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Abstract. The aim of this paper is to solve a certain type of time-dependent problems for
a wedge in terms of the Kontorovich-Lebedev integral. In order to do that we will con-
sider a certain testing-function space for distributions associated with the two-dimensional
Kontorovich-Lebedev transformation.
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1. Introduction

Time-dependent problems are a challenge for the comprehension of many phenomena of
mathematical-physics. Solutions of this type of problems is of great importance for a large
variety of practical applications. They can be very useful in evaluating effects of the exposi-
tion of a complex structure to impulsive electromagnetic excitations, as for example, in the
cases of the lightning flash or the nuclear pulse [3], or in the analysis of acoustic waves [7].
In fact, it is expected that a solution to the time-dependent problems contain many of the
elementary patterns from the stationary solution. The main difference is that the patterns
will be slowly varying in time instead of time-independent and, consequently, the elemen-
tary wave patterns may bifurcate. An example of this occurs when a shock is incident on
a wedge [3] and it is connected, for example, to the study of the first passage behavior of
fractional Brownian motion in two-dimensional wedge domains [2] or to the scattering of
an electromagnetic time-dependent plane wave by the edge of an impedance wedge [4].

A possible approach in the analysis of time evolution equations involves the use of in-
tegral transforms and special functions. In [4] the authors use Sommerfeld’s integrals to
present the solution of the time-dependent wedge problem. Another type of integral trans-
forms that we can use to study this type of problems is the index transforms, in particular, the
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Kontorovich-Lebedev transform [8]. This special type of integral transform has been used
in many applications including, for instance, fluid mechanics, quantum and nano-optics,
plasmonics and in an analysis of the harmonic equation [10]. This transform, where the
integration is with respect to the index of a function rather than by the argument, proves to
be useful in solving differential equations. It arises naturally when one uses the method of
separation of variables to solve boundary-value problems in terms of cylindrical coordinate
system [6]. As far as the authors aware, this type of integral transforms was only used to
study the regularized Schrödinger equation [8]. The aim of this paper is to show that the
Kontorovich-Lebedev transform can be used to solve time-dependent problems on a wedge
under some boundary conditions.

The paper is structured as follows: initially we recall some basic notions about special
functions and the Kontorovich-Lebedev transform. In Section 3 we will study the two di-
mensional Kontorovich-Lebedev transform for distributions, namely we prove its existence,
uniqueness and inversion properties on a manner to be found in [12]. In the last section we
solve a certain class of time-dependent problems for a wedge.

2. Preliminary results

The Macdonald function Ks(x), with s = µ + iτ , is the eigenfunction of the differential
operator [1]

(2.1) Ax = x2− x
∂

∂x

[
x

∂

∂x

]
,

and satisfies the property

(2.2) AxKs(x) =−s2Ks(x).

It has the following asymptotic behavior (cf. [1, Vol. I], [11])

Ks(z) =
(

π

2z

) 1
2

e−z
[

1+O
(

1
z

)]
, z→ ∞,(2.3)

Ks(z) = O
(

z−|Re(s)|
)

, z→ 0,(2.4)

K0(z) =− log(z)+O(1), z→ 0.(2.5)

This function has the following integral representation [1, 11]

(2.6) Ks(z) =
∫

R+
e−zcosh(u) cosh(su)du =

1
2

∫ iδ+∞

iδ−∞

e−zcosh(u)+sudu,

where Re(z) > 0, δ ∈ [0,π/2[. Hence one can show that Ks(z) is an even entire function
with respect to the index s and it is analytic in a right half-plane with respect to the argument
z. Moreover, the uniform inequality holds [10]

|Ks(z)| ≤ e−δ |τ|
(

Re(z)+ Im(z)tan(δ )
Re(z)− Im(z)tan(δ )

) µ

2

×Kµ

(√
(Re(z)cos(δ ))2− (Im(z)sin(δ ))2

)
,

(2.7)

in the sector |arg(z)| < π/2− δ , δ ∈ [0,π/2[. In particular, δ = 0 leads to the inequality
|Ks(z)| ≤ Kµ(Re(z)), Re(z) > 0, s = µ + iτ .
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Taking into account ideas presented in [10], for 2 ≤ p < +∞ and 0 < ν < 1, we will
consider the class Aν ,p of complex-valued smooth functions ϕ(x, t) on R2

