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Abstract. Sufficient conditions are obtained on the asymptotic behavior of solutions of the
nonlinear generalized pantograph equation with impulses{

x′(t)+ p(t) f (x(αt− τ)) = 0, t ≥ t0, t 6= tk,

x(tk) = bkx(t−k )+ 1−bk
α

∫ tk
αtk−τ p

( s+τ

α

)
f (x(s))ds, k = 1,2, ....
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1. Introduction

Functional differential equations with proportional delays are usually referred to as panto-
graph equations. The name pantograph originated from the work of Ockendon and Tay-
lor [11] on the collection of current by the pantograph head of an electric locomotive. These
equations arise in a variety of applications, such as number theory, electrodynamics, as-
trophysics, nonlinear dynamical systems, quantum mechanics and cell growth [2, 5, 11].
Therefore, the problems have attracted a great deal of attention. There are many papers
devoted to the qualitative properties and numerical solutions of these equations (see, for ex-
ample, [1–3,5,6,8,11,12,14] and the references cited therein). On the other hand, the theory
of impulsive differential equations is now being recognized as being not only richer than
the corresponding theory of differential equations without impulses, but also representing
a more natural framework for mathematical model of many real-world phenomena [7, 13].
There has also been increasing interest in the oscillation and stability theory of impulsive
delay differential equations and many results have been obtained (see [4, 9, 10, 15] and the
references cited therein). In particular, there are some papers on the asymptotic behavior of
solutions of impulsive differential equations with constant delays [9, 15]. However, to the
best of our knowledge, there is very little in the way of results for the asymptotic behavior
of solutions of the pantograph equations with impulses except for [4].
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In this paper, we consider the asymptotic behavior of solutions of the nonlinear general-
ized pantograph equations with impulsive perturbations

(1.1)

{
x′(t)+ p(t) f (x(αt− τ)) = 0, t ≥ t0, t 6= tk,
x(tk) = bkx(t−k )+ 1−bk

α

∫ tk
αtk−τ p

( s+τ

α

)
f (x(s))ds, k = 1,2, ....

where 0 < α ≤ 1, τ ≥ 0, p(t) ∈ C([t0,∞), [0,+∞), f ∈ C(R,R), 0 ≤ t0 < t1 < ... < tk <
tk+1 < ..., with limt→∞ tk = ∞, and bk,k = 1,2, ..., are constants, x(t−k ) denotes the left limit
of x(t) at t = tk.

We note that when all bk = 1,k = 1,2, ..., system (1.1) reduces to the generalized panto-
graph differential equation with linear functional argument

(1.2) x′(t)+ p(t) f (x(αt− τ)) = 0, t ≥ t0.

The authors [14] presented a numerical method for solution of (1.2), but the qualitative
properties of solutions for this equation have not been investigated. When α = 1, system
(1.1) reduces to the impulsive delay differential equation

(1.3)

{
x′(t)+ p(t) f (x(t− τ)) = 0, t ≥ t0, t 6= tk,
x(tk) = bkx(t−k )+(1−bk)

∫ tk
tk−τ p(s+ τ) f (x(s))ds, k = 1,2, ....

The asymptotic behavior of solutions of (1.3) has been studied by Shen and Liu [15].
The main purpose of this paper is to investigate the asymptotic behavior of solutions

of the system (1.1). As a consequence, some sufficient conditions are obtained for the
asymptotic stability of solutions of (1.2) and (1.3), respectively. Our results generalize the
known ones.

With the system (1.1), one associates an initial condition of the form

(1.4) x(t) = φ(t), t ∈ [αt0− τ, t0],

where φ ∈C([αt0− τ, t0],R).
A function x(t) is said to be a solution of (1.1) satisfying the initial value condition (1.4)

if x(t) is defined on [αt0− τ,∞) and satisfies
(i) x(t) = φ(t) for αt0−τ ≤ t ≤ t0, x(t) is continuous for t ≥ t0 and t 6= tk, k = 1,2, ...;

(ii) x(t) is continuously differentiable for t > t0, t 6= tk,k = 1,2, ..., and x(t+k ) and x(t−k )
exist with x(t+k ) = x(tk) for k = 1,2, ...;

(iii) x(t) satisfies (1.1).
Using the method of steps as in the case without impulses, one can show the global

existence and uniqueness of the solution of the initial problem (1.1) and (1.4).
As is customary, a solution of (1.1) is said to be nonoscillatory if it is eventually positive

or eventually negative. Otherwise, it will be called oscillatory.

2. Main results

Theorem 2.1. Assume that the following conditions are fulfilled:

(2.1) 0 < bk ≤ 1 (k = 1,2, ...) and
∞

∑
k=1

(1−bk) < ∞;

there exists a positive number M such that

(2.2) |x| ≤ | f (x)| ≤M|x|, x ∈ R, x f (x) > 0 (x 6= 0);
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(2.3) limsup
t→∞

∫ t+τ
α

αt−τ

p
(

s+ τ

α

)
ds <

2α

M
.

