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Abstract. Sufficient conditions are obtained on the asymptotic behavior of solutions of the
nonlinear generalized pantograph equation with impulses

{x’(z) +p(0)f(x(ar — 7)) =0, 1> 10,1 £ 1,
x(t) = bex(ty )+ 522 [k o p (SEF) f(x(s))ds, k=1,2,...

2010 Mathematics Subject Classification: 34K25, 34K45

Keywords and phrases: Asymptotic behavior, pantograph equation, Lyapunov functional,
impulse.

1. Introduction

Functional differential equations with proportional delays are usually referred to as panto-
graph equations. The name pantograph originated from the work of Ockendon and Tay-
lor [11] on the collection of current by the pantograph head of an electric locomotive. These
equations arise in a variety of applications, such as number theory, electrodynamics, as-
trophysics, nonlinear dynamical systems, quantum mechanics and cell growth [2, 5, 11].
Therefore, the problems have attracted a great deal of attention. There are many papers
devoted to the qualitative properties and numerical solutions of these equations (see, for ex-
ample, [1-3,5,6,8,11,12,14] and the references cited therein). On the other hand, the theory
of impulsive differential equations is now being recognized as being not only richer than
the corresponding theory of differential equations without impulses, but also representing
a more natural framework for mathematical model of many real-world phenomena [7, 13].
There has also been increasing interest in the oscillation and stability theory of impulsive
delay differential equations and many results have been obtained (see [4,9, 10, 15] and the
references cited therein). In particular, there are some papers on the asymptotic behavior of
solutions of impulsive differential equations with constant delays [9, 15]. However, to the
best of our knowledge, there is very little in the way of results for the asymptotic behavior
of solutions of the pantograph equations with impulses except for [4].
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In this paper, we consider the asymptotic behavior of solutions of the nonlinear general-
ized pantograph equations with impulsive perturbations

¥ ()4 p(0) (el — 7)) =0, S
x(tx) = brx(t;) + %féﬁk,fp (525) f(x(s))ds, k=1,2,....

where 0 < a <1, 7> 0, p(t) € C([tg,),[0,+e), f € C(R,R), 0 <1ty <t] < ... <l <
tky1 < ..., With limy oty = oo, and by, k = 1,2,..., are constants, x(#, ) denotes the left limit
of x(t) att = f.

We note that when all by = 1,k = 1,2, ..., system (1.1) reduces to the generalized panto-
graph differential equation with linear functional argument

(1.2) X (1) + p(t)f(x(at — 1)) = 0,1 > 1.

The authors [14] presented a numerical method for solution of (1.2), but the qualitative
properties of solutions for this equation have not been investigated. When o = 1, system
(1.1) reduces to the impulsive delay differential equation

(13) XO)+p)f(xt—1))=0, t>1g, t £,
' x(te) = bex(ty )+ (1= be) [ o p(s+7) f(x(s))ds, k=1,2,....

The asymptotic behavior of solutions of (1.3) has been studied by Shen and Liu [15].

The main purpose of this paper is to investigate the asymptotic behavior of solutions
of the system (1.1). As a consequence, some sufficient conditions are obtained for the
asymptotic stability of solutions of (1.2) and (1.3), respectively. Our results generalize the
known ones.

With the system (1.1), one associates an initial condition of the form

(1.4) x(1) = ¢(t), t€lat—1,10],

where ¢ € C([at — 7,1],R).
A function x(¢) is said to be a solution of (1.1) satisfying the initial value condition (1.4)
if x(7) is defined on [otzg — T, o0) and satisfies
(i) x(t) = ¢(¢) for atg— 7 <t <19, x(t) is continuous for t >tp and t ##, k =1,2,...;
(ii) x(¢) is continuously differentiable for r > fo, # ty,k = 1,2,..., and x(t;") and x(z;")
exist with x(t;") = x(r) fork=1,2,...;
(iil) x(r) satisfies (1.1).
Using the method of steps as in the case without impulses, one can show the global
existence and uniqueness of the solution of the initial problem (1.1) and (1.4).
As is customary, a solution of (1.1) is said to be nonoscillatory if it is eventually positive
or eventually negative. Otherwise, it will be called oscillatory.

(1.1

2. Main results

Theorem 2.1. Assume that the following conditions are fulfilled:
2.1) 0<b<l(k=12,.) and Y (1—b;)<oo;
k=1

there exists a positive number M such that

2.2) M < [FOI <MIxl, x€R, xf(x)>0 (x £0);
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+7
o T 200
2.3) limsup [ p (S:;) ds < =—.

t—oo or—T M
Then every solution of (1.1) tends to a constant as t — oo.

