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1. Introduction

Let Ω be a domain in Rn and A be a smooth symmetric matrix function on Ω. Assume that
there exist Λ > 0 such that for every ξ ∈ Rn and all x ∈Ω, there hiolds

0≤ 〈A(x)ξ ,ξ 〉 ≤ Λ|ξ |2.
F. Ferrari and E. Valdinocihad [4] have showed that if u is a C2 stable week solution of the
following PDE

div(A(x)∇u(x)) = f (u(x)),
then the following general Poincaré inequality holds:

(1.1)
∫

Ω

〈A(x)∇φ ,∇φ〉|∇u|2 ≥
∫

Ω
⋂
{∇u 6=0}

W (x)φ 2,

where

W (x) =
n

∑
i=1
〈A(x)∇ui,∇ui〉−〈A(x)(D2u ·N),(D2u ·N)〉−

n

∑
i=1

div(Ai(x)∇u)ui

and N = ∇u(x)/|∇u(x)|. By the choice of suitable A(x) and stable solutions, F. Ferrari and
E. Valdinocihad [4] obtained some weighted Poincaré inequalities for the Laplace operator
in the Euclidean space Rn, Kohn’s sublaplace operator in the Heisenberg group Hn, the
sublaplace operator in the Engel group, the Franchi-Grushin-Lanconelli operators and the
p-laplacian in the Euclidean space Rn.

The aim of this note is to prove analogous Poincaré inequalities with weights on Carnot
groups. We refer to [7, 11] for Hardy inequalities on this groups. Our proof shows if one
considers the weighted Poincaré inequalities on Carnot groups (not the general Poincaré
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inequality (1.1)), one needs not use the stable solutions. In fact, we offer here an alternative
elementary proof, in which some calculus is enough.

To state our results, we need some notations. Recall that a Carnot group G is a stratified,
simply connected nilpotent Lie group with the Lie algebra g =

⊕r
i=1 Vi satisfying [V1,Vj] =

Vj+1 for all 1 ≤ j ≤ r−1. The integer r is called the step of the group G. Set n j = dimVj
(1 ≤ j ≤ r). Let {X1, . . . ,Xn1} be a basis of V1 and denote by ∇G = (X1, . . . ,Xn1). Set

ξ (1) = ξ1X1 + · · ·+ξn1Xn1 and |ξ (1)|=
√

ξ 2
1 + · · ·+ξ 2

n1
. To this end, we have

Theorem 1.1. Let p > 1 and α ≥ 0. If G is a Carnot group of step 2, then for all φ ∈C∞
0 (G),

there holds

(1.2)
(

n1 +α

p

)p ∫
G
|φ |p|ξ (1)|α ≤

∫
G
|∇Gφ |p|ξ (1)|α+p

and the constant ((n1 +α)/p)p in (1.2) is sharp.

Let Hn be the Heisenberg group whose group structure is given by

(x, t)◦ (x′, t ′) =

(
x+ x′, t + t ′+2

n

∑
j=1

(x2 jx′2 j−1− x2 j−1x′2 j)

)
.

The vector fields X2 j−1 = ∂/∂x2 j−1 +2x2 j∂/∂ t, X2 j = ∂/∂x2 j−2x2 j−1∂/∂ t, ( j = 1, . . . ,n)
are left invariant and generate the Lie algebra of Hn. It is easy to check that Hn is a Carnot
group of step two. By Theorem 1.1, we have the following corollary which improves [4,
Theorem 1.3].

Corollary 1.1. Let p > 1 and α ≥ 0. There holds, for all φ ∈C∞
0 (Hn),

(1.3)
(

2n+α

p

)p ∫
Hn
|φ |p|x|α ≤

∫
Hn
|∇Hφ |p|x|α+p,

where ∇H = (X1, . . . ,X2n), and the constant ((2n+α)/p)p in (1.3) is sharp.

