A General Iterative Method for Multi-Valued Mappings

${ }^{1}$ Rabian Wangkeeree and ${ }^{2}$ Pakkapon Preechasilp
${ }^{1,2}$ Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
${ }^{1}$ rabianw@ nu.ac.th, ${ }^{2}$ preechasilpp@ gmail.com

Abstract

Our purpose in this paper is to introduce a new general iterative approximation method for a family of multi-valued mappings in reflexive Banach spaces. Under suitable conditions, some strong convergence theorems for approximating a common fixed point of a family of multi-valued mappings are obtained. The main result extends various results existing in the current literature.

2010 Mathematics Subject Classification: $47 \mathrm{H} 09,47 \mathrm{H} 10,47 \mathrm{H} 17$
Keywords and phrases: Multi-valued mapping, iterative approximation methods, common fixed point, Banach space.

1. Introduction

In a Banach space E, a mapping T of E into itself is said to be Lipschitzian if there exists $L \geq 0$ such that $\|T x-T y\| \leq L\|x-y\|$ for each $x, y \in E . T$ is called a nonexpansive if $L=1$. A mapping $f: E \rightarrow E$ is said to be contraction if there exists a constant $\alpha \in(0,1)$ such that

$$
\|f(x)-f(y)\| \leq \alpha\|x-y\|, \quad \forall x, y \in E
$$

We use Π_{E} to denote the collection of all contractions on E, that is,

$$
\Pi_{E}=\{f: E \rightarrow E: f \text { is a contraction on } \mathrm{E}\} .
$$

The set $C \subseteq E$ is called proximinal if, for each $x \in E$, there exists an element $y \in C$ such that $\|x-y\|=d(x, C)$, where $d(x, C)=\inf \{\|x-z\|: z \in C\}$. We use $\mathscr{P}(E)$ to denote the family of nonempty proximal bounded subsets of E, i.e.,

$$
\mathscr{P}(E)=\{C \subseteq E: C \text { is nonempty proximal and bounded }\} .
$$

Let $\mathscr{C} \mathscr{B}(E), \mathscr{C}(E)$ denote the family of nonempty closed bounded subsets of E, and the family of nonempty compact subsets of E, respectively. $H(\cdot, \cdot)$ denotes the Hausdorff matric on $\mathscr{C} \mathscr{B}(E)$, defined by

$$
H(A, B):=\max \left\{\sup _{x \in A} \inf _{y \in B}\|x-y\|, \sup _{y \in B} \inf _{x \in A}\|x-y\|\right\}, \quad \forall A, B \in \mathscr{C} \mathscr{B}(E)
$$

[^0]A multi-valued mapping $T: E \rightarrow \mathscr{C} \mathscr{B}(E)$ is said to be nonexpansive if

$$
H(T x, T y) \leq\|x-y\|, \quad \forall x, y \in E
$$

T is said to be quasi-nonexpansive if $F(T) \notin \emptyset$ and

$$
H(T x, T p) \leq\|x-p\|, \quad \forall x \in E, p \in F(T) .
$$

The multi-valued mapping $T: E \rightarrow \mathscr{C} \mathscr{B}(E)$ is called hemicompact if, for any sequence $\left\{x_{n}\right\}$ in E such that $d\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow p \in E$. It is noted that, if C is compact, then every multi-valued mapping T : $C \rightarrow \mathscr{C} \mathscr{B}(C)$ is hemicompact. $\left\{x_{n}\right\}$ is said to satisfy Condition $\left(A^{\prime}\right)$ if, for any subsequence $x_{n_{k}} \rightharpoonup x$ and $d\left(x_{n+1}, T_{n}\left(x_{n}\right)\right) \rightarrow 0$ implies that $x \in F$, where $F:=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \neq \emptyset$ is the common fixed point set of the family of multi-valued mappings $T_{i}, i=1,2, \ldots$.

