the same numbers of vertices
and edges. Furthermore, in the event that G contains no K4, it follows from Theorem 1
of [6] that n(C∗4 ,Y ) = n(C∗4 ,G). Here C4 denotes a cycle with 4 vertices.

Let K e(s1,s2,s3) denote the set of all connected tripartite graphs obtained by delet-
ing e edges from the complete tripartite graph Ks1,s2,s3 . Note that, for any graph Y ∈
K e(s1,s2,s3), Y is the disjoint union of three complete subgraphs Ks1 , Ks2 and Ks3 with
e edges joining these subgraphs.

Suppose, for any triplet (i, j,k) where {i, j,k}= {1,2,3}, that there are ai edges joining
the subgraphs Ks j and Ksk . Then a1 + a2 + a3 = e. Let Ei denote the set of all the ai edges
joining Ks j and Ksk where i = 1,2,3. Two edges α ∈ Er and β ∈ Es , where r 6= s, are said
to be a coincidence pair of Y if they are incident with each other in Y .

Suppose Y ∈ C (G). We shall now record some known necessary conditions on Y as well
as develop new ones.

Lemma 2.1. [4] Let G be the complete tripartite graph Km1,m2,m3 .
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(i) If Y ∈ C (G), then Y ∈K e(s1,s2,s3) where e = ∑i< j sis j−∑i< j mim j.
(ii) Suppose Y ∈K e(s1,s2,s3) and s1 + s2 + s3 = m1 + m2 + m3. Then, for each j ∈
{1,2,3},

sp−2(G)− sp−2(Y )≥
3

∏
i=1

(si−m j)−
3

∑
i=1

ai(si−m j)

and equality holds if and only if Y has no coincidence pair.

Corollary 2.1. Let G be the complete tripartite graph Km1,m2,m3 and Y ∈ K e(s1,s2,s3)
where s1 ≤ s2 ≤ s3. Then

sp−2(G)− sp−2(Y )≥ (s3−m1)(s3−m2)(s3−m3).

Proof. From Lemma 2.1(ii) with j = 1, we have

sp−2(G)− sp−2(Y )≥
3

∏
i=1

(si−m1)−
3

∑
i=1

ai(si−m1)

≥
3

∏
i=1

(si−m1)− (a1 +a2 +a3)(s3−m1)

= (s3−m1){(s1−m1)(s2−m1)− e}

Since e = s1s2 + s1s3 + s2s3−m1m2−m1m3−m2m3 (by Lemma 2.1(i)) and s1 + s2 + s3 =
m1 + m2 + m3, the expression (s1 −m1)(s2 −m1)− e can readily be simplified to (s3 −
m2)(s3−m3) and the proof is complete.

Lemma 2.2. Let G be the complete tripartite graph Km1,m2,m3 and Y ∈K e(s1,s2,s3). Sup-
pose further that Y ∈ C (G) and 1≤ m1 ≤ m2 ≤ m3 and e > 0. Then s2 < m3 or s3 < m3 if
s1 ≤ s2 ≤ s3.

Proof. Let f (x1,x2,x3) = x1x2 + x2x3 + x3x1. Then we can show that if s1 + s2 + s3 = m1 +
m2 +m3 and s2 ≥ m2,s3 ≥ m3, then

f (s1,s2,s3)≤ f (m1,m2,m3)

where equality holds only if si = mi for i = 1,2,3. Moreover, under the condition s1 +
s2 + s3 = m1 +m2 +m3 and s2 ≥ m2,s3 ≥ m3, f (s1,s2,s3) attains its maximum value when
s2 + s3 = m2 +m3.

To see this, suppose s2 > m2 and s3 ≥ m3. Then s1 < m1 ≤ m2 < s2 implying that
s2− s1 ≥ 2. Hence

f (s1 +1,s2−1,s3) = (s1 +1)(s2−1)+s1s3 +s2s3 = f (s1,s2,s3)+s2−s1−1 > f (s1,s2,s3).

Similarly, if s2 ≥ m2 and s3 > m3, we also have

f (s1 +1,s2,s3−1) > f (s1,s2,s3).

Hence f (s1,s2,s3)≤ f (m1,m2,m3) whenever s1 +s2 +s3 = m1 +m2 +m3 and s2 ≥m2,s3 ≥
m3.

Theorem 2.1. Let G be the complete tripartite graph Km1,m2,m3 and Y ∈ K e(s1,s2,s3)
where s1 ≤ s2 ≤ s3. Suppose further that Y ∈ C (G) and 1 ≤ m1 ≤ m2 < m3. Then m2 ≤
s3 ≤ m3. Furthermore,
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(i) if s3 = m2, then either Y ∼= H + Km2 for some bipartite graph H or else Y ∈
K e(m1 +m3−m2,m2,m2) where e = (m3−m2)(m2−m1), and

(ii) if s3 = m3, then Y ∼= H +Km3 for some bipartite graph H.