When G is a Carnot group of step r with r > 2, we have the following theorem.

Theorem 1.2. Let p > 1 and α ≥ 0. If G is a Carnot group of step r with r > 2, then for
α ≥ 0 and φ ∈C∞

0 (G), there holds,

(1.4)
(

n1 +α

p

)p ∫
G
|φ |p|ξ (1)|α ≤

∫
G
|∇Gφ |p|ξ (1)|α+p.

Furthermore, if p = 2, the constant ((n1 +α)/2)2 in (1.4) is sharp.

Denote by E the Engel group. Let

Z1 =
∂

∂x1
+ x2

∂

∂x3
+ x2

2
∂

∂x4
and Z2 =

∂

∂x2
.

It is known that Z1 and Z2 generate the Lie algebra of Engel group E and E is a Carnot
group of step 3. By Theorem 4, we have the following corollary which generalizes the [4,
inequality (1.18)].

Corollary 1.2. Let α ≥ 0. There holds, for all φ ∈C∞
0 (E),

(1.5) (1+α)2
∫

R4
|φ |2(x2

1 + x2
2)

α ≤
∫

R4
|∇Eφ |2(x2

1 + x2
2)

α+1,
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where ∇E = (Z1,Z2), and the constant (1+α)2 in (1.5) is sharp.

We fail to show the constant ((n1 +α)/p)p in (1.4) is sharp when p 6= 2. For the reasons,
see Remark 3.1.

2. Proof of Theorem 1.1

Recall that if G is a Carnot group of step two, then there exists m×m linearly independent
skew-symmetric matrices U (1), . . . ,U (n), such that G is isomorphic to (Rm+n,◦) with the
following Lie group law (x ∈ Rm, t ∈ Rn) (see A.4, [2])

(x, t)◦ (x′, t ′) =
(

xi + x′i, i = 1,2, . . . ,m
t j + t ′j +

1
2 < x,U ( j)x′ >, j = 1,2, . . . ,n

)
.

The vector fields in the Lie algebra g of G =(Rm+n,◦) that agree at the origin with ∂/∂x j( j =
1, . . . ,m) are given by

X j =
∂

∂x j
+

1
2

n

∑
k=1

(
m

∑
i=1

U (k)
i, j xi

)
∂

∂ tk
,

and that g is spanned by the left-invariant vector fields

X1, . . . ,Xm, T1 =
∂

∂ t1
, . . . ,Tn =

∂

∂ tn
.

The Kohn’s sub-Laplacian on the group G is given by

∆G =
m

∑
j=1

X2
j =

m

∑
j=1

(
∂

∂x j
+

1
2

n

∑
k=1

(
m

∑
i=1

U (k)
j,i xi

)
∂

∂ tk

)2

and the corresponding horizontal gradient is the m-dimensional vector given by

(2.1) ∇G = (X1, . . . ,Xm) = ∇x−
1
2

U (1)x
∂

∂ t1
−·· ·−−1

2
U (n)x

∂

∂ tn
.

To finish the proof of Theorem 1.1, it is enough to show that the following inequality is held
for all φ ∈C∞

0 (Rm+n)

(2.2)
(

m+α

p

)p ∫
Rm+n
|φ |p|x|α ≤

∫
Rm+n
|∇Gφ |p|x|α+p

and the corresponding constant is sharp.
For a function φ ∈C∞

0 (G), we denote by φε := [(|φ |2 +ε2)p/2−ε p]1/p with ε > 0. Then
0≤ φε ∈C∞

0 (Rn). In fact, φε has the same support as φ . Notice that for |x| 6= 0,

∆G|x|α+2 =
m

∑
j=1

(
∂

∂x j

)2

|x|α+2 = (α +2)(m+α)|x|α .