Since Banach's Contraction Mapping Principle was extended nicely to multi-valued mappings by Nadler [10] in 1969, many authors have studied the fixed point theory for multi-valued mappings (see, e.g., [1,6,7, 17, 23]).

Let E^{*} be the dual space of E, by a gauge function φ we mean a continuous strictly increasing function $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(0)=0$ and $\varphi(t) \rightarrow \infty$ as $t \rightarrow \infty$. The duality mapping $J_{\varphi}: E \rightarrow 2^{E^{*}}$ associated to a gauge function φ is defined by

$$
J_{\varphi}(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\| \varphi(\|x\|),\left\|f^{*}\right\|=\varphi(\|x\|)\right\}, \quad \forall x \in E .
$$

In particular, the duality mapping with the gauge function $\varphi(t)=t$, denoted by J, is referred to as the normalized duality mapping. Clearly, there holds the relation $J_{\varphi}(x)=$ $\varphi(\|x\|) /\|x\| J(x)$ for all $x \neq 0$ (see [2]). Browder [2] initiated the study of certain classes of nonlinear operators by means of the duality mapping J_{φ}. Following Browder [2], we say that a Banach space E has a weakly continuous duality mapping if there exists a gauge φ for which the duality mapping $J_{\varphi}(x)$ is single-valued and continuous from the weak topology to the weak* topology, that is, for any $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the sequence $\left\{J_{\varphi}\left(x_{n}\right)\right\}$ converges weakly* to $J_{\varphi}(x)$. It is known that l^{p} has a weakly continuous duality mapping with a gauge function $\varphi(t)=t^{p-1}$ for all $1<p<\infty$. Set

$$
\Phi(t)=\int_{0}^{t} \varphi(\tau) d \tau, \quad \forall t \geq 0
$$

then

$$
J_{\varphi}(x)=\partial \Phi(\|x\|), \quad \forall x \in E,
$$

where ∂ denotes the sub-differential in the sense of convex analysis.
Sastry and Babu [15] defined the Mann iteration schemes for multi-valued mappings $T: C \rightarrow \mathscr{P}(C)$ and fixed point $p \in F(T)$. The sequence of Mann iterates is defined by

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{1.1}\\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} y_{n}, \quad \forall n \geq 0
\end{array}\right.
$$

where $y_{n} \in T\left(x_{n}\right)$ such that $\left\|z_{n}-p\right\|=d\left(p, T\left(x_{n}\right)\right)$ and $\alpha_{n} \in[0,1]$ for all $n \geq 0$. They proved that the Mann iteration schemes for a multi-valued map T with a fixed point p converge to a fixed point of T under certain conditions. Panyanak [11] extended the above result of Sastry and Babu [15] to uniformly convex Banach spaces but the domain of T remains compact. Furthermore, he also obtained the strong convergence theorem for nonexpansive
multi-valued mapping. In 2009, Shahzad and Zegeye [16] obtained first the strong convergence theorem of the Ishikawa iterative scheme for a multi-valued quasi-nonexpansive mapping $T: C \rightarrow \mathscr{C} \mathscr{B}(C)$ such that $F(T)$ is nonempty and

$$
T(p)=\{p\} \quad \text { for any } \quad p \in F(T)
$$

Furthermore, for removing the rigid restriction on $F(T)$, that is $T(p)=\{p\}$ for any $p \in$ $F(T)$, Shahzad and Zegeye [16] proved the second strong convergence theorem of the Ishikawa iterative scheme for a multi-valued quasi-nonexpansive mapping $T: C \rightarrow \mathscr{P}(C)$ such that $F(T)$ is nonempty.

In 2011, Song and Cho [18] modified and improved the proofs of the main results in [16]. Khan and Yildirim [5] further improved and generalized the results of [28] and [16].

