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Abstract. For modelling of various physical processes, geodesic lines and almost geodesic
curves serve as a useful tool. Trasformations or mappings between spaces (endowed with
the metric or connection) which preserve such curves play an important role in physics, par-
ticularly in mechanics, and in geometry as well. Our aim is to continue investigations con-
cerning existence of almost geodesic mappings of manifolds with linear (affine) connection,
particularly of the so-called π̃1 mappings, i.e. canonical almost geodesic mappings of type
π1 according to Sinyukov. First we give necessary and sufficient conditions for existence
of π̃1 mappings of a manifold endowed with a linear connection onto pseudo-Riemannian
manifolds. The conditions take the form of a closed system of PDE’s of first order of Cauchy
type. Further we deduce necessary and sufficient conditions for existence of π̃1 mappings
onto generalized Ricci-symmetric spaces. Our results are generalizations of some previous
theorems obtained by N.S. Sinyukov.
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1. Introduction

Geodesic and almost geodesic lines serve as a useful tool for modelling of various physi-
cal processes, and mappings between spaces (endowed with the metric or connection) and
transformations which preserve such curves, play an important role in geometry as well as
in physics, particularly in mechanics, optics and the theory of relativity, [10–12].

Many geometric problems connected with the topic of differential geometry are solved
by means of differential equations, particularly, the problems are often answered by solving
systems of partial differential equations (PDE’s) for components of some geometric objects
(e.g. tensors), [2, 4–10, 15]. We intend to study here the existence problem of canonical
almost geodesic mappings, and as we shall see, our main tool will be to construct and solve
a suitable system of PDE’s of Cauchy type that controls the situation. One of characteristic
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properties of a system of PDE’s of Cauchy type is that the solution of such a system depends
on a finite number of real (or complex) parameters. Moreover, solutions of such systems
can be effectively enumerated, eventually some approximation can be found.

Unless otherwise specified, all objects under consideration are supposed to be differen-
tiable of a sufficiently high class (mostly, differentiability of the class C3 is sufficient).

Let An = (M,∇) be an n-dimensional (Ck, C∞ or Cω ) manifold endowed with a linear
connection ∇. Let c : I→M, t 7→ c(t) defined on an open interval I ⊂R be a (Ck, or smooth)
curve on M satisfying the regularity condition

c′(t) = dc(t)/dt 6= 0 for all t ∈ I.

Denote by ξ the corresponding (Ck−1, or smooth) tangent vector field along c (“velocity
field”), ξ (t) = (c(t),c′(t)) , t ∈ I, and let

ξ1 = ∇(ξ ;ξ ) = ∇ξ ξ , ξ2 = ∇
2(ξ ;ξ ,ξ ) = ∇ξ ξ1.

Geodesics c(s), parametrized by canonical affine parameter (given up to the affine transfor-
mations s 7→ as + b), are characterized by ∇ξ ξ = 0 while unparametrized geodesic curves
(i.e. arbitrarily parametrized, called also pregeodesics in the literature) can be characterized
by the formula ∇ξ ξ = λξ where λ (t) : I→ R is a real function.

Let D = span (X1,X2) (i.e. the vector fields X1, X2 along c form a basis of D). Recall
that D is parallel (along c) if and only if the covariant derivatives along c of basis vector
fields belong to the distribution (the property is independent of reparametrization of the
curve) [14–16].

As a generalization of (an unparametrized) geodesic, let us introduce an almost geodesic
curve as a curve c satisfying: there exists a two-dimensional (differentiable) distribution D
parallel along c (relative to ∇) such that for any tangent vector of c, its parallel translation
along c (to any other point) belongs to the distribution D. Equivalently, c is almost geodesic
if and only if there exist vector fields X1, X2 parallel along c (i.e. satisfying ∇ξ Xi = a jX j

for some differentiable functions a j
i (t) : I→ R) and differentiable real functions bi(t), t ∈ I

along c, such that ξ = b1X1 + b2X2 holds. For almost geodesic curves, the vector fields
ξ1 and ξ2 belong to the corresponding distribution D. If the vector fields ξ and ξ1 are
independent at any point (and hence the (local) curve c is not a geodesic one), we can write
D = span (ξ ,ξ1). So we get another equivalent characterization: a curve is almost geodesic
if and only if ξ2 ∈ span (ξ ,ξ1).

2. Almost geodesic mappings

Geodesic mappings of manifolds with linear connection are (Ck)-diffeomorphisms charac-
terized by the property that all geodesics are send onto (unparametrized in general) geodesic
curves. The classification of geodesic mappings is more or less known. Recall that even for
Riemannian spaces, there is a lack of a nice simple criterion for decision when a given
Riemannian space admits non-trivial geodesic mappings.

Let An = (M,∇), Ān = (M̄, ∇̄) be n-dimensional manifolds (n > 2) each endowed with a
torsion-free linear connection.