Then every solution of (1.1) tends to a constant as t→ ∞.

Proof. Let x(t) be any solution of (1.1), we shall prove that limt→∞ x(t) exists and is finite.
For this purpose, we rewrite the system (1.1) in the form

(2.4)

{[
x(t)− 1

α

∫ t
αt−τ

p
( s+τ

α

)
f (x(s))ds

]′+ 1
α

p
( t+τ

α

)
f (x(t)) = 0, t ≥ t0, t 6= tk,

x(tk) = bkx(t−k )+ 1−bk
α

∫ tk
αtk−τ p

( s+τ

α

)
f (x(s))ds, k = 1,2, ....

From (2.3), one can select δ > 0 sufficiently small and T > t0 sufficiently large such that

(2.5)
∫ t+τ

α

αt−τ

p
(

s+ τ

α

)
ds <

2α

M
−δ , for t ≥ T.

Define two functionals as follows

V1(t) =
[

x(t)− 1
α

∫ t

αt−τ

p
(

s+ τ

α

)
f (x(s))ds

]2

,

and

V2(t) =
1

α3

∫ t

αt−τ

p
(

s+(1+α)τ
α2

)∫ t

s
p
(

u+ τ

α

)
f 2(x(u))duds.

As t 6= tk, calculating dV1(t)/dt and dV2(t)/dt along the solution of (1.1) and using the
inequality 2ab≤ a2 +b2 yields

dV1

dt
=− 2

α
p
(

t + τ

α

)
f (x(t))

[
x(t)− 1

α

∫ t

αt−τ

p
(

s+ τ

α

)
f (x(s))ds

]
≤− 1

α
p
(

t + τ

α

)[
2x(t) f (x(t))− 1

α
f 2(x(t))

∫ t

αt−τ

p
(

s+ τ

α

)
ds

− 1
α

∫ t

αt−τ

p
(

s+ τ

α

)
f 2(x(s))ds

]
,

and

dV2

dt
=

1
α3 p

(
t + τ

α

)
f 2(x(t))

∫ t

αt−τ

p
(

s+(1+α)τ
α2

)
ds

− 1
α2 p

(
t + τ

α

)∫ t

αt−τ

p
(

s+ τ

α

)
f 2(x(s))ds.
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Let V (t) = V1(t)+V2(t). For t 6= tk, it follows from the above two inequalities and (2.5)
that

(2.6)

dV
dt

=
dV1

dt
+

dV2

dt

≤− 1
α

p
(

t + τ

α

)
f 2(x(t))

[
2x(t)

f (x(t))
− 1

α

∫ t

αt−τ

p
(

s+ τ

α

)
ds

− 1
α2

∫ t

αt−τ

p
(

s+(1+α)τ
α2

)
ds
]

=− 1
α

p
(

t + τ

α

)
f 2(x(t))

[
2x(t)

f (x(t))
− 1

α

∫ t+τ
α

αt−τ

p
(

s+ τ

α

)
ds

]

≤− 1
α

p
(

t + τ

α

)
f 2(x(t))

[
2
M
− 1

α

∫ t+τ
α

αt−τ

p
(

s+ τ

α

)
ds

]

≤− δ

α2 p
(

t + τ

α

)
f 2(x(t)).

As t = tk, one can easily get

(2.7)

V (tk) =
[

x(tk)−
1
α

∫ tk

αtk−τ

p
(

s+ τ

α

)
f (x(s))ds

]2

+
1

α3

∫ tk

αtk−τ

p
(

s+(1+α)τ
α2

)∫ tk

s
p
(

u+ τ

α

)
f 2(x(u))duds.

= b2
k

[
x(t−k )− 1

α

∫ tk

αtk−τ

p
(

s+ τ

α

)
f (x(s))ds

]2

+
1

α3

∫ tk

αtk−τ

p
(

s+(1+α)τ
α2

)∫ tk

s
p
(

u+ τ

α

)
f 2(x(u))duds

≤V (t−k ).

This and (2.6) shows that V (t) is eventually decreasing. Since V (t)≥ 0, then limt→∞ V (t) =
γ exists and γ ≥ 0. From (2.4), (2.6) and (2.7), it follows that∫

∞

T
p
(

s+ τ

α

)
f 2(x(s))ds≤ α

δ
V (T ).

This implies

p
(

t + τ

α

)
f 2(x(t)) ∈ L1(t0,∞),

and hence, for 0 < α ≤ 1 and τ ≥ 0, we have

(2.8) lim
t→∞

∫ t

αt−τ

p
(

s+ τ

α

)
f 2(x(s))ds = 0.