Recently, Zuo [28] introduced two viscosity approximation sequence for a family of multi-valued nonexpansive mappings in a Banach space. Let C be a nonempty closed convex subset of Banach space E and $T_{i}: C \rightarrow \mathscr{P}(C), i=1,2, \ldots$, be a family of multi-valued nonexpansive mappings with $F:=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$ which is sunny nonexpansive retract of C, with Q a nonexpansive retract of C onto F. For each $n \in \mathbb{N}$,

$$
P_{T_{n}}(x)=\left\{y \in T_{n}(x):\|x-y\|=d\left(x, T_{n}(x)\right)\right\}
$$

and $f: C \rightarrow C$ is a contraction mapping with constant $\alpha \in(0,1)$. Let $\alpha_{n} \in(0,1), \beta_{n} \in(0,1)$; for any given $x_{0} \in C$,

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n}, \quad n \geq 0 \tag{1.2}
\end{equation*}
$$

where $y_{n} \in P_{T_{n}}\left(x_{n}\right)$, for each $n \in \mathbb{N}$. Furthermore, Zuo introduced the following multi-valued version of the modified Mann iteration:

$$
\begin{equation*}
x_{n+1}=\beta_{n} f\left(x_{n}\right)+\alpha_{n} x_{n}+\left(1-\alpha_{n}-\beta_{n}\right) y_{n}, \quad n \geq 0 \tag{1.3}
\end{equation*}
$$

where $y_{n} \in P_{T_{n}}\left(x_{n}\right)$. It is proved in [28] that both sequences generated by (1.2) and (1.3) converge strongly to a common fixed point $\tilde{x}=Q(f(\tilde{x}))$ of a family of multi-valued nonexpansive mappings in a Banach spaces E which admits weakly sequentially continuous duality mapping J_{φ} with a gauge function φ. Moreover, \tilde{x} is the unique solution of the variational inequlity:

$$
\begin{equation*}
\left\langle f(\tilde{x})-\tilde{x}, j_{\varphi}(y-\tilde{x})\right\rangle \leq 0, \quad \forall y \in \bigcap_{n=1}^{\infty} F\left(T_{n}\right) . \tag{1.4}
\end{equation*}
$$

On the other hand, iterative methods for nonexpansive mappings have recently been applied to solve convex minimization problems; see, e.g., [4,24-26] and the references therein. Convex minimization problems have a great impact and influence in the development of almost all branches of pure and applied sciences. A typical problem is to minimize a quadratic function over the set of the fixed points a nonexpansive mapping on a real Hilbert space:

$$
\begin{equation*}
\theta(x)=\min _{x \in C} 1 / 2\langle A x, x\rangle-\langle x, b\rangle, \tag{1.5}
\end{equation*}
$$

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping T and b is a given point in H. In [9] Marino and Xu considered a general iterative method for a nonexpansive mapping in a Hilbert space H. Starting with arbitrary initial $x_{0} \in H$, define a sequence $\left\{x_{n}\right\}$ by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T x_{n}, \quad n \geq 0 \tag{1.6}
\end{equation*}
$$

where A is a strongly positive bounded linear operator on H, i.e.,

$$
\begin{equation*}
\langle A x, x\rangle \geq \bar{\gamma}\|x\|^{2} \quad \text { for all } \quad x \in H \tag{1.7}
\end{equation*}
$$

They proved that if the sequence $\left\{\alpha_{n}\right\}$ of parameters satisfies the appropriate conditions, then the sequence $\left\{x_{n}\right\}$ generated by (1.6) converges strongly to the unique solution x^{*} in $F(T)$ of the variational inequality

$$
\begin{equation*}
\left\langle(A-\gamma f) x^{*}, x-x^{*}\right\rangle \geq 0, \quad x \in F(T) \tag{1.8}
\end{equation*}
$$

which is the optimality condition for the minimization problem: $\min _{x \in C} 1 / 2\langle A x, x\rangle-h(x)$, where h is a potential function for $\gamma f\left(\right.$ i.e., $h^{\prime}(x)=\gamma f(x)$ for $\left.x \in H\right)$. Many authors have improved and extended the results of [9] in the framework of Hilbert spaces (see, e.g., [12-14, 22]).