Integrating by parts yields

(α +2)(m+α)
∫

Rm+n
|φε |p|x|α =

∫
Rm+n
|φε |p∆G|x|α+2 =−

∫
Rm+n
〈∇G|φε |p,∇G|x|α+2〉

=−p
∫

Rm+n
(|φ |2 + ε

2)
p−2

2 φ〈∇Gφ ,∇G|x|α+2〉

≤ p
∫

Rm+n
(|φ |2 + ε

2)
p−2

2 |φ | · |∇Gφ | · |∇G|x|α+2|
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≤ p(α +2)
∫

Rm+n
(|φ |2 + ε

2)
p−1

2 |∇Gφ ||x|α+1.

Letting ε → 0, we obtain

(m+α)
∫

Rm+n
|φ |p|x|α ≤ p

∫
Rm+n
|φ |p−1|∇Gφ ||x|α+1.

By Hölder’s inequality:

(m+α)
∫

Rm+n
|φ |p|x|α ≤ p

(∫
Rm+n
|φ |p|x|α

) p−1
p
(∫

Rm+n
|∇Gφ |p|x|α+2

) 1
p

.

Canceling and raising both sides to the power p, we get (2.2).
To see the constant ((m+α)/p)p in (2.2) is sharp, we follow [9, Lemma 2.5]. Choosing

f (x, t) = u(|x|)g(t), where u(|x|) ∈ C∞
0 (Rm) and g(t) = ∏

n
j=1 w j(t j) with w j(t j) ∈ C∞

0 (R)
for all 1≤ j ≤ n. We have, by (2.1),

|∇G f (x, t)|2 =

∣∣∣∣∣g(t)∇xu(|x|)− 1
2

u(|x|)
n

∑
j=1

U ( j)x
∂g
∂ t j

∣∣∣∣∣
2

= g2|∇xu(|x|)|2 +
1
4

u2(|x|)

∣∣∣∣∣ n

∑
j=1

U ( j)x
∂g
∂ t j

∣∣∣∣∣
2

−u(|x|)g ·
n

∑
j=1
〈∇xu(|x|),U ( j)x〉 ∂g

∂ t j
.

Since U ( j) ((1≤ j ≤ n)) is a skew-symmetric matric,

〈∇xu(|x|),U ( j)x〉= u′(|x|)
〈

x
|x|

,U ( j)x
〉

= 0.

Therefore,

(2.3) |∇G f (x, t)|2 = |∇xu|2g2 +
1
4

u2

∣∣∣∣∣ n

∑
j=1

U ( j)x
∂g
∂ t j

∣∣∣∣∣
2

.

Using the inequality (cf. [9, inequality (4)])

(2.4) (s2
1 + s2

2)
p/2 ≤ (1−λ )1−psp

1 +λ
1−psp

2 , s1,s2 > 0, 0 < λ < 1,

we have, for 0 < λ < 1,∫
Rm+n |∇G f |p|x|α+p∫

Rm+n | f |p|x|α

≤(1−λ )1−p
∫
Rm |∇u|p|x|p+α dx∫

Rm |u|p|x|α dx
+λ

1−p2−p

∫
Rm+n |u|p

∣∣∣∑n
j=1 U ( j)x ∂g

∂ t j

∣∣∣p |x|p+α∫
Rm+n |u(|x|)|p|g|p|x|α

.

(2.5)

Notice that there exists a positive constant Cn,p, depending only on n and p, such that∣∣∣∣∣ n

∑
j=1

U ( j)x
∂g
∂ t j

∣∣∣∣∣
p

≤Cn,p

n

∑
j=1

∣∣∣∣U ( j)x
∂g
∂ t j

∣∣∣∣p = Cn,p

n

∑
j=1

∣∣∣U ( j)x
∣∣∣p ∣∣∣∣ ∂g

∂ t j

∣∣∣∣p .