+ for which the
following quantity

(2.8) αk,ν ,p(ϕ) = α0,ν ,p(Ak
xϕ) =

(∫
R2

+

∣∣∣(Ak
xϕ)(x, t)

∣∣∣p (xt)ν p−1dxdt
) 1

p

is finite, for each k ∈ N0 and Ax defined in (2.1). In analogue to [10] we have that Aν ,p is a
complete testing function space and therefore a Frechet space. Moreover, correspondingly ,
for the two-dimensional case, an analog of [10, Lemma 2] is

Lemma 2.1. (cf. [10]). Let ϕ ∈D(R2
+). Then ϕ can be represented by the Lebedev integral

ϕ(x, t) = lim
ε→0

4
π4

∫
R2

+

τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)Kiτ1(x)Kiτ2(t)

×
∫

R2
+

Kiτ1(y1)Kiτ2(y2)ϕ(y1,y2)
dy1dy2

y1y2
dτ1dτ2,

where the limit is understood as a convergence in Aν ,p, with 0 < ν < 1.

We consider D(R2
+), E (R2

+) the usual spaces of testing functions used in distribution
theory [12] and it is clear that D(R2

+)⊂Aν ,p⊂ E (R2
+) and that Aν ,p is dense in E (R2

+) (see
[10]). We will denote by A ′

ν ,p the dual of Aν ,p. It’s equipped with the weak topology and
represents a Hausdorff locally convex space of distributions. From the imbedding above we
obtain that E ′(R2

+) ⊂A ′
ν ,p. Since A ′

ν ,p ⊂ Lν ,p(R2
+) we imbed the dual space L1−ν ,q(R2

+),
q = p/(p−1), into A ′

ν ,p as a subspace of regular distributions. They act upon elements ϕ

from Aν ,p according to

(2.9) 〈 f ,ϕ〉 :=
∫

R2
+

f (x, t)ϕ(x, t)dxdt,

where f is a locally integrable function.
Taking into account the multidimensional Kontorovich-Lebedev transform presented in

[9], we have for n = 2

(2.10) K L[ f ](τ1,τ2) =
∫

R2
+

f (x, t)Kiτ1(x)Kiτ2(t)dxdt.

Considering the weighted space Lν ,p(R2
+) with 0 < ν < 1 and the norm

(2.11) || f ||ν ,p =
(∫

R2
+

| f (x, t)|p(xt)ν p−1dxdt
) 1

p

,

integral (2.10) exists as a Lebesgue integral and K L[ f ] is bounded from Lν ,p(R2
+) into

Lr(R2
+), where p,r ∈ [1,+∞] have no dependence.

3. Two-dimensional Kontorovich-Lebedev transform in distributional spaces

We introduce the two-dimensional Kontorovich-Lebedev transformation on distributions
f ∈ A ′

ν ,p in a similar way as in [10, 13] and taking into account the multidimensional
Kontorovich-Lebedev transform introduced in [9] for n = 2. Namely, it is defined by

(3.1) K L[ f ](τ1,τ2) := 〈 f (·, ·),Kiτ1(·)Kiτ2(·)〉 , τ1,τ2 ∈ R+.
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From (2.3), (2.4), (2.7) and (2.9) we conclude that the product Kiτ1(x)Kiτ2(t) is in Lν ,p(R2
+)

when 0 < ν < 1. Moreover, it belongs to Aν ,p via (2.2). Hence for regular distributions
f ∈ L1−ν ,p(R2

+) the Kontorovich-Lebedev transform K L[ f ] can be written in the form
(2.10) and we immediately conclude that K L[ f ] represents an analytic function (cf. [11,
Theorem 2.5]).

Furthermore, from (2.7) we have the following estimate

|K L[ f ](τ1,τ2)| ≤C max
0≤k≤r

αk,ν ,p(Kiτ1(x)Kiτ2(t))

≤Ce−(
π
2−δ1)τ1−( π

2−δ2)τ2 max
0≤k≤r

τ
2k
1

∫
R2

+

K0(xsin(δ1))K0(t sin(δ2))dxdt

≤C f ,δ1,δ2e−(
π
2−δ1)τ1−( π

2−δ2)τ2 max{1,τ2r
1 },(3.2)

where δ1,δ2 ∈]0,π/2].
We are ready to prove now an inversion theorem for the transformation (3.1). Indeed we

have

Theorem 3.1. Let f ∈A ′
ν ,p. Then

f (x, t) = lim
ε→0+

4
xtπ4

∫
R2

+

τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)

×Kiτ1(x)Kiτ2(t)K L[ f ](τ1,τ2)dτ1dτ2,

(3.3)

where the convergence is understood in D ′(R2
+).