We may ask which (Ck-)diffeomorphisms of manifolds send almost geodesic curves onto
almost geodesic again. The answer is: such mappings reduce to geodesic ones, since there
are “too many” almost geodesic curves. It appears that the following definition is more
acceptable.
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We say that a (Ck-)diffeomorphism f : M→ M̄ is almost geodesic if any geodesic curve
of (M,∇) is mapped under f onto an almost geodesic curve in (M̄, ∇̄).

This concept of an almost geodesic mapping was introduced by Sinyukov [14], and be-
fore by Chernyshenko [3], from a rather different point of view. The theory of almost
geodesic mappings was treated in [14–16].

Due to the fact that f is a diffeomorphism we can accept the useful convention that both
linear connections ∇ and ∇̄ are in fact defined on the same underlying manifold M, so that
we can consider their difference tensor field of type (1,2), P = ∇̄−∇, called sometimes a
deformation tensor of the given connections under f [15], given by ∇̄(X ,Y ) = ∇(X ,Y )+
P(X ,Y ) for X ,Y ∈ X (M) (componentwise, Γ̄h

i j = Γh
i j + Ph

i j). Since the connections are
symmetric, P is also symmetric in X ,Y . Of course, we identify objects on M with their
corresponding objects on M̄: a curve c on M identifies with its image c̄ = f ◦ c, its tangent
vector field ξ (t) with the corresponding vector field ξ̄ (t) = T f (ξ (t)) etc.

Besides the deformation tensor, we will use the tensor field of type (1,3), denoted by the
same symbol P, introduced by

P(X ,Y,Z) = ∑
CS(X ,Y,Z)

∇ZP(X ,Y )+P(P(X ,Y ),Z), X ,Y,Z ∈X (M),

where ∑CS( , ,) means the cyclic sum on arguments in brackets (i.e. symmetrization without
coefficients).

Almost geodesic diffeomorphisms f : (M,∇)→ (M, ∇̄) are characterized by the follow-
ing condition on the type (1,3) tensor P:

P(X1,X2,X3)∧P(X4,X5)∧X6 = 0, Xi ∈X (M), i = 1, . . . ,6;

X ∧Y means the decomposable bivector, the exterior product of X and Y .
Sinyukov [14–16] distinguished three kinds of almost geodesic mappings, namely π1,

π2, and π3, characterized, respectively, by the conditions for the deformation tensor:

π1: ∇X P(X ,X)+P(P(X ,X),X) = a(X ,X)·X +b(X)·P(X ,X), X ∈X (M),

where a ∈ S2(M) is a symmetric tensor field of type (0,2) and b is a 1-form;

π2: P(X ,X) = ψ(X) ·X +ϕ(X) ·F(X), X ∈X (M),

where ψ and ϕ are 1-forms, and F is a type (1,1) tensor field satisfying

∇X F(X)+ϕ(X) ·F(F(X)) = µ(X) ·X +ρ(X) ·F(X), X ∈X (M)

for some 1-forms µ , ρ;

π3: P(X ,X) = ψ(X) ·X +a(X ,X) ·Z, X ∈X (M)

where ψ is a 1-form, a ∈ S2(M) is a symmetric bilinear form and Z ∈X (M) is a vector
field satisfying

∇X Z = h ·X +θ(X) ·Z

for some scalar function h: M→ R and some 1-form θ . Remark that the above classes are
not disjoint.
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3. Canonical almost geodesic mappings π̃1

We are interested here in a particular subclass of π1-mappings, the so-called π̃1-mappings,
or canonical almost geodesic mappings, distinguished by the condition b = 0. That is,
π̃1-mappings are just morphisms satisfying

∇X P(X ,X)+P(P(X ,X),X) = a(X ,X) ·X , a ∈ S2(M), X ∈X (M).

In local coordinates, the condition reads

(3.1) Ph
(i j,k) = a(i jδ

h
k)−Ph

α(iP
α

jk).

Here and in what follows, the comma “ , ” denotes covariant derivative with respect to ∇,
the round bracket denote the cyclic sum on indices involved, δ h

i is the Kronecker delta, and
Ph

i j are component of deformations tensor P.
Recall that the equation ∇̄(X ,Y ) = ∇(X ,Y )+ P(X ,Y ) is in local coordinates expressed

as
Γ̄

h
i j = Γ

h
i j +Ph

i j,

where Γh
i j and Γ̄h

i j are components of connections ∇ and ∇̄, respectively.
Any geodesic mapping is a π1-mapping (the characterizing condition can be checked),

and any π1-mapping can be written as a composition of a geodesic mapping followed by a
π̃1-mapping. So we can consider geodesic mappings as trivial almost geodesic mappings,
and we will omit them in further considerations; they were analysed in [1].

Recall ( [7,13]) that a manifold (M,∇) is called a Ricci-symmetric space1 when the Ricci
tensor is parallel with respect to the connection ∇, i.e.

∇Ric = 0.