In a Banach space E having a weakly continuous duality mapping J_{φ} with a gauge function φ, an operator A is said to be strongly positive [21] if there exists a constant $\bar{\gamma}>0$ with the property

$$
\begin{equation*}
\left\langle A x, J_{\varphi}(x)\right\rangle \geq \bar{\gamma}\|x\| \varphi(\|x\|) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\alpha I-\beta A\|=\sup _{\|x\| \leq 1}\left|\left\langle(\alpha I-\beta A) x, J_{\varphi}(x)\right\rangle\right|, \quad \alpha \in[0,1], \beta \in[-1,1] \tag{1.10}
\end{equation*}
$$

where I is the identity mapping. If $E:=H$ is a real Hilbert space, then the inequality (1.9) reduce to (1.7).

In this paper, inspired and motivated by Sastry and Babu [15], Panyanak [11], Shahzad and Zegeye [16], Song and Cho [18], Zuo [28], Marino and Xu [9], we consider the following two general iterative schemes for a family of multi-valued mappings in a Banach space. Let $T_{i}: E \rightarrow \mathscr{P}(E), i=1,2, \ldots$, be a family of multi-valued mappings. Let $f \in \Pi_{E}$ with coefficient $\alpha \in(0,1)$, A a strongly positive bounded linear operator on E with coefficient $\bar{\gamma}>0,0<\gamma<\bar{\gamma} / \alpha$ and $\alpha_{n} \in(0,1), \beta_{n} \in(0,1)$. For any given $x_{0} \in E$,

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) y_{n}, \quad n \geq 0, \tag{1.11}
\end{equation*}
$$

where $y_{n} \in P_{T_{n}}\left(x_{n}\right)$. Furthermore, we introduce the following general multi-valued version of the modified Mann iteration:

$$
\begin{equation*}
x_{n+1}=\beta_{n} \gamma f\left(x_{n}\right)+\alpha_{n} x_{n}+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) y_{n}, \quad n \geq 0 \tag{1.12}
\end{equation*}
$$

where $y_{n} \in P_{T_{n}}\left(x_{n}\right)$. Some strong convergence theorems are proved in the framework of a reflexive Banach space which admits a weakly continuous duality mapping J_{φ}, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a gauge function. The results presented in this paper improve and extend the corresponding results announced by Zuo [28], Marino and Xu [9], and many others.

2. Preliminaries

Throughout this paper, let E be a real Banach space and E^{*} be its dual space. We write $x_{n} \rightharpoonup x$ (respectively $x_{n} \stackrel{*}{\rightharpoonup} x$) to indicate that the sequence $\left\{x_{n}\right\}$ weakly (respectively weak*) converges to x; as usual $x_{n} \rightarrow x$ will symbolize strong convergence.

Now we collect some useful lemmas for proving the convergence result of this paper.

Lemma 2.1. [21, Lemma 3.1] Assume that a Banach space E has a weakly continuous duality mapping J_{φ} with gauge φ. Let A be a strong positive linear bounded operator on E with coefficient $\bar{\gamma}>0$ and $0<\rho \leq \varphi(1)\|A\|^{-1}$. Then $\|I-\rho A\| \leq \varphi(1)(1-\rho \bar{\gamma})$.

The first part of the next lemma is an immediate consequence of the subdifferential inequality and the proof of the second part can be found in [8].