It follows from (2.8) that

0≤V2(t) =
1

α3

∫ t

αt−τ

p
(

s+(1+α)τ
α2

)∫ t

s
p
(

u+ τ

α

)
f 2(x(u))duds

≤ 1
α3

∫ t

αt−τ

p
(

s+(1+α)τ
α2

)
ds
∫ t

αt−τ

p
(

u+ τ

α

)
f 2(x(u))du
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=
1

α2

∫ t+τ
α

t
p
(

u+ τ

α

)
ds
∫ t

αt−τ

p
(

u+ τ

α

)
f 2(x(u))du

≤ 2
Mα

∫ t

αt−τ

p
(

u+ τ

α

)
f 2(x(u))du→ 0, as t→ ∞.

We then have limt→∞ V1(t) = limt→∞ V (t) = γ, that is,

(2.9) lim
t→∞

[
x(t)− 1

α

∫ t

αt−τ

p
(

s+ τ

α

)
f (x(s))ds

]2

= γ.

Let u(t) = x(t)−1/α
∫ t

αt−τ
p((s+ τ)/α) f (x(s))ds. Then (2.9) shows that

(2.10) lim
t→∞

u2(t) = γ.

From (1.1), we can easily get

(2.11)
u(tk) = x(tk)−

1
α

∫ tk

αtk−τ

p
(

s+ τ

α

)
f (x(s))ds

= bk

[
x(t−k )− 1

α

∫ tk

αtk−τ

p
(

s+ τ

α

)
f (x(s))ds

]
= bku(t−k ).

Thus, from (2.4) and (2.11), we have

(2.12)

{
u′(t)+ 1

α
p
( t+τ

α

)
f (x(t)) = 0, t ≥ t0, t 6= tk,

u(tk) = bkx(t−k ), k = 1,2, ....

If γ = 0, then limt→∞ u(t) = 0. If γ > 0, then there exists a sufficiently large T1 such that
u(t) 6= 0 for t ≥ T1. Otherwise, there is a sequence {τk} with limk→∞ τk = ∞ such that
u(τk) = 0, and so u2(τk)→ 0 as k→ ∞. This contradicts with γ > 0. Therefore, for any
tk > T1, t ∈ [tk, tk+1), we have u(t) > 0 or u(t) < 0 because u(t) is continuous on [tk, tk+1).
Without lost of generality, we assume that u(t) > 0 on [tk, tk+1), it follows that u(tk+1) =
bku(t−k+1) > 0, and thus u(t) > 0 on [tk+1, tk+2). By induction, we can conclude that u(t) > 0
on [tk,∞). This and (2.10) imply that

(2.13) lim
t→∞

u(t) = lim
t→∞

(
x(t)− 1

α

∫ t

αt−τ

p
(

s+ τ

α

)
f (x(s))ds

)
= ν ,

where ν =
√

γ and is finite. In view of (2.12), we have

1
α

∫ t

αt−τ

p
(

s+ τ

α

)
f (x(s))ds = u(αt− τ)−u(t)− ∑

αt<tk<t
(u(tk)−u(t−k ))

= u(αt− τ)−u(t)− ∑
αt<tk<t

(1−bk)u(t−k ).

Letting t→ ∞ and noticing that ∑
∞
k=1(1−bk) < ∞, we have

(2.14) lim
t→∞

1
α

∫ t

αt−τ

p
(

s+ τ

α

)
f (x(s))ds = 0.

It follows from (2.13) and (2.14) that limt→∞ x(t) = ν and the proof is completed.
By Theorem 2.1, we have the the following asymptotic behavior result immediately.

Theorem 2.2. The conditions of Theorem 2.1 imply that every oscillatory solution of (1.1)
tends to zero as t→ ∞.
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In Theorem 2.1, taking bk ≡ 1, k = 1,2, ..., we have

Corollary 2.1. Assume that (2.2) and (2.3) hold. Then every solution of (1.2) tends to a
constant as t→ ∞.

Theorem 2.3. The conditions of Theorem 2.1 together with

(2.15)
∫

∞

t0
p(t)dt = ∞

imply that every solution of (1.1) tends to zero as t→ ∞.

Proof. By Theorem 2.2, we only have to prove that every nonoscillatory solution of (1.1)
tends to zero as t→ ∞. Without lost of generality, let x(t) be an eventually positive solution
of (1.1), we shall prove that limt→∞ x(t) = 0. As in the proof of Theorem 2.1, we can rewrite
(1.1) in the form (2.12). Integrating from t0 to t both sides of (2.12) yields∫ t

t0
p
(

s+ τ

α

)
f (x(s))ds = α

[
u(t0)−u(t)− ∑

t0<tk<t
(1−bk)u(t−k )

]
.