It was proven by Sinyukov [15], that the basic partial differential equations (PDE’s) of
π̃1-mappings of a manifold (M,∇) onto Ricci-symmetric pseudo-Riemannian manifolds
(M̄, ḡ) (of arbitrary signature) can be transformed into (an equivalent) closed system of
PDE’s of first order of the Cauchy type. Hence the solution (if it exists) depends on a finite
set of parameters. Consequently, for a manifold with a symmetric connection admitting
π̃1-mappings onto Ricci-symmetric spaces, the set of all Ricci-symmetric spaces (M̄, ḡ)
which can serve as images of the given manifold (M,∇) under π̃1-mappings is finite. The
cardinality r of such a set is bounded by the number of free parameters.

On the other hand, geodesic mappings form a subclass among π̃1-mappings (they obey
the definition). Basic equations describing geodesic mappings of manifolds with linear
connection do not form a closed system of Cauchy type (the general solution depends on n
arbitrary functions; if the given manifold admits geodesic mappings, the cardinality of the
set of possible images is big). It follows that the conditions (3.1) describing π̃1-mappings
of manifolds, in general, cannot be transformed into a closed system of Cauchy type. But
if we choose a suitable subclass of images and restrict ourselves (for the given manifold)
only onto mappings with co-domain in the apropriate subclass we might succeed to get an
equivalent closed system of Cauchy type. If this is the case then the given manifold admits
either non (if the system is non-integrable) or a finite number of π̃1-images in the given
class.

1In analogy to symmetric spaces that are characterized by parallel Riemannian curvature tensor: ∇R = 0.
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Our aim is to analyse π̃1-mappings of manifolds onto manifolds with linear connec-
tion in general, and to use the reached results for examining π̃1-mappings of manifolds
onto (pseudo-)Riemannian spaces (in general, without any restrictive conditions onto the
Ricci tensor), which will generalize the above result by Sinyukov. In the rest, we will omit
“pseudo”.

All π̃1-mappings f : M → M can be described by the following system of differential
equations [15, 16]:

(3.2) 3(∇ZP(X ,Y )+P(Z,P(X ,Y ))) = ∑
CS(X ,Y )

(R(Y,Z)X− R̄(Y,Z)X)+ ∑
CS(X ,Y,Z)

a(X ,Y )Z.

In what follows, we prefer to express our equalities in local coordinates (with respect to a
map (U,ϕ) on M) since the invariant formulas are rather complicated. The above formula
has the local expression

(3.3) 3(Ph
i j,k +Ph

kα Pα
i j ) = Rh

(i j)k− R̄h
(i j)k +a(i jδ

h
k),

where Ph
i j, ai j, Rh

i jk, R̄h
i jk are local components of tensors P, a, R, and R̄.

4. Properties of the fundamental equations of the canonical almost geodesic mappings
π̃1

Assuming (3.3) as a system of PDE’s for functions Ph
i j on M, the corresponding integrability

conditions read

R̄h
(i j)[k,`] = Rh

(i j)[k,`] +δ
h
(ia jk),`−δ

h
(ia j`),k +3

(
Pα

i j R̄h
αk`−Ph

α( jR
α

i)k`

)
−Ph

αk

(
Rα

(i j)`− R̄α

(i j)` +δ
α

(i a j`)

)
+Ph

α`

(
Rα

(i j)k− R̄α

(i j)k +δ
α

(i a jk)

)
.

Passing from ∇R̄ to ∇̄R̄ on the left hand side we get integrability conditions of the system
(3.3) in the form

(4.1) R̄h
(i j)[k;`] = δ

h
(ia jk),`−δ

h
(ia j`),k +Θ

h
i jk` ;

here we denoted

Θ
h
i jk` = Rh

(i j)[k,`] +3
(

Pα
i j R̄h

αk`−Ph
α( jR

α

i)k`

)
−Ph

αk

(
Rα

(i j)` +δ
α

(i a j`)

)
+Ph

α`

(
Rα

(i j)k +δ
α

(i a jk)

)
−Pα

`(iR̄
h
|α| j)k−Pα

`(iR̄
h
j)αk +Pα

k(iR̄
h
|α| j)` +Pα

k(iR̄
h
j)α`

where “;” denotes covariant derivative with respect to ∇̄.
If we apply covariant differentiation with respect to ∇̄ to the integrability conditions (4.1)

of the system (3.3), and then pass from covariant derivation ∇̄ to ∇, we get

(4.2) R̄h
(i j)k;`m− R̄h

(i j)`;mk = δ
h
(ia jk),`m−δ

h
(ia j`),km +T h

i jk`m ,

where we denoted

T h
i jk`m = R̄h

αmkR̄α

(i j)`− R̄α
`mkR̄h

(i j)α − R̄α
jmkR̄h

(iα)`− R̄α
imkR̄h

( jα)`−Ph
mα δ

α

(i a jk),`

−Pα
m jδ

h
(iaαk),`−Pα

miδ
h
(α a jk),`−Pα

mkδ
h
(α ai j),`−Pα

mlδ
h
(ia jk),α −Ph

mα δ
α

(i a j`),k

+Pα
miδ

h
(α a j`),k +Pα

m jδ
h
(iaα`),k +Pα

mkδ
h
(ia j`),α −Pα

mlδ
h
(ia jα),k−Θ

h
i jk`,m

+Ph
αmΘ

α
i jk`−Pα

miΘ
h
α jk`−Pα

m jΘ
h
iαk`−Pα

mkΘ
h
i jα`−Pα

m`Θ
h
i jkα .