Proof. Suppose s3 > m3. Then s3 > m3 ≥ m2 ≥ m1. By Corollary 2.1, we have sp−2(G)−
sp−2(Y ) > 0, a contradiction because Y ∈ C (G). Therefore s3 ≤ m3.

Suppose on the contrary that s3 < m2. Then we have s1 ≤ s2 ≤ s3 < m2 ≤ m3. By
Corollary 2.1, we have

sp−2(G)− sp−2(Y )≥ (s3−m1)(s3−m2)(s3−m3)

Now, if s3 > m1, then sp−2(G)− sp−2(Y ) > 0, a contradiction because Y ∈ C (G). On the
other hand, if s3 ≤m1, then s1 ≤ s2 ≤m1 implies s1 + s2 + s3 ≤ 3m1 < m1 +m2 +m3 which
is impossible. Therefore s3 ≥ m2.

(i) Suppose s3 = m2.
If s2 6= m2, then s1,s2 < m2. By Lemma 2.1(ii) with j = 2, we have

sp−2(G)− sp−2(Y )≥−a1(s1−m2)−a2(s2−m2).

Since Y ∈C (G), sp−2(G)−sp−2(Y ) = 0 and this implies a1 = a2 = 0. Therefore e = a3 and
Y ∼= H +Ks3

∼= H +Km2 for some bipartite graph H. On the other hand, if s2 = m2, then s1 =
m1 +m2 +m3− (s2 + s3) = m1 +m3−m2 and this implies Y ∈K e(m1 +m3−m2,m2,m2)
where e = (m3−m2)(m2−m1) by Lemma 2.1(i).

(ii) Suppose s3 = m3.
Then s1,s2 < m3 = s3 by Lemma 2.2 (because s1 ≤ s2 < m3 = s3). By Lemma 2.1(ii)

with j = 3, we have

sp−2(G)− sp−2(Y )≥−a1(s1−m3)−a2(s2−m3).

Since Y ∈ C (G), sp−2(G)− sp−2(Y ) = 0 and hence a1 = a2 = 0. This implies that e = a3
and Y ∼= H +Ks3

∼= H +Km3 for some bipartite graph H. This completes the proof.

3. Results

Recall the following result from [4].

Lemma 3.1. [4] Let G be the complete tripartite graph Km1,m2,m3 and Y ∈K e(s1,s2,s3).

(i) Suppose further that Y ∈ C (G), 2 ≤ m1 ≤ m2 ≤ m3 and Y ∼= H + Kt for some
bipartite graph H and some t ∈ {m1,m2,m3}. Then Y is isomorphic to G.

(ii) Suppose further that Y ∼= H + Kn where H is a bipartite graph and n is a positive
integer. If H is disconnected, then s3(Y ) > s3(G).

We can now prove that Conjecture 1.1 is true for the complete tripartite graph K1,n,n+1.

Theorem 3.1. For any positive integer n≥ 2, C (K1,n,n+1) = J (n,n+1).

Proof. We need only to show that C (K1,n,n+1) ⊆J (n,n + 1). Let G denote the complete
tripartite graph K1,n,n+1 and suppose Y ∈ C (G). By Theorem 2.1, either Y ∼= H1 + Kn or
Y ∼= H2 +Kn+1 for some bipartite graphs H1 and H2 or else Y ∈K e(2,n,n) where e = n−1.
By Lemma 3.1(ii), either of the subgraphs H1 and H2 is connected. Hence H1 ∈ Tn+2 and
H2 ∈Tn+1 because the numbers of edges in H1 and H2 are n+1 and n respectively. But this
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means that Y ∈J (n,n+1). On the other hand, if Y ∈K e(2,n,n) where e = a1 +a2 +a3 =
n−1, then by Lemma 2.1(ii) with j = 2, we have

sp−2(G)− sp−2(Y )≥−a1(2−n).

Since Y ∈ C (G), sp−2(G)− sp−2(Y ) = 0 and this implies that either n = 2 or else n > 2
and a1 = 0. If n = 2, then e = 1 and Y ∼= T +K2 where T is a path on 4 vertices and hence
Y ∈J (2,3).

Therefore assume that n > 2 and a1 = 0. Since sp−2(G)−sp−2(Y ) = 0, by Lemma 2.1(ii),
Y has no coincidence pair. As such, the subgraph induced by the a2 edges in E2 (respectively
the a3 edges in E3) in Y is isomorphic to K1,a2 (respectively K1,a3 ). Therefore we have,

n(C∗4 ,Y ) =
(

n
2

)2

+2
(

n
2

)
+(a2 +a3)

(
n
2

)
−

3

∑
i=2

ai(n−ai)−
3

∑
i=2

(
ai

2

)
=

(
n
2

)2

+2
(

n
2

)
+(a2 +a3)(

(
n
2

)
−n)+

(
a2 +1

2

)
+

(
a3 +1

2

)
=

(
n
2

)2

+n
(

n
2

)
−a2a3

= n(C∗4 ,G)−a2a3

This implies that either a2 = 0 and a3 = e = n− 1 or else a3 = 0 and a2 = e = n− 1.
Either case implies that Y ∼= H + Kn for some bipartite graph H. By Lemma 3.1(ii), H is
connected. Note that H has n+2 vertices and 2n− e = n+1 edges. That is, H ∈Tn+2 and
hence Y ∈J (n,n+1). The proof is now complete.