We have, by using (2.5) and g(t) = ∏
n
j=1 w j(t j),
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∫
Rm+n |∇G f |p|x|α+p∫

Rm+n | f |p|x|α

≤(1−λ )1−p
∫
Rm |∇u|p|x|p+α dx∫

Rm |u|p|x|α dx
+2−p

λ
1−pCn,p

∫
Rm+n |u|p

(
∑

n
j=1

∣∣∣U ( j)x
∣∣∣p ∣∣∣ ∂g

∂ t j

∣∣∣p) |x|p+α∫
Rm+n |u|p|g|p|x|α

=(1−λ )1−p
∫
Rm |∇u|p|x|p+α dx∫

Rm |u|p|x|α dx
+2−p

λ
1−pCn,p

n

∑
j=1

∫
Rm |u|p|x|p+α |U ( j)x|pdx∫

Rm |u(|x|)|p|x|α
·
∫
R |w′j(t j)|pdt j∫
R |w j(t j)|pdt j

.

Since

inf
w(t)∈C∞

0 (R)\{0}

∫
R |w′(t)|pdt∫
R |w(t)|pdt

= 0,

we obtain, for 0 < λ < 1,

inf
φ∈C∞

0 (Rm+n)\{0}

∫
Rm+n |∇Gφ |p|x|α+p∫

Rm+n |φ |p|x|α
≤ (1−λ )1−p inf

u(|x|)∈C∞
0 (Rm)\{0}

∫
Rm |∇u|p|x|p+α dx∫

Rm |u|p|x|α dx

= (1−λ )1−p
(

m+α

p

)p

.

Here we use the fact (see e.g. [9, Theorem 2.1])(
m+α

p

)p

= inf
u(|x|)∈C∞

0 (Rm)\{0}

∫
Rm |∇u(|x|)|p|x|p+α dx∫

Rm |u(|x|)|p|x|α dx
.

By letting λ → 0+, we can see the constant ((m+α)/p)p is sharp.

Remark 2.1. A simple calculation shows, if |x| 6= 0, then

|∇G|x|−
α+m

p |p =
(

m+α

p

)p

|x|−α−m−p.

It looks like that |x|−(α+m)/p can realize the sharp constant ((m+α)/p)p. However, since∫
Rm+n
||x|−

α+m
p |p|x|α dxdt = +∞,

inequality (1.2) is strict for every φ 6= 0. It seems that one can anticipate improving this in-
equality by adding some nonnegative correction term to the left-hand side of the inequality
(1.2) when Rm+n is replaced by a bounded domain. We refer to [3] and [10] for more infor-
mation about this subject. Moreover, in their papers, it also shows that the sharp constant
appeared in this type of inequality has some applications in PDE.

We can not directly use the the family of function found in [9, Lemma 2.3]. In fact, if we
set

uε(x, t) =

{
1, |x| ≤ 1;

|x|−
α+m

p −ε , |x| ≥ 1,

then ∫
Rm+n
|uε(x, t)|p|x|α dxdt =

∫
Rn

dt ·
∫

Rm
|uε(x, t)|p|x|α dx = +∞.
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3. Proof of Theorem 1.2

We begin by quoting some preliminary facts which will be needed in the sequel and refer
to [1, 5, 6, 8] for more precise information about Carnot group. Let G be a Carnot group
with the Lie algebra g =

⊕r
i=1 Vi satisfying [V1,Vj] = Vj+1 for all 1 ≤ j ≤ r− 1. As a

simply connected nilpotent group, G is differential with RN , N = ∑
r
i=1 dimVi = ∑

r
i=1 ni, via

the exponential map exp : g→ G. The Haar measure on G is induced by the exponential
mapping from the Lebesgue measure on g = RN and coincides the Lebesgue measure on
RN .