Proof. We observe that formula (3.3) means the following equality

〈 f ,ϕ〉= lim
ε→0+

〈
4
· ·π4

∫
R2

+

τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)

×Kiτ1(·)Kiτ2(·)K L[ f ](τ1,τ2)dτ1dτ2,ϕ

〉
,

(3.4)

for every ϕ ∈ D(R2
+) having a compact support, let say, in the closed rectangular [a,b]×

[c,d] ⊂ R2
+. The integrals with respect to τ1 and τ2 in (3.4) are convergent for each ε > 0

and can be treated as Riemann improper integrals. Furthermore, with inequality (2.7) we
show that the expression under the limit sign is a regular distribution. Therefore it is equal
to

4
π4

∫ b

a

∫ d

c
y−1

1 y−1
2 ϕ(y1,y2)

∫
R2

+

τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)

×Kiτ1(y1)Kiτ2(y2)K L[ f ](τ1,τ2)dτ1dτ2dy1dy2.

(3.5)
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Appealing to the Fubini theorem we change the order of integration in (3.5) and we write in
the form

4
π4

∫
R2

+

τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)K L[ f ](τ1,τ2)

×
∫ b

a

∫ d

c
y−1

1 y−1
2 ϕ(y1,y2)Kiτ1(y1)Kiτ2(y2)dy1dy2dτ1dτ2

=
4

π4 lim
T→+∞

∫ T

0

∫ T

0
τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)K L[ f ](τ1,τ2)

×
∫ b

a

∫ d

c
y−1

1 y−1
2 ϕ(y1,y2)Kiτ1(y1)Kiτ2(y2)dy1dy2dτ1dτ2.

(3.6)

Invoking (3.1) and the Riemann sums technique [12, 13] we prove that

4
π4

∫ T

0

∫ T

0
τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)K L[ f ](τ1,τ2)

×
∫ b

a

∫ d

c
y−1

1 y−1
2 ϕ(y1,y2)Kiτ1(y1)Kiτ2(y2)dy1dy2dτ1dτ2 = 〈 f ,ΘT,ε〉 ,

where

ΘT,ε(x, t) =
4

π4

∫ T

0

∫ T

0
τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)Kiτ1(x)Kiτ2(t)

×
∫ b

a

∫ d

c
y−1

1 y−1
2 ϕ(y1,y2)Kiτ1(y1)Kiτ2(y2)dy1dy2dτ1dτ2

is an element of Aν ,p. Meanwhile, we will show that ΘT,ε(x, t)→ ϕε(x, t) in D(R2
+) as

T →+∞, where ϕε(x, t) is defined by

ϕε(x, t) =
4

π4

∫
R2

+

τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)Kiτ1(x)Kiτ2(t)

×
∫

R2
+

ϕ(y1,y2)Kiτ1(y1)Kiτ2(y2)
dy1dy2

y1y2
dτ1dτ2.

Indeed, choosing 0 < δ1,δ2 < ε/2 we employ (2.2), (2.7) and the generalized Minkowski
inequality to obtain

αk,ν ,p(ΘT,ε −ϕε)

=
4

π4

(∫
R2

+

(xt)ν p−1
∣∣∣∣∫ ∫R2

+\[0,T ]2
τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)

×Ak
xKiτ1(x)Kiτ2(t)

∫ b

a

∫ d

c
y−1

1 y−1
2 ϕ(y1,y2)Kiτ1(y1)Kiτ2(y2)dy1dy2dxdt

∣∣∣∣p) 1
p

dxdt

≤ 4
π4

(∫
R2

+

K0(xsin(δ1))K0(t sin(δ2))(xt)ν p−1dxdt
) 1

p

×
∫ b

a

∫ d

c
y−1

1 y−1
2 |ϕ(y1,y2)|K0(y1 sin(δ1))K0(t sin(δ2))dy2dy1

×
∫ ∫

R2
+\[0,T ]2

τ
2k+1
1 τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)e(2δ1−π)τ1+(2δ2−π)τ2dτ1dτ2
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≤Cν ,p,δ1,δ2