Next, we show that Kn−3,n,n+1 is chromatically unique if n ≥ 5. In what follows, we
let A(m,n) =

(n
2

)2 + 2
(m+1

2

)(n
2

)
+ (n−m)

(n
2

)
. Then we have A(m,n) = n(C∗4 ,Km,n,n+1) +

1
2 mn(n−m).

Theorem 3.2. For any integer n≥ 5, Kn−3,n,n+1 is chromatically unique.

Proof. Let G denote the graph Kn−3,n,n+1. Assume that Y ∈ C (G) and Y is not isomorphic
to G. Applying Theorem 2.1 and Lemma 3.1(i), it follows that Y ∈K 3(n− 2,n,n). By
Lemma 2.1(ii) with j = 2, we have

sp−2(G)− sp−2(Y )≥ 2a1.

Since Y ∈ C (G), we must have sp−2(G)− sp−2(Y ) = 0 and this implies that a1 = 0. Note
that e = 3, that is, a2 + a3 = 3. Let E2 ∪E3 = {e1,e2,e3}. Note that neither E2 nor E3 is
an empty set because otherwise Y ∼= H +Kn for some bipartite graph H, which by Lemma
3.1(i), implies Y is isomorphic to G. Without loss of generality, we may assume that e1,e2 ∈
E2 and e3 ∈ E3. Since sp−2(G)−sp−2(Y ) = 0, by Lemma 2.1(ii), Y has no coincidence pair.
Thus there are three possible cases for Y : e1 and e2 are not incident, or they have a common
vertex in the partite set having n vertices, or a common vertex in the partite set having n−2
vertices. Let X1,X2,X3 represent Y corresponding to these three cases.

It is routine to check that for each i ∈ {1,2,3}, n(C∗4 ,Xi) = A(n− 3,n)− xi where x1 =
3n2−12n+8, x2 = 3n2−13n+10 and x3 = 3n2−13n+12. Since A(n−3,n) = n(C∗4 ,Kn−3,
n,n+1)+3n(n−3)/2, it follows that n(C∗4 ,Xi) < n(C∗4 ,G) for each i ∈ {1,2,3} and the proof
is complete.
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Theorem 3.3. Suppose m and n are natural numbers such that 2 ≤ m ≤ n. Then there
exists a natural number N(m) (depending on m) such that Km,n,n+1 is chromatically unique
whenever n≥ N(m).

Proof. Let G denote the graph Km,n,n+1. Assume that Y ∈ C (G) and Y is not isomorphic
to G. Applying Theorem 2.1 and Lemma 3.1(i), it follows that Y ∈K e(m + 1,n,n) where
e = n−m. We shall obtain a contradiction by showing that if n is sufficiently large, then
n(C∗4 ,Y ) < n(C∗4 ,Km,n,n+1) for any Y ∈K e(m+1,n,n) where e = n−m. By Lemma 2.1(ii)
with j = 2, we have

sp−2(G)− sp−2(Y )≥ (n− (m+1))a1.

Since Y ∈C (G), we must have sp−2(G)−sp−2(Y ) = 0 and this implies that either n = m+1
or else a1 = 0. If n = m + 1 then G is chromatically unique by Theorem 2 of [3] (see also
Theorem 3 of [4]). Hence assume that a1 = 0. Note that if E2 = /0 or if E3 = /0, then Y ∼= H +
Kn for some bipartite graph H, which by Lemma 3.1(i), implies Y is isomorphic to G. Hence
a2 6= 0 and a3 6= 0. Since sp−2(G)− sp−2(Y ) = 0, by Lemma 2.1(ii), Y has no coincidence
pair. Now, for any Y ∈K e(m + 1,n,n), we see that n(C∗4 ,Y ) = A(m,n)− en2 + g(n) for
some linear function g(n). Since A(m,n) = n(C∗4 ,Km,n,n+1)+mn(n−m)/2, and e = n−m,
it follows that n(C∗4 ,Y ) = n(C∗4 ,Km,n,n+1)− en2/2− e2n/2+g(n).

Hence, it follows that −en2/2− e2n/2+g(n) < 0 if n≥ N(m) for some natural number
N(m) (which depends on m). Consequently, n(C∗4 ,Y ) < n(C∗4 ,Km,n,n+1).
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