(4.3)
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Alternating (4.2) in `,m we get

R̄h
(i j)m;`k− R̄h

(i j)`;mk = δ
h
(ia jm),k`−δ

h
(ia j`),km +T h

i jk[lm] + R̄h
(i|αk|R̄

α

j)m`

+ R̄h
(i j)α R̄α

km`− R̄α

(i j)kR̄h
αm` + R̄h

α(i|k|R̄
α

j)m` +δ
h
(α a jk)R

α
i`m

+δ
h
(α aik)R

α
j`m +δ

h
(ia jα)R

α
k`m−δ

h
(ia jk)R

α
α`m .

(4.4)

Using properties of the Riemannian tensor, we rewrite (4.4) as

(4.5) R̄h
im`; jk + R̄h

jm`;ik = δ
h
(ia j`),km−δ

h
(ia jm),k`−Nh

i jk`m ,

where the last term is

Nh
i jk`m = T h

i jk[`m] + R̄α
im`R̄

h
(α j)k + R̄α

jm`R̄
h
(αi)k + R̄α

km`R̄
h
(i j)α − R̄h

αm`R̄
α

(i j)k

+δ
h
(α a jk)R

α
i`m +δ

h
(α aik)R

α
j`m +δ

h
(α ai j)R

α
k`m−a(i jR

h
k)`m .

Alternating (4.5) over j,k we get

R̄h
jm`;ik− R̄h

km`;i j = δ
h
(ia j`),km−δ

h
(ia jm),k`−δ

h
(iak`), jm +δ

h
(iakm), j`−Nh

i[ jk]`m

+ R̄h
αm`R̄

α
ik j + R̄h

iα`R̄
α
mk j + R̄h

imα R̄α
`k j− R̄α

im`R̄
h
αk j .

(4.6)

Let us change mutually i and k in (4.5), and then use (4.6). We evaluate

2R̄h
jm`;ik = δ

h
(ia j`),km−δ

h
(ia jm),k`−δ

h
(ka jm),i` +δ

h
(iakm), j`

−δ
h
(iak`), jm +δ

h
( j`ak),im +Ω

h
i jk`m ,

(4.7)

where we used the notation

Ω
h
i jk`m =−Nh

i jk`m +Nh
k[i j]k`m− R̄h

αm`R̄
α

(k j)i + R̄h
jα`R̄

α
mik + R̄h

jmα R̄α
`ik− R̄h

αi( jR̄
α

k)m`

+ R̄h
jα`R̄

α
mik + R̄h

jmα R̄α
`ik− R̄h

αm`R̄
α
ik j− R̄h

iα`R̄
α
mk j + R̄α

im[`R̄
h
α]k j .

On the left side of (4.7), let us pass from the covariant derivation ∇̄ to ∇:

2R̄h
jm`,ik = δ

h
(ia j`),km−δ

h
(ia jm),k`−δ

h
(ka jm),i` +δ

h
(iakm), j`

−δ
h
(iak`), jm−δ

h
(ka j`),im +Sh

i jk`m ,
(4.8)

where

Sh
i jk`m = Ω

h
i jk`m−2

[
R̄α

jm`,iP
h
`k− R̄h

αm`,iP
α
jk− R̄h

jα`,iP
α
mk− R̄h

jmα,iP
α
`k− R̄h

jm`,α Pα
ik

+
(

R̄α
jm`P

β

αi− R̄h
αm`P

α
i j − R̄h

jα`P
α
im− R̄h

jmα Pα
i`

)
Ph

βk−
(

R̄α
jm`P

h
αβ

− R̄h
αm`P

α

β j− R̄h
jα`P

α

βm− R̄h
jmα Pα

β`

)
Pβ

ik −
(

R̄α

βm`P
h
αi− R̄h

αm`P
α

β i

− R̄h
βα`P

α
im− R̄h

βmα
Pα

i`

)
Pβ

jk−
(

R̄α

jβ`P
h
αi− R̄h

αβ`P
α
ji − R̄h

jα`P
α

β i

− R̄h
jβα

Pα
i`

)
Pβ

km−
(

R̄α

jmβ
Ph

αi− R̄h
αmβ

Pα
ji − R̄h

jαβ
Pα

mi− R̄h
jmα Pα

β i

)
Pβ

k`

]
.

(4.9)
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5. Canonical almost geodesic mappings π̃1 onto Riemannian spaces

Let there exist a π̃1-mapping of a manifold An = (M,∇) onto a Riemannian manifold V̄n =
(M, ḡ) where ḡ ∈ T 0

2 M is a metric tensor with components ḡi j. Recall that the Riemannian
tensor R̄hi jk = R̄α

i jkḡαh of type (0,4) satisfies

(5.1) R̄hi jk + R̄ih jk = 0.