Consider ξ = (ξ (1), . . . ,ξ (r)) ∈ RN with ξ (i) = (ξ (i)
1 , . . . ,ξ

(i)
ni ) ∈ Rni . For j = 1, . . . ,n1,

let X j be the unique vector field in g that coincides with ∂/∂ξ
(1)
j at the origin. The second

order differential operator

∆G =−
n1

∑
j=1

X∗j X j =
n1

∑
j=1

X2
j

is called a sub-Laplacian on G. We shall denote by the ∇G = (X1, . . . ,Xn1) the related
subelliptic gradient. By the Campbell-Hausdorff formula (see e.g. [5, page 2–4]), X j(1 ≤
j ≤ n1) can be expressed as the following

(3.1) X j =
∂

∂ξ
(1)
j

+
r

∑
k=2

nk

∑
s=1

p j
k,s(ξ

(1), . . . ,ξ (k−1))
∂

∂ξ
(k)
s

,

where p j
k,s(ξ

(1), . . . ,ξ (k−1)) is a polynomial of ξ (1), . . . ,ξ (k−1).
Now we prove inequality (1.4). The proof is similar to that given in Section 2. Following

the proof of Theorem 1.1, we also denote by φε := [(|φ |2 + ε2)p/2− ε p]1/p with ε > 0 if
φ ∈C∞

0 (G). Since, for |ξ (1)| 6= 0,

∆G|ξ (1)|α+2 =
n1

∑
j=1

 ∂

∂ξ
(1)
j

2

|ξ (1)|α+2 = (α +2)(n1 +α)|ξ (1)|α ,

we have, through integrating by parts,

(α +2)(n1 +α)
∫

G
|φε |p|ξ (1)|α =

∫
G
|φε |p∆G|ξ (1)|α+2 =−

∫
G
〈∇G|φε |p,∇G|ξ (1)|α+2〉

=−p
∫

G
(|φ |2 + ε

2)
p−2

2 φ〈∇Gφ ,∇G|ξ (1)|α+2〉

≤ p
∫

G
(|φ |2 + ε

2)
p−2

2 |φ | · |∇Gφ | · |∇G|ξ (1)|α+2|

≤ p(α +2)
∫

G
(|φ |2 + ε

2)
p−1

2 |∇Gφ ||ξ (1)|α+1.

Letting ε → 0 yields

(n1 +α)
∫

G
|φ |p|ξ (1)|α ≤ p

∫
G
|φ |p−1|∇Gφ ||ξ (1)|α+1.

By Hölder’s inequality:

(n1 +α)
∫

G
|φ |p|ξ (1)|α ≤ p

(∫
G
|φ |p|ξ (1)|α

) p−1
p
(∫

G
|∇Gφ |p|ξ (1)|α+2

) 1
p

.
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Canceling and raising both sides to the power p, we get (1.4).
Next we shall show the constant ((n1 +α)/2)2 in (1.4) is sharp when p = 2. Choosing

f (ξ ) = u(ξ (1))g(ξ (2), . . . ,ξ (r)), where u(·) ∈ C∞
0 (Rn1) and g = ∏

r
k=2 ∏

nk
s=1 wk,s(ξ

(k)
s ) with

wk,s(·) ∈C∞
0 (R) for all 2 ≤ k ≤ r and 1 ≤ s ≤ nl . For convenience, we set wk,s ≡ 1 for all

1≤ s≤ nk if k = 1. By (3.1),∫
G
|∇G f |2|ξ (1)|α+2dξ

=
n1

∑
j=1

{∫
RN

(
∂u

∂ξ
(1)
j

)2

g2|ξ (1)|α+2dξ +
∫

RN
u2

∣∣∣∣∣ r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ
(k)
s

∣∣∣∣∣
2

|ξ (1)|α+2dξ +(∗)

}
,

where

(∗) = 2
∫

RN
u2g

r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ
(k)
s

|ξ (1)|α+2dξ

=
r

∑
k=2

nk

∑
s=1

∫
RN

u2 p j
k,s(ξ

(1), . . . ,ξ (k−1))
∂g2

∂ξ
(k)
s

|ξ (1)|α+2dξ .