Lemma 2.2. [8] Assume that a Banach space E has a weakly continuous duality mapping J_{φ} with gauge φ.
(i) For all $x, y \in E$, the following inequality holds:

$$
\Phi(\|x+y\|) \leq \Phi(\|x\|)+\left\langle y, J_{\varphi}(x+y)\right\rangle .
$$

In particular, for all $x, y \in E$,

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J(x+y)\rangle .
$$

Let Q be a mapping of E onto C. Then Q is said to be sunny if $Q(Q(x)+t(x-Q(x)))=$ $Q(x)$ for all $x \in E$ and $t \geq 0$. A mapping Q of E into E is said to be retraction if $Q^{2}=Q$. If a mapping Q is a retraction, then $Q(z)=z$ for every $z \in R(Q)$, where $R(Q)$ is a range of Q. A subset C of E is said to be a sunny nonexpansive retract of E if there exists a sunny nonexpansive retraction of E onto C, and it is said to be a nonexpansive retract of E if there exists a nonexpansive retraction of E onto C.

Lemma 2.3. [3] Let C be a nonempty convex subset of a smooth Banach space $E, J: E \rightarrow E^{*}$ be the (normalized) duality mapping of E, and $Q: E \rightarrow C$ be a retraction. Then the following are equivalent.
(1) $\langle x-Q x, j(y-Q x)\rangle \leq 0$ for all $x \in E$ and $y \in C$.
(2) Q is both sunny and nonexpansive.

It is noted that Lemma 2.3 still holds if the normalized duality map J is replaced by the general duality map J_{φ}, where φ is gauge function.

Lemma 2.4. [24, Lemma 2.1] Let $\left\{a_{n}\right\}$ be a sequence of non-negative real numbers satisfying the property

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\delta_{n}, \quad n \geq 0
$$

where $\left\{\gamma_{n}\right\} \subseteq(0,1)$ and $\left\{\delta_{n}\right\} \subseteq \mathbb{R}$ such that

$$
\sum_{n=1}^{\infty} \gamma_{n}=\infty, \quad \text { and either } \quad \limsup _{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leq 0 \quad \text { or } \quad \sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty
$$

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.5. [19] Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and $\left\{\beta_{n}\right\}$ a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sin _{n \rightarrow \infty} \beta_{n}<1$. Suppose that $x_{n+1}=$ $\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all $n \geq 0$ and

$$
\underset{n \rightarrow \infty}{\limsup }\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

3. Main results

In this section, we prove strong convergence theorems for a countable family of multivalued mappings.

Theorem 3.1. Let E be a reflexive Banach space which admits weakly sequentially continuous duality mapping J_{φ} with gauge φ such that $\varphi(1)=1$. Let $f \in \Pi_{E}$ with coefficient $\alpha \in(0,1)$, A a strongly positive bounded linear operator on E with coefficient $\bar{\gamma}>0$ such that $\|A\|=1$, and $0<\gamma<\bar{\gamma} / \alpha$. Let $T_{i}: E \rightarrow \mathscr{P}(E), \forall i=0,1,2, \ldots$ be a family of multivalued mappings with $F:=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \neq \emptyset$ which is sunny nonexpansive retract of E, with Q_{F} a nonexpansive retraction and $P_{T_{i}}$ a nonexpansive mapping. Let the sequence $\left\{x_{n}\right\}$ be defined by (1.11), where a real sequence $\left\{\alpha_{n}\right\}$ satisfies the following conditions:

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0 \quad \text { and } \quad \sum_{n=0}^{\infty} \alpha_{n}=\infty
$$

If $\left\{x_{n}\right\}$ satisfies condition $\left(A^{\prime}\right)$, then $\left\{x_{n}\right\}$ converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}((I-A+\gamma f) \tilde{x})$ of a family $T_{i}, i=1,2, \ldots$. Moreover, \tilde{x} is a unique solution of the variational inequality:

$$
\begin{equation*}
\left\langle(A-\gamma f) \tilde{x}, J_{\varphi}(z-\tilde{x})\right\rangle \leq 0, \quad \forall z \in F . \tag{3.1}
\end{equation*}
$$