In (4.7), let us lower the index h by means of the metric tensor ḡ and then use symmetrization
with respect to h and j. According to (5.1) we get

ḡih
(
am[k, j]l +al[ j,k]m

)
+ ḡi j

(
am[k,h]l +al[h,k]m

)
+ ḡkh

(
am[i, j]l +al[ j,i]

)
+ ḡk j

(
am[i,h]l

+al[h,i]m
)
+ ḡmh

(
ak[i, j]l−ai j,kl

)
+ ḡm j

(
ak[i,h]l−aih,kl

)
+ ḡl j

(
akh,il−ai(h,k)m

)
+2ḡ jh

(
ak(l,i)m−am(i,k)l

)
+ ḡlh

(
ak[ j,i]m−ai j,km

)
=−Ω

α

i( j|klmḡα|h).

(5.2)

Contraction of the last formula with the dual tensor ḡ jh (‖ḡi j‖= ‖ḡi j‖−1) gives

(5.3) akl,im−aim,kl−akm,il +ail,km =− 2
n+1

Ω
α
iαklm .

Let us symmetrize the above formula over k and l. From (5.3) we get

2akl,im−2aim,kl = 2aαmRα
lik +aαiRα

mlk +aαkRα
mil +aαlRα

mik

+
2

n+1

(
Ω

α
lαkim−Ω

α

iα(kl)m

)
.

(5.4)

Using (5.3) and (5.4) the Equation (5.2) reads

2ḡih(akm, jl−a jm,kl)+2ḡi j(akm,hl−ahm,kl)+2ḡkh(aim, jl−a jm,il)

+2ḡk j(aim,hl−ahm,il)+ ḡmk(aki, jl−ak j,il−ai j,kl)+ ḡm j(aki,hl

−akh,il−aih,kl)+ ḡl j(akh,im−ai(h,k)m)+ ḡlh(ak j,im−ai(k, j)m) = Ci jkhl ,

(5.5)

where

Ci jkhl =−Ω
α

i( j|klmḡα|h) +
2

n+1
Ω

α
iαklmḡ jh− ḡkhaαlRα

mi j

+ ḡih

(
2

n+1
Ω

α
mαl jk−aαkRα

(ml) j−aα jRα

(l|k|m)−aαmRα
lk j−aαlRα

mk j

)
+ ḡi j

(
2

n+1
Ω

α
mαlhk−aαkRα

(ml)h−aαhRα

(l|k|m)−aαmRα
lkh−aαlRα

mkh

)
+ ḡkh

(
2

n+1
Ω

α
mαl ji−aαiRα

(ml) j−aα jRα

(l|i|m)−aαmRα
li j +aαlRα

mi j

)
+ ḡk j

(
2

n+1
Ω

α
mαlhi−aαiRα

(ml)h−aαhRα

(l|i|m)−aαmRα
lih +aαlRα

mih

)
.

If we contract (5.5) with the dual ḡi j of the metric tensor, use (5.4) and the Ricci identity we
get

(5.6) akm,hl−akl,hm =
1

2(n+3)
(ḡhmµkl− ḡhl µkm)+Bkmhl ,
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where µkm = aαβ ,kmḡαβ , and

Bkmhl = Cαβkmhl ḡ
αβ +3amα Rα

lhk +
3
2

(
ahα Rα

mkl +akα Rα
mhl +alα Rα

mhk

)
+

3
n+1

(
Ω

α
lαkhm−Ω

α

hα(kl)m

)
− 1

2

(
amα Rα

lkm +akα Rα
mhl +ahα Rα

mkl +alα Rα
mkh

)
− 1

n+1

(
Ω

α
lαhkm−Ω

α

kα(hl)m

)
−aα(hRα

k)lm +
1
2

(
akα Rα

lmh +ahα Rα
lkm +amα Rα

lkh

)
.

Now contract (5.5) with ḡih. According to (5.6) we get

(5.7) ḡkl µ jm− ḡ jl µkm + ḡkmµ jl− ḡ jkmµkl =
n+3
n+1

Ckl jm,

where

Ckl jm = Cα jkl(m|β |l)ḡ
αβ −2(n+1)

(
Bk(ml) j−aα(lR

α

m) jk +a jα Rα

(m|k|l) +akα Rα

(lm) j

)
.

Contracting (5.7) with ḡk` and using the notation K = µαβ ḡαβ we obtain components of the
tensor µ:

(5.8) µ jm =
1
n

Kḡ jm +
n+3

n(n+1)
Cαβ jmḡαβ .

Using (5.8) we can rewrite (5.6) in the form

(5.9) akm,hl−ahm,kl =
K

2n(n+3)
(ḡmhḡkl− ḡlhḡkm)+Akmhl ,

where

Akmhl = Bkmhl +
1

2n(n+1)

(
ḡhmCαβkl ḡ

αβ − ḡhlCαβkmḡαβ

)
.