∫ ∫
R2

+\[0,T ]2
τ

2k+1
1 τ2e(2δ1−ε)τ1+(2δ2−ε)τ2dτ1dτ2,(3.7)

where the last integral converges to zero when T → +∞ and Cν ,p,δ1,δ2 is a constant. Thus
combining with (3.6) we arrive to the equality

4
π4

∫ T

0

∫ T

0
τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)K L[ f ](τ1,τ2)

×
∫ b

a

∫ d

c
y−1

1 y−1
2 ϕ(y1,y2)Kiτ1(y1)Kiτ2(y2)dy1dy2dτ1dτ2 = 〈 f ,ϕε〉 .

(3.8)

To end the proof we pass to the limit through (3.8) when ε→ 0+. Hence taking into account
Lemma 2.1, we get (3.4) and we establish the inversion formula (3.3).

4. Time-dependent problems for a wedge

Let us consider a generic space-time problem for a time-dependent domain with the form of
a wedge (r,θ1, t,θ2), where θ1 ∈ [0,α1] and θ2 ∈ [0,α2], with 0 < α1 ≤ π and 0 < α2 ≤ π/2.
The problem for the interior of this wedge is to find a function u(r,θ1, t,θ2) that satisfies the
following equation

(4.1) (∂ 2
θ1,θ1

+a∂θ2)u = A∗r u, 0 < r, t < +∞, 0 < θi < αi(i = 1,2),

where a ∈ R0
+ and A∗r is the adjoint of operator to (2.1) defined as

A∗r = r2−1−3r
∂

∂ r
− r2 ∂ 2

∂ r2 .

When a = 0,1 we obtain, respectively, the harmonic and forward heat equations. The first
particular case was already studied in [10].

We assume that u(r,θ1, t,θ2) is twice differentiable with respect to θ1 and differentiable
with respect to θ2 in a sense of a conventional derivative [12]. We also impose the following
boundary conditions:

• As θ1→ 0+, with θ2 = α2, u(r,θ1, t,θ2)→ v(r, t) ∈A ′
ν ,p, 0 < ν < 1, p≥ 2 for any

ϕ such that ϕ(r, t),rtϕ(r, t) ∈A ′
ν ,p.

• As θ1→ α
−
1 , with θ2 = α2, u(r,θ1, t,θ2) converges to zero under the same condi-

tions.
This problem can be solved through an operational technique by the two-dimensional

Kontorovich-Lebedev transform on distributions. Indeed, applying (3.1) to both sides of
the equation (4.1) and appealing to the definition of adjoint operator and a conventional
derivative we arrive(

∂
2
θ1,θ1

+a∂θ2

)
〈u(·,θ1, ·,θ2),Kiτ1(·)Kiτ2(·)〉= 〈u(·,θ1, ·,θ2),A·Kiτ1(·)Kiτ2(·)〉 .

Hence via (2.2) we obtain

(∂ 2
θ1,θ1

+a∂θ2)K L[u(·,θ1, ·,θ2)](τ1,τ2) = τ
2
1 K L[u(·,θ1, ·,θ2)](τ1,τ2).

Solving this differential equation via [5] we find

(4.2) K L[u(·,θ1, ·,θ2)](τ1,τ2) = A(τ1,τ2)
i
√

a
2
√

πθ2
e

θ2
1 a

4θ2
+

τ2
1 θ2
a +B(τ1,τ2)e

−τ2
2 θ2
a −
√

τ2
1 +τ2

2 θ1 ,

where the functions A(τ1,τ2) and B(τ1,τ2) do not depend on θ1 and θ2. To determinate
them we will use the boundary conditions. Indeed, taking into account [10] we know that
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the product Kiτ1(r)Kiτ2(t) ∈ Aν ,p and rtKiτ1(r)Kiτ2(t) ∈ Aν ,p. Invoking (4.2) and (3.1) we
have

lim
θ1→0+,θ2=α2

K L[u(·,θ1, ·,θ2)](τ1,τ2) = A(τ1,τ2)
i
√

a
2
√

πα2
e

τ2
1 α2
a +B(τ1,τ2)e

−τ2
2 α2
a

= K L[v(r, t)](τ1,τ2),
(4.3)

lim
θ1→α

−
1 ,θ2=α2

K L[u(·,θ1, ·,θ2)](τ1,τ2)

= A(τ1,τ2)
i
√

a
2
√

πα2
e

α2
1 a

4α2
+

τ2
1 α2
a +B(τ1,τ2)e

−τ2
2 α2
a −
√

τ2
1 +τ2

2 α1 = 0.