Since wk,s(·) ∈C∞
0 (R) for all 2≤ k ≤ r and 1≤ s≤ nk,

∫
R

∂w2
k,s(ξ

(k)
s )

∂ξ
(k)
s

dξ
(k)
s = 0

and hence ∫
R

∂g2

∂ξ
(k)
s

dξ
(k)
s = 0.

Thus (∗) = 0 and∫
G
|∇G f |2|ξ (1)|α+2dξ

=
n1

∑
j=1

{∫
RN

(
∂u

∂ξ
(1)
j

)2

g2|ξ (1)|α+2dξ +
∫

RN
u2

∣∣∣∣∣ r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ
(k)
s

∣∣∣∣∣
2

|ξ (1)|α+2dξ

}
.

(3.2)

Choose a positive constant C such that∣∣∣∣∣ r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ
(k)
s

∣∣∣∣∣
2

≤C
r

∑
k=2

nk

∑
s=1

∣∣∣∣∣p j
k,s

∂g

∂ξ
(k)
s

∣∣∣∣∣
2

.

We have, by (3.2),∫
G |∇G f |2|ξ (1)|α+2dξ∫

G f 2|ξ (1)|α dξ

≤

∫
Rn1 ∑

n1
j=1

(
∂u

∂ξ
(1)
j

)2

|ξ (1)|α+2dξ (1)

∫
Rn1 u2|ξ (1)|α dξ (1) +C

r

∑
k=2

nk

∑
s=1

∫
G u2

∣∣∣∣p j
k,s

∂g

∂ξ
(k)
s

∣∣∣∣2 |ξ (1)|α+2dξ∫
G f 2|ξ (1)|α dξ

.
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Since for all 2≤ k ≤ r and 1≤ s≤ nl ,

inf
wk,s∈C∞

0 (R)\{0}

∫
R |w′k,s|2dξ

(k)
s∫

R |wk,s|2dξ
(k)
s

= 0,

we have

inf
wk,s∈C∞

0 (R)\{0}

∫
G u2

∣∣∣∣p j
k,s

∂g

∂ξ
(k)
s

∣∣∣∣2 |ξ (1)|α+2dξ∫
G f 2|ξ (1)|α dξ

=

∫
Rn1+···+nk−1 u2|p j

k,s|
2

∏
k−1
l=1 ∏

nl
i=1 w2

l,i|ξ (1)|α+2∫
Rn1+···+nk−1 u2 ∏

k−1
l=1 ∏

nl
i=1 w2

l,i|ξ (1)|α
· inf

wk,s∈C∞
0 (R)\{0}

∫
R |w′k,s|2dξ

(k)
s∫

R |wk,s|2dξ
(k)
s

= 0.

Therefore,

inf
φ∈C∞

0 (G)\{0}

∫
G |∇Gφ |p|ξ (1)|α+2∫

G |φ |p|ξ (1)|α
≤ inf

u∈C∞
0 (Rn1 )\{0}

∫
Rn1 ∑

n1
j=1

(
∂u

∂ξ
(1)
j

)2
|ξ (1)|α+2dξ (1)

∫
Rn1 u2|ξ (1)|α dξ (1)

=
(

n1 +α

2

)2

.

To get the last inequality above, we use the fact (see e.g. [9, Theorem 2.1])(
n1 +α

2

)2

= inf
u(x)∈C∞

0 (Rn1 )\{0}

∫
Rn1 |∇u(x)|2|x|2+α dx∫

Rn1 |u(|x|)|2|x|α dx
.

The desired result follows.

Remark 3.1. We note that the equality (2.3) play an important role in the proof of sharpness
of constant ((n1 +α)/p)p in (1.2) when G is a Carnot group of step 2. However, if G is a
Carnot group of step r with r > 2, we can only obtain similar equality for p = 2 (see (3.2)).
This is the reason that we can not prove the sharpness of ((n1 +α)/p)p in (1.4) when p 6= 2.
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