Combining (5.5) and (5.9) we get

ḡ jlaih,km + ḡhlai j,km− ḡ jmaih,kl− ḡhmai j,kl

=− K
n(n+3)

(
ḡihḡkl ḡ jm− ḡihḡkmḡ jl + ḡi jḡkl ḡhm− ḡi jḡkmḡhl

+3ḡkhḡil ḡ jm−3ḡkhḡ jl ḡim +3ḡk jḡil ḡhm−3ḡlhḡ jkḡim
)
+Ai jkmhl ,

(5.10)

where we have denoted

Ai jkmhl = Ci jkmhl−2
(
ḡi(hA|km| j)l + ḡk(hA|im| jl)− ḡm(hA|ki| j)l− ḡl(hA|k| j)im)

)
.

Finally, symetrization of (5.10) over the indices i, j, followed by contraction with ḡ`h enables
us to express second covariant derivatives of the tensor a,

(5.11) ai j,km =
K

n(n+3)
(ḡi jḡkm +3ḡk( jḡi)m)+A(i j)kmαβ ḡαβ .

Now we can consider (5.11) as the first order system of PDE’s of Cauchy type relative to
the tensor ∇a (i.e. in ai j,k), find the integrability conditions and contract them with ḡi j and
ḡkm, respectively. We calculate ∇K,

(5.12) K,β =
n(n+3)

n2 +5n−6
Aβ ,
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where we denoted

Aρ =
[

aα( j,|kRα

i)mρ
+ai j,α Rα

kmρ −
K

n(n+3)
(
ḡi j,[ρ ḡm]k + ḡi jḡk[m,ρ] +3ḡk j,[ρ ḡm]i +3ḡk jḡi[m,ρ]

+3ḡki,[ρ ḡm] j +3ḡkiḡ j[m,ρ]
)
+A(i j)k[m|αβ |,ρ]ḡ

αβ +A(i j)k[m|αβ |ḡ
αβ

,ρ]

]
ḡi jḡkm.

We use Γ̄h
i j = Γh

i j +Ph
i j and get

(5.13) ḡi j,k = Pα
ik ḡα j +Pα

jkḡαi.

Assume the tensors ∇a and ∇R̄, and denote their components by ai jk := ai j,k and R̄h
i jk` :=

R̄h
i jk,`, respectively. Then (4.8) and (5.11) take the form

2Rh
jmli,k = δ

h
(ia jl)k,m−δ

h
(ia jm)k,l +δ

h
(ka jl)i,m−δ

h
(ka jm)i,l

+δ
h
(iakm) j,l−δ

h
(iakl) j,m +Sh

i jklm,
(5.14)

(5.15) ai jk,m =
K

n(n+3)
(ḡi jḡkm +3ḡk( jḡi)m)+A(i j)kmαβ ḡαβ ,

where covariant derivatives of the tensor ai jk in (5.14) are supposed to be expressed accord-
ing to (5.15), the tensor S was introduced componentwise in (4.9).

The formulas (3.3), (5.12)–(5.15) represent a closed system of Cauchy type for unknown
functions

(5.16) ḡi j(x), Ph
i j(x), ai j(x), ai jk(x), K(x), R̄h

i jk(x), Rh
i jkl(x),

which, moreover, must satisfy a finite set of algebraic conditions

(5.17) ḡ[i j] = Ph
[i j] = a[i j] = a[i j]k = R̄h

i( jk) = Rh
i( jk)l = 0, det‖ḡi j(x)‖ 6= 0.

So we have proven:

Theorem 5.1. The given manifold An = (M,∇) admits π̃1-mappings (i.e. canonical almost
geodesic mappings of type π1) onto Riemannian spaces V̄n= (M, ḡ) if and only if there exists
solution of the mixed system of Cauchy type (3.3), (5.12)-(5.15), (5.17) for the functions
(5.16).

As a consequence of the additional algebraic conditions, we get an upper boundary for
the number r of possible solutions:

Corollary 5.1. The family of all Riemannian manifolds V̄n which can serve as images of the
given manifold An = (M,∇), depends on at most

1
2

n2(n2−1)+n(n+1)2 +1

parameters.

The above Theorem generalizes the result of Sinyukov [16] already mentioned as well
as his results on geodesic mappings of Riemannian spaces.
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6. Ricci-symmetric and generalized Ricci-symmetric spaces

It was proven in [15] that the family of all π̃1-mappings of a manifold (M,∇) onto Ricci-
symmetric (pseudo-)Riemannian spaces (M̄, ḡ) is given by the integrable system (of Cauchy
type) of partial differentiable equations (in covariant derivatives). Consequently, given
a manifold with a symmetric connection, the family of all Ricci-symmetric Riemannian
spaces (M̄, ḡ) which can serve as images of the given manifold (M,∇) under some π̃1-
mapping, depends on a finite set of parameters.

On the other hand, the geodesic mappings form a subset in the set of π̃1-mappings; they
obey the definition. But the basic equations describing geodesic mappings of a manifold
with the linear connection do not form an integrable system of Cauchy type, since the gen-
eral solution depends on n arbitrary functions. It follows that the conditions (3.1) describing
π̃1-mappings (i.e. canonical almost geodesic mappings) of manifolds do not, in general,
induce an integrable system.

In the following, we consider a particular case when (3.1) can be transformed into an
integrable system, generalizing the results of Sinyukov. Namely, we will investigate π̃1-
mappings of a manifold (M,∇) onto the so-called generalized Ricci-symmetric manifolds.