(4.4)

Solving the previous system of equations we get

A(τ1,τ2) = K L[v(r, t)](τ1,τ2)
2i
√

πα2

√
ae

τ2
1 α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
) ,

B(τ1,τ2) = K L[v(r, t)](τ1,τ2)
e

α2
1 a

4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 α1

e
τ2
1 α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
) .

Substituting functions A and B into (4.2) and making some calculations we obtain

K L[u(·,θ1, ·,θ2)](τ1,τ2)

= K L[v(r, t)](τ1,τ2)
√

θ2e
α2

1 a
4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
) .

Consequently, by (3.3) we obtain as our possible solution

u(r,θ1, t,θ2)

= lim
ε→0+

4
rtπ4

∫
R2

+

τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)Kiτ1(r)Kiτ2(t)K L[v(r, t)](τ1,τ2)

×
√

θ2e
α2

1 a
4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
) dτ1dτ2.

(4.5)

Appealing to (2.7) and (3.2) we get the uniform estimate on ε ∈ [0,π]

|τ1τ2 sinh((π− ε)τ1)sinh((π− ε)τ2)Kiτ1(r)Kiτ2(t)K L[v(r, t)](τ1,τ2)|

≤Cτ1τ2e(δ1+δ3)τ1e(δ2+δ4)τ2K0(r0 sin(δ1))K0(t0 sin(δ2)),
(4.6)
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where δi ∈]0,π/2], i = 1,2,3,4, 0 < r0 < r < +∞ and 0 < t0 < t < +∞. For every τ1,τ2 ≥ 0,
we have ∣∣∣∣∣∣∣∣∣

√
θ2e

α2
1 a

4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
)

∣∣∣∣∣∣∣∣∣
≤ e−

2(τ2
1 +τ2

2 )α2
a

√
α2

θ2

e
α2

1 a
4α2

+(τ1+τ2)α1 + e
θ2

1 a
4θ2

+
(τ2

1 +τ2
2 )α2

a

e
α2

1 a
4α2

+
√

τ2
1 +τ2

2 α1 −1

.

(4.7)

From (4.6) and (4.7) we conclude that one can pass the limit under the integral sign in (4.5)
when ε → 0+, via Lebesgue’s dominated convergence theorem. Hence our solution has the
form

u(r,θ1, t,θ2) =
4

rtπ4

∫
R2

+

τ1τ2 sinh(πτ1)sinh(πτ2)Kiτ1(r)Kiτ2(t)K L[v(r, t)](τ1,τ2)

×
√

θ2e
α2

1 a
4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
) dτ1dτ2.

(4.8)

Now we need to prove that (4.8) is indeed a solution, which satisfies the differential
equation (4.1) and corresponding boundary conditions. In order to verify that (4.8) is a
solution of (4.1) we use (4.6) combined with (4.7) together with the fact that the integrand in
(4.8) is analytic. Consequently the differentiation may be interchanged with the integration.
Moreover, after some calculations we see that the function

Kiτ1(r)Kiτ2(t)
√

θ2e
α2

1 a
4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
)

satisfies (4.1). Thus u(r,θ1, t,θ2) is a solution of (4.1).
We turn to the boundary conditions. First we show that rtu(r,θ1, t,θ2) ∈ Aν ,p ∩L1−ν ,p