Using (2.13) and noticing ∑
∞
k=1(1−bk) < ∞, we can conclude that∫

∞

t0
p
(

s+ τ

α

)
f (x(s))ds < ∞.

This, together with (2.15), implies that liminft→∞ f (x(t)) = 0. Let {sn} be a sequence such
that sn → ∞ as n→ ∞ and limn→∞ f (x(sn)) = 0. Then we must have liminfn→∞ x(sn) =
c = 0. Otherwise, there exists a subsequence {snk} such that x(snk)≥ c/2 for k sufficiently
large. From (2.2), it follows that f (x(snk)) ≥ c/2, which yields a contradiction because
of limk→∞ f (x(snk)) = 0. Therefore, liminft→∞ x(t) = 0. This and Theorem 2.1 imply that
limt→∞ x(t) = 0 and so the proof is completed.

The following corollary follows from Corollary 2.1 and Theorem 2.3.

Corollary 2.2. Assume that (2.2), (2.3) and (2.15) hold. Then every solution of (1.2) tends
to zero as t→ ∞.

Taking α = 1 in Theorem 2.3, we have the following

Corollary 2.3. [15] Assume that the following conditions hold:
(i) 0 < bk ≤ 1 (k = 1,2, ...) and ∑

∞
k=1(1−bk) < ∞;

(ii) there exists a positive number M such that |x| ≤ | f (x)| ≤ M|x|, x ∈ R, x f (x) >
0 (x 6= 0);

(iii) limsupt→∞

∫ t+τ

t−τ
p(s+ τ)ds < 2/M;

(iv)
∫

∞

t0 p(t)dt = ∞.

Then every solution of (1.3) tends to zero as t→ ∞.

3. Examples

In this section, we give two examples to illustrate the usefulness of our main results.

Example 3.1. Consider the pantograph differential equation

(3.1) x′(t)+
2(2t−1)
(2t +1)2 x(t/2−1) = 0, t ≥ 1,

where α = 1/2, p(t) = (2(2t−1))/((2t +1)2) and f (x) = x.
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One can easily see that ∫
∞

t0
p(t)dt =

∫
∞

1

2(2t−1)
(2t +1)2 dt = ∞,

and

limsup
t→∞

∫ t+τ
α

αt−τ

p
(

s+ τ

α

)
ds = limsup

t→∞

∫ 2(t+1)

t/2−1

4s+3
2(4s+5)2 ds≤ limsup

t→∞

∫ 2(t+1)

t/2−1

1
2s+1

ds

= lim
t→∞

1
2

ln
(

4t +5
t−1

)
= ln2 < 1.

Thus, the conditions (2.2), (2.3) and (2.15) hold. By Corollary 2.2, every solution of (3.1)
tends to zero as t→ ∞. Indeed, x(t) = 1/(2t +1) (t ≥ 2) is such a solution.

Example 3.2. Consider the impulsive differential equation

(3.2)

{
x′(t)+ 1

4t

[
1+ cos2 x(t/e−1)

]
x(t/e−1) = 0, t ≥ t0 = 1, t 6= k,

x(k) = k2−1
k2 x(k−)+ 1

k2

∫ k
k/e−1

x(s)
4(s+1) (1+ cos2 x(s))ds, k = 2,3, ...,

where α = 1/e, p(t) = 1
4t , f (x) = (1+ cos2 x)x, bk = k2−1

k2 ,k = 1,2, ....

One can easily find that

∞

∑
k=1

(1−bk) =
∞

∑
k=1

1
k2 < ∞, |x| ≤

∣∣(1+ cos2 x)x
∣∣≤ 2|x|,

(1+ cos2 x)x2 > 0 (x 6= 0),
∫

∞

t0
p(s)ds =

∫
∞

1
1/(4s)ds = ∞,

and

limsup
t→∞

∫ (t+τ)/α

αt−τ

p
(

s+ τ

α

)
ds = limsup

t→∞

∫ e(t+1)

t/e−1

1
4e(s+1)

ds

=
1
4e

limsup
t→∞

(
1+ ln

e(t +1)+1
t

)
= 1/(2e) < 1/e.

By Theorem 2.3, every solution of (3.2) tends to zero as t→ ∞.

4. Conclusion

In this paper, Lyapunov functional method was developed to investigate the asymptotic
behavior of solutions of a nonlinear generalized pantograph equation with certain impulses
and sufficient conditions were obtained under which every solution of the equation tends to
a constant or zero as t → ∞. We believe that the method can be developed to investigate
nonlinear neutral generalized pantograph equation with impulses. This is left for future
investigations.

Acknowledgement. The authors wish to express our gratitude to the anonymous referees
for their careful reading of the manuscript and very useful comments.
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