Definition 6.1. A manifold (M,∇) will be called a generalized Ricci-symmetric manifold
if its Ricci tensor satisfies

(6.1) ∇Ric (Y,Z;X)+∇Ric (X ,Z;Y ) = 0,

that is, ∇X Ric (Y,Z)+∇Y Ric (X ,Z) = 0.

We do not a priori suppose the Ricci tensor be symmetric. If Ric is symmetric and (6.1)
holds then Ric is parallel, ∇Ric = 0, and (M,∇) is a Ricci-symmetric manifold. Einstein
spaces (Riemannian spaces characterized by the property Ric = R

n g, see [10]) satisfy (6.1)
since they satisfy ∇Ric = 0, hence are generalized Ricci-symmetric. In this sense, the
generalized Ricci-symmetric spaces can be considered as a certain generalization of Einstein
spaces.

7. Almost geodesic mappings π̃1 onto generalized Ricci-symmetric manifolds

Given the n-dimensional manifolds A = (M,∇) and Ā = (M̄, ∇̄) with the corresponding
curvature tensors R and R̄, respectively, all connection-preserving mappings f : M→ M̄ can
be described by the system of differential equations (3.2), [15–17]. These formulas have the
local expression (3.3). As we have already proved, from (3.2) it follows (4.1). Using the
Bianchi identity we can write (4.1) in local coordinates as

R̄h
i`k; j + R̄h

j`k;i = δ
h
(ia jk),`−δ

h
(ia j`),k +Θ

h
i jk` ,

where “;” denotes the covariant derivative with respect to ∇̄. Contraction in h and k gives
the following equality for covariant derivatives of components of the Ricci tensor R̄ic of ∇̄:

R̄i`; j + R̄ j`;i = (n+1)ai j,`−a`(i, j) +Θ
α
i jα` .

In the following let us suppose that the manifold (M̄, ∇̄) is a generalized Ricci-symmetric
space, that is, (6.1) holds. In local coordinates, (6.1) reads

R̄i j;k + R̄k j;i = 0.
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Under this assumption, (5.6) reads

(7.1) (n+1)ai j,`−a`i, j−a` j,i =−Θ
α
i jα` .

Using symmetrization in `, i gives

a`i, j +a` j,i =−1
n

Θ
α

(i|`α| j) +
2
n

ai j,` .

Now (7.1) reads

(7.2)
n2 +n−2

n
ai j,` =−Θ

α
i jα`−

1
n

Θ
α

(i|`α| j).

Applying the covariant differentiation with respect to ∇̄ to the integrability conditions (5.4),
followed by passing from the covariant derivative ∇̄ to ∇ on the right hand side, we get

(7.3) R̄h
(i j)k;`m− R̄h

(i j)`;mk = δ
h
(ia jk),`m−δ

h
(ia j`),km +T h

i jk`m ,

where
T h

i jk`m = R̄h
αmkR̄α

(i j)`− R̄α
`mkR̄h

(i j)α − R̄α
jmkR̄h

(iα)`− R̄α
imkR̄h

( jα)`−Ph
mα δ

α

(i a jk),`

−Pα
m jδ

h
(iaαk),`−Pα

miδ
h
(α a jk),`−Pα

mkδ
h
(α ai j),`−Pα

mlδ
h
(ia jk),α −Ph

mα δ
α

(i a j`),k

+Pα
miδ

h
(α a j`),k +Pα

m jδ
h
(iaα`),k +Pα

mkδ
h
(ia j`),α −Pα

mlδ
h
(ia jα),k−θ

h
i jk`,m

+Ph
αmθ

α
i jk`−Pα

miθ
h
α jk`−Pα

m jθ
h
iαk`−Pα

mkθ
h
i jα`−Pα

m`θ
h
i jkα .

Alternating (7.3) over `,m we obtain

R̄h
(i j)m;`k− R̄h

(i j)`;mk = δ
h
(ia jm),k`−δ

h
(ia j`),km +T h

i jk[lm] + R̄h
(i|αk|R̄

α

j)m`

+ R̄h
(i j)α R̄α

km`− R̄α

(i j)kR̄h
αm` + R̄h

α(i|k|R̄
α

j)m` +δ
h
(α a jk)R

α
i`m

+δ
h
(α aik)R

α
j`m +δ

h
(ia jα)R

α
k`m−δ

h
(ia jk)R

α
α`m .

(7.4)

Due to the properties of the Riemannian tensor, (7.4) can be written as

(7.5) R̄h
im`; jk + R̄h

jm`;ik = δ
h
(ia j`),km−δ

h
(ia jm),k`−Nh

i jk`m ,

where
Nh

i jk`m = T h
i jk[`m] + R̄α

im`R̄
h
(α j)k + R̄α

jm`R̄
h
(αi)k + R̄α

km`R̄
h
(i j)α − R̄h

αm`R̄
α

(i j)k

+δ
h
(α a jk)R

α
i`m +δ

h
(α aik)R

α
j`m +δ

h
(α ai j)R

α
k`m−a(i jR

h
k)`m .