(R2
+) for any 0≤ θ1 ≤ α1, 0 < θ2 ≤ α2, q = p/(p−1) and 0 < ν < 1. Indeed, from the uni-

form convergence of the integral (4.8) with respect to (r, t) ∈ R2
+ we see that rtu(r,θ1, t,θ2)

is a smooth function. Moreover, invoking (2.1), (2.7), (2.11), (3.2), (4.6), (4.7) and the
generalized Minkowski inequality we obtain the estimate

||A·,·(· ·u(·,θ1, ·,θ2))||ξ ,ω

≤C
∫

R2
+

τ
2b
1

√
α2

θ2

e
α2

1 a
4α2

+(τ1+τ2)α1 + e
θ2

1 a
4θ2

+
(τ2

1 +τ2
2 )α2

a

e
α2

1 a
4α2

+
√

τ2
1 +τ2

2 α1 −1

e(δ1+δ3)τ1+(δ2+δ4)τ2−
2(τ2

1 +τ2
2 )α2

a dτ1dτ2

×
(∫

R2
+

Kω
0 (r sin(δ1))Kω

0 (t sin(δ2))(rt)ξ ω−1drdt
) 1

ω

< +∞,(4.9)
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for b > 0, ω > 1, ξ > 0, and δi ∈ [0,π/2], i = 1,2,3,4. Thus, in particular rtu(r,θ1, t,θ2) ∈
Aν ,p ∩ L1−ν ,p(R2

+) with q = p/(p− 1) and 0 < ν < 1. Furthermore for any ϕ such that
ϕ(r, t), rtϕ(r, t) ∈Aν ,p via (2.9) we write

〈· ·u(·,θ1, ·,θ2),ϕ(·, ·)〉

=
∫

R2
+

rtu(r,θ1, t,θ2)ϕ(r, t)drdt

=
4

π4

∫
R2

+

τ1τ2 sinh(πτ1)sinh(πτ2)Kiτ1(r)Kiτ2(t)K L[v(r, t)](τ1,τ2)

×
√

θ2e
α2

1 a
4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
) dτ1dτ2ϕ(r, t)drdt

=
4

π4

∫
R2

+

τ1τ2 sinh(πτ1)sinh(πτ2)K L[v(r, t)](τ1,τ2)

×
√

θ2e
α2

1 a
4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1
)

×
∫

R2
+

Kiτ1(r)Kiτ2(t)ϕ(r, t)drdtdτ1dτ2,(4.10)

where the change of order of integration in (4.10) is due to the Fubini’s theorem, and this
fact is a consequence of (4.6), (4.7) and (4.9) together with the Hölder inequality. Precisely
we appeal to the estimate

4
π4

∫
R2

+

τ1τ2 sinh(πτ1)sinh(πτ2) |K L[v(r, t)](τ1,τ2)|

×

∣∣∣∣∣∣∣∣∣∣
√

θ2e
α2

1 a
4α2
−

(τ2
1 +τ2

2 )α2
a +

√
τ2

1 +τ2
2 (α1−θ1)−√α2e

θ2
1 a

4θ2
−

(τ2
1 +τ2

2 )θ2
a

√
θ2e

(τ2
1 +τ2

2 )α2
a

(
e

α2
1 a

4α2
+
√

τ2
1 +τ2

2 α1 −1

)
∣∣∣∣∣∣∣∣∣∣

×
∫

R2
+

|Kiτ1(r)| |Kiτ2(t)| |ϕ(r, t)|drdtdτ1dτ2

≤Cα0,ν ,p(ϕ)
∫

R2
+

τ1τ2

√
α2

θ2

e
α2

1 a
4α2

+(τ1+τ2)α1 + e
θ2

1 a
4θ2

+
(τ2

1 +τ2
2 )α2

a

e
α2

1 a
4α2

+
√

τ2
1 +τ2

2 α1 −1

× e(δ1+δ3)τ1+(δ2+δ4)τ2−
2(τ2

1 +τ2
2 )α2

a dτ1dτ2

×
(∫

R2
+

Kq
0 (r sin(δ1))K

q
0 (t sin(δ2))(rt)(1−ν)q−1drdt

) 1
q

< +∞,
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where q = p/(p− 1) and δi ∈]0,π/2], i = 1,2,3,4. Hence we conclude that the iterated
integral (4.10) converges uniformly. Therefore we can take limits under the integral sign in
(4.10) as θ1→ 0+, with θ2 = α2, and as θ1→ α

−
1 , with θ2 = α2

lim
θ1→0+,θ2=α2

〈u(·,θ1, ·,θ2), · ·ϕ(·, ·)〉= v(x, t), lim
θ1→α

−
1 ,θ2=α2

〈u(·,θ1, ·,θ2), · ·ϕ(·, ·)〉= 0,

i.e., the boundary conditions are verified.
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