Proof. Let x(t) be any solution of (1.1), we shall prove that lim; .. x(7) exists and is finite.
For this purpose, we rewrite the system (1.1) in the form

(2.4) [x(t)_éfétt Tp( )f(x } ép(%)f(x(t)):()ﬂ t>to, t # iy,
D et = baxti )+ 5 [ p (i)f(x ))ds k=12,

From (2.3), one can select 6 > 0 sufficiently small and T > 1, sufficiently large such that

+7

o 2
(2.5) / p(HT) ds <265 fort>T.
o o M

1—T

Define two functionals as follows

and

Va(t) = %/O;_Tp <H(1O;a)r> /Stp <”;T> F2(x(u))duds.

As t # ty, calculating dV (¢)/dt and dV,(z)/dt along the solution of (1.1) and using the
inequality 2ab < a® + b? yields

== 2p(“LE e -4 [ o (T2 sl

dt o a

and

dCZz 013], (“raf) FAx(0)) /O;_TP (H(L;(m) “

(B [ (CET) Putnas
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Let V(t) = V| (t) + Va(¢). For t # 1, it follows from the above two inequalities and (2.5)
that
v av,  dvs
dr  dr odr

() [0 L ()
I <s+(1+a)r ds]

o? Jar—t o
2.6 ——2r(=5) P o e () ds}
<—2p(0) Py A24 21 (&) 1
<= 2n(5) )

As t = t;, one can easily get

Vi) = [xok) ol (5 T) f<x<s>>ds] 2

o Jot—t

o
L P (55 e
&0 _p [x(tk) L [ Yo (” T) f(x(s))ds}

& Jay—t (04

s [ () [ (M) s estduas

o3 Jos—z a? a
<V ().

This and (2.6) shows that V(z) is eventually decreasing. Since V() > 0, then lim;_.. V (¢) =
Y exists and ¥ > 0. From (2.4), (2.6) and (2.7), it follows that

/:” (HT) F2(x(s)ds < SV(T).

a

This implies

r+7

p(“57) £ € L)

and hence, for 0 < o < 1 and 7 > 0, we have

t
2.8) im [ p (m) 72(x(s))ds = 0.

t—=o Jor—1 o

It follows from (2.8) that

0 < Wa(r) l/t p(w)/srp(uzf)fz(x(u))duds

a3 Ja—z o?

1 1 t
< @ Jor P (S+(O:2r a)r) ds/w_rp (u;f) F2(x(u))du
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1 t
— [ (“;T> ds/w_fp (T) F2(x(u))du

2 ! u+7t 9
< — —_— oo,
_M(X./oczrp( p )f(x(u))du—>0, as [ —
We then have lim;_,o V; () = lim,_.. V() = 7, that is,
p 2
(2.9) lim [x(t) - é /a . (s; r) f(x(s))ds} =7.

Letu(t) =x(t)— 1/ [}, . p((s+7)/@) f(x(s))ds. Then (2.9) shows that
(2.10) lim ur(t) =y.

From (1.1), we can easily get

) =00 [ o () o

@.11) > R * it
= by [x(tk)—a/w Tp( " )f(x(s))ds} = bru(t, ).

Thus, from (2.4) and (2.11), we have

{u’<r>+;p<f+;)f<x<t>> =0, 1>10, 140,

@12) M(l‘k) = bkx(tk_), k=1,2,....

If y =0, then lim,_.u(¢) = 0. If ¥ > 0, then there exists a sufficiently large 7] such that
u(t) # 0 for t > Tj. Otherwise, there is a sequence {7} with lim;_,. Tz = o such that
u(t;) = 0, and so u*(7;) — 0 as k — oo. This contradicts with ¥ > 0. Therefore, for any
ty > T1,t € [te,tx41), we have u(t) > 0 or u(t) < 0 because u(t) is continuous on [fy, fx+1).
Without lost of generality, we assume that u(¢) > 0 on [t ), it follows that u(f1 1) =
bru(t, ;) >0, and thus u(t) > 0 on [t;11,#+2). By induction, we can conclude that u(t) > 0
on [f,0). This and (2.10) imply that

2.13) lim u(1) = lim (x(t) - l/t p (HT) f(x(s))ds> —v,

t—o0 o Jar—t (04

where v = /¥ and is finite. In view of (2.12), we have
| S+ T _
oL (5 ) rnds=ular o) -t - (ulw)-us,)
o Jor—1 o ar<tp<t

—u(at—t)—u(t)— Y (1—bou(ty).

ar<tp<t

Letting ¢+ — co and noticing that };. | (1 — bg) < o, we have

2.14) imL [ p <S“> F(x(s))ds = 0.

= O Jor—1 o

It follows from (2.13) and (2.14) that lim,_,. x(¢) = v and the proof is completed. |
By Theorem 2.1, we have the the following asymptotic behavior result immediately.