Proof. We first show that the uniqueness of a solution of the variational inequality (3.1). Suppose both $\tilde{x} \in F$ and $x^{*} \in F$ are solutions to (3.1), then

$$
\begin{equation*}
\left\langle(A-\gamma f) \tilde{x}, J_{\varphi}\left(\tilde{x}-x^{*}\right)\right\rangle \leq 0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle(A-\gamma f) x^{*}, J_{\varphi}\left(x^{*}-\tilde{x}\right)\right\rangle \leq 0 . \tag{3.3}
\end{equation*}
$$

Adding (3.2) and (3.3), we obtain

$$
\begin{equation*}
\left\langle(A-\gamma f) \tilde{x}-(A-\gamma f) x^{*}, J_{\varphi}\left(\tilde{x}-x^{*}\right)\right\rangle \leq 0 . \tag{3.4}
\end{equation*}
$$

Noticing that for any $x, y \in E$,

$$
\begin{align*}
\left\langle(A-\gamma f) x-(A-\gamma f) y, J_{\varphi}(x-y)\right\rangle & =\left\langle A(x-y), J_{\varphi}(x-y)\right\rangle-\gamma\left\langle f(x)-f(y), J_{\varphi}(x-y)\right\rangle \\
& \geq \bar{\gamma}\|x-y\| \varphi(\|x-y\|)-\gamma\|f(x)-f(y)\|\left\|J_{\varphi}(x-y)\right\| \\
& \geq \bar{\gamma} \Phi(\|x-y\|)-\gamma \alpha \Phi(\|x-y\|) \\
& =(\bar{\gamma}-\gamma \alpha) \Phi(\|x-y\|) \geq 0 . \tag{3.5}
\end{align*}
$$

Therefore $\tilde{x}=x^{*}$ and the uniqueness is proved. Below we use \tilde{x} to denote the unique solution of (3.1).

Note that $p \in P_{T_{i}}(p)=\{p\}$ for any fixed point $p \in F\left(T_{i}\right), i=1,2, \ldots$. Then we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) y_{n}-p\right\| \\
& =\left\|\alpha_{n} \gamma f\left(x_{n}\right)-\alpha_{n} \gamma f(p)+\alpha_{n} \gamma f(p)-\alpha_{n} A(p)+\left(I-\alpha_{n} A\right) y_{n}-\left(I-\alpha_{n} A\right) p\right\| \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A(p)\|+\varphi(1)\left(1-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-p\right\| \\
& =\alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A(p)\|+\varphi(1)\left(1-\alpha_{n} \bar{\gamma}\right) d\left(y_{n}, P_{T_{n}}(p)\right) \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A(p)\|+\varphi(1)\left(1-\alpha_{n} \bar{\gamma}\right) H\left(P_{T_{n}}\left(x_{n}\right), P_{T_{n}}(p)\right) \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A(p)\|+\varphi(1)\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \alpha_{n}\|\gamma f(p)-A(p)\|+\left(1-\alpha_{n}(\varphi(1) \bar{\gamma}-\gamma \alpha)\right)\left\|x_{n}-p\right\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|,\|\gamma f(p)-A(p)\| /(\bar{\gamma}-\gamma \alpha)\right\} .
\end{aligned}
$$

By induction, we obtain that $\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|,\|\gamma f(p)-A(p)\| /(\bar{\gamma}-\gamma \alpha)\right\} \forall n \in \mathbb{N}$. Hence $\left\{x_{n}\right\}$ is bounded, and so are $\left\{A\left(y_{n}\right)\right\}$ and $\left\{f\left(x_{n}\right)\right\}$. Then we have

$$
\begin{equation*}
d\left(x_{n+1}, T_{n}\left(x_{n}\right)\right) \leq\left\|x_{n+1}-y_{n}\right\|=\alpha_{n}\left\|\gamma f\left(x_{n}\right)-A\left(y_{n}\right)\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.6}
\end{equation*}
$$