Let us alternate (7.5) over j, k. We get

R̄h
jm`;ik− R̄h

km`;i j = δ
h
(ia j`),km−δ

h
(ia jm),k`−δ

h
(iak`), jm +δ

h
(iakm), j`−Nh

i[ jk]`m

+ R̄h
αm`R̄

α
ik j + R̄h

iα`R̄
α
mk j + R̄h

imα R̄α
`k j− R̄α

im`R̄
h
αk j .

(7.6)

Let us change mutually i and k in (7.5), and then use (7.6). We evaluate

2R̄h
jm`;ik = δ

h
(ia j`),km−δ

h
(ia jm),k`−δ

h
(ka jm),i` +δ

h
(iakm), j`

−δ
h
(iak`), jm +δ

h
( j`ak),im +Ω

h
i jk`m ,

(7.7)

where
Ω

h
i jk`m =−Nh

i jk`m +Nh
k[i j]k`m− R̄h

αm`R̄
α

(k j)i + R̄h
jα`R̄

α
mik + R̄h

jmα R̄α
`ik− R̄h

αi( jR̄
α

k)m`

+ R̄h
jα`R̄

α
mik + R̄h

jmα R̄α
`ik− R̄h

αm`R̄
α
ik j− R̄h

iα`R̄
α
mk j + R̄α

im[`R̄
h
α]k j .
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On the left hand side of (7.7), let us pass from the covariant derivative with respect to ∇̄ to
the covariant derivative with respect to ∇:

2R̄h
jm`,ik = δ

h
(ia j`),km−δ

h
(ia jm),k`−δ

h
(ka jm),i` +δ

h
(iakm), j`

−δ
h
(iak`), jm−δ

h
(ka j`),im +Sh

i jk`m ,
(7.8)

where

Sh
i jk`m = Ω

h
i jk`m−2

[
R̄α

jm`,iP
h
`k− R̄h

αm`,iP
α
jk− R̄h

jα`,iP
α
mk− R̄h

jmα,iP
α
`k− R̄h

jm`,α Pα
ik

+
(

R̄α
jm`P

β

αi− R̄h
αm`P

α
i j − R̄h

jα`P
α
im− R̄h

jmα Pα
i`

)
Ph

βk−
(

R̄α
jm`P

h
αβ
− R̄h

αm`P
α

β j

− R̄h
jα`P

α

βm− R̄h
jmα Pα

β`

)
Pβ

ik −
(

R̄α

βm`P
h
αi− R̄h

αm`P
α

β i− R̄h
βα`P

α
im

− R̄h
βmα

Pα
i`

)
Pβ

jk−
(

R̄α

jβ`P
h
αi− R̄h

αβ`P
α
ji − R̄h

jα`P
α

β i− R̄h
jβα

Pα
i`

)
Pβ

km

−
(

R̄α

jmβ
Ph

αi− R̄h
αmβ

Pα
ji − R̄h

jαβ
Pα

mi− R̄h
jmα Pα

β i

)
Pβ

k`

]
.

Let us introduce a (1,4)-tensor field Rh
jm`i = R̄h

jm`,i. Then we get

(7.9) R̄h
jm`,i = Rh

jm`i .

From (7.8), the covariant derivative of the tensor (7.9) satisfies

2Rh
jm`i,k = δ

h
(ia j`),km−δ

h
(ia jm),k`−δ

h
(ka jm),i` +δ

h
(iakm), j`

−δ
h
(iak`), jm +δ

h
(ka j`),im +Sh

i jk`m ,
(7.10)

where we used (7.2).
It can be verified that the equations (5.2), (7.2), (7.9) and (7.10) for the functions Ph

i j(x),
ai j(x), R̄h

i jk(x) and Rh
i jkm(x) on (M,∇) form an integrable system; the above functions must

satisfy also additional algebraic conditions

Ph
i j(x) = Ph

ji(x), ai j(x) = a ji(x),

R̄h
i( jk)(x) = R̄h

(i jk)(x) = 0, Rh
i( jk)`(x) = Rh

(i jk)`(x) = 0.
(7.11)

So we have succeeded to prove the following generalization of the result of Sinyukov [16,
17] (we use the above notation).

Theorem 7.1. Let (M,∇) be a manifold with linear connection and (M̄, ∇̄) a generalized
Ricci-symmetric manifold. There is a π̃1 mapping f : M→ M̄ (i.e. a canonical almost ge-
odesic mapping of type π1) if and only if there exist functions Ph

i j(x), ai j(x), R̄h
i jk(x) and

Rh
i jkm(x) which satisfy the equations (5.2), (7.2), (7.9), (7.10), and (7.11). The system of

equations (5.2), (7.2), (7.9) and (7.10) forms a Cauchy type system of PDE’s in covariant
derivatives.

As a consequence we obtain

Corollary 7.1. The family of all generalized Ricci-symmetric manifolds, which can serve
as an image of the given manifold (M,∇) under some π̃1-mapping, depends on at most

1
6

n(n+1)(2n3−4n2 +5n+3)

parameters.
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