Theorem 2.2. The conditions of Theorem 2.1 imply that every oscillatory solution of (1.1)
tends to zero ast — oo.
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In Theorem 2.1, taking by =1, k= 1,2, ..., we have

Corollary 2.1. Assume that (2.2) and (2.3) hold. Then every solution of (1.2) tends to a
constant ast — oo,

Theorem 2.3. The conditions of Theorem 2.1 together with

oo

(2.15) p(t)dt = oo

fo
imply that every solution of (1.1) tends to zero ast — oo.

Proof. By Theorem 2.2, we only have to prove that every nonoscillatory solution of (1.1)
tends to zero as t — co. Without lost of generality, let x(¢) be an eventually positive solution
of (1.1), we shall prove that lim,_,.. x(¢) = 0. As in the proof of Theorem 2.1, we can rewrite
(1.1) in the form (2.12). Integrating from 7 to ¢ both sides of (2.12) yields

/totp <s+’€> fx(s)ds=a [u(to) —u(t)— Z (1 —=by)u(t, )

o to<ty<t

Using (2.13) and noticing Y';> ; (1 — by) < oo, we can conclude that

[ <szf) F(x(s))ds < o

This, together with (2.15), implies that liminf; ... f(x(z)) = 0. Let {s,} be a sequence such
that s, — oo as n — oo and lim, .. f(x(s,)) = 0. Then we must have liminf,_.x(s,) =
¢ = 0. Otherwise, there exists a subsequence {s,, } such that x(s,, ) > c¢/2 for k sufficiently
large. From (2.2), it follows that f(x(s,)) > ¢/2, which yields a contradiction because
of limy_co f(x(sn,)) = 0. Therefore, liminf; ., x(t) = 0. This and Theorem 2.1 imply that
lim; e x(¢) = 0 and so the proof is completed. i

The following corollary follows from Corollary 2.1 and Theorem 2.3.

Corollary 2.2. Assume that (2.2), (2.3) and (2.15) hold. Then every solution of (1.2) tends
to zero ast — oo.

Taking o = 1 in Theorem 2.3, we have the following

Corollary 2.3. [15] Assume that the following conditions hold:
D 0<b<1(k=1,2,...) and Y2 (1 —by) < oo
(ii) there exists a positive number M such that |x| < |f(x)] < M|x|, x € R, xf(x) >
0 (x #0);
(i) limsup,_, ["7 p(s+7)ds < 2/M;
(V) [fig p(t)dt = co.
Then every solution of (1.3) tends to zero ast — oo.

3. Examples

In this section, we give two examples to illustrate the usefulness of our main results.

Example 3.1. Consider the pantograph differential equation

, 2(2r—1)

where o = 1/2, p(t) = (2(2t —1))/((2¢t +1)?) and f(x) = x.

x(t/2—1)=0,r > 1,



Solutions of a Nonlinear Generalized Pantograph Equation 687

One can easily see that

° ©2(2t—1
/to p(t)dt:/1 (ét:_])Z)dtw’

and
t+7
o (s+7 241) 4543 241)
limsu ds = limsu ————ds <limsu ds
[—>oop azrp< > [—»oop 1/2—1 2(4S+5)2 - [—)oop 1/2—1 2s+1
1 4t +5
—tlimln< +1>—ln2<1.

Thus, the conditions (2.2), (2.3) and (2.15) hold. By Corollary 2.2, every solution of (3.1)
tends to zero as t — oo. Indeed, x(¢) = 1/(2¢ + 1) (+ > 2) is such a solution.

Example 3.2. Consider the impulsive differential equation

(32) X(t)+ £ [I+cos?x(t/e—1)]x(t/e—1) =0, t>6=1,1#k,
. 2_ _ x(s
x(k) = kk—zlx(k )+ kiszk/efl ﬁ(l +cos?x(s))ds, k=2,3,...,

2_
where & = 1/e, p(1) = 3., f(x) = (1+cos?x)x, by = 51 k=1,2,...

One can easily find that

and

limsup
t—o0 or—1

ds = limsup ——ds

(t+7)/a (s+f> e(i+1) 1
P t—oo  Jife—1 4€(S+1)

1 t+1)+1
= 4—limsup (1+lne(—i_t)—i_> =1/(2e) < 1/e.

e —o0

By Theorem 2.3, every solution of (3.2) tends to zero as t — oo.

4. Conclusion

In this paper, Lyapunov functional method was developed to investigate the asymptotic
behavior of solutions of a nonlinear generalized pantograph equation with certain impulses
and sufficient conditions were obtained under which every solution of the equation tends to
a constant or zero as t — oo, We believe that the method can be developed to investigate
nonlinear neutral generalized pantograph equation with impulses. This is left for future
investigations.

Acknowledgement. The authors wish to express our gratitude to the anonymous referees
for their careful reading of the manuscript and very useful comments.
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