We observe that $Q_{F}(I-A+\gamma f)$ is a contraction. Indeed, for all $x, y \in E$, we have

$$
\begin{aligned}
\left\|Q_{F}(\gamma f+(I-A))(x)-Q_{F}(\gamma f+(I-A))(y)\right\| & \leq\|(\gamma f+(I-A))(x)-(\gamma f+(I-A))(y)\| \\
& \leq \gamma\|f(x)-f(y)\|+\|I-A\|\|x-y\| \\
& \leq \gamma \alpha\|x-y\|+(1-\bar{\gamma})\|x-y\| \\
& \leq(1-(\bar{\gamma}-\alpha \gamma))\|x-y\| .
\end{aligned}
$$

Banach's Contraction Mapping Principle guarantees that $Q_{F}(\gamma f+(I-A))$ has a unique fixed point, say $\tilde{x} \in E$. That is, $\tilde{x}=Q_{F}(\gamma f+(I-A))(\tilde{x})$.

Next, we shall show that

$$
\begin{equation*}
\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n}-\tilde{x}\right)\right\rangle \leq 0 . \tag{3.7}
\end{equation*}
$$

Since E is reflexive and $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightharpoonup z \in E$ and

$$
\limsup _{n \rightarrow \infty}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle=\lim _{k \rightarrow \infty}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n_{k}}-\tilde{x}\right)\right\rangle .
$$

From (3.6), and since $\left\{x_{n}\right\}$ satisfies condition (A^{\prime}), we obtain that $z \in F$. On the other hand, the assumption that the duality mapping J_{φ} is weakly continuous, we then have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle & =\lim _{k \rightarrow \infty}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n_{k}}-\tilde{x}\right)\right\rangle \\
& =\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}(z-\tilde{x})\right\rangle \leq 0 .
\end{aligned}
$$

Finally, we will show that $x_{n} \rightarrow \tilde{x}$ as $n \rightarrow \infty$. In fact, since $\Phi(t)=\int_{0}^{t} \varphi(\tau) d \tau, \forall t \geq 0$, and $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a gauge function, then for $1 \geq k \geq 0, \varphi(k x) \leq \varphi(x)$ and

$$
\Phi(k t)=\int_{0}^{k t} \varphi(\tau) d \tau=k \int_{0}^{t} \varphi(k x) d x \leq k \int_{0}^{t} \varphi(x) d x=k \Phi(t) .
$$

Using Lemma 2.2, we get that

$$
\begin{aligned}
& \Phi\left(\left\|x_{n+1}-\tilde{x}\right\|\right) \\
& =\Phi\left(\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) y_{n}-\tilde{x}\right\|\right) \\
& \leq \Phi\left(\left\|\alpha_{n} \gamma f\left(x_{n}\right)-\alpha_{n} \gamma f(\tilde{x})+\left(I-\alpha_{n} A\right) y_{n}-\left(I-\alpha_{n} A\right) \tilde{x}+\alpha_{n} \gamma f(\tilde{x})-\alpha_{n} A(\tilde{x})\right\|\right) \\
& \leq \Phi\left(\left\|\alpha_{n} \gamma f\left(x_{n}\right)-\alpha_{n} \gamma f(\tilde{x})+\left(I-\alpha_{n} A\right) y_{n}-\left(I-\alpha_{n} A\right) \tilde{x}\right\|\right)+\alpha_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\alpha_{n} \gamma\left\|f\left(x_{n}\right)-f(\tilde{x})\right\|+\varphi(1)\left(1-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-\tilde{x}\right\|\right)+\alpha_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\alpha_{n} \gamma \alpha\left\|x_{n}-\tilde{x}\right\|+\left(1-\alpha_{n} \bar{\gamma}\right) H\left(P_{T_{n}}\left(x_{n}\right), P_{T_{n}}(\tilde{x})\right)\right)+\alpha_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\alpha_{n} \gamma \alpha\left\|x_{n}-\tilde{x}\right\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-\tilde{x}\right\|\right)+\alpha_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\left(1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right)\left\|x_{n}-\tilde{x}\right\|\right)+\alpha_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq\left(1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right) \Phi\left(\left\|x_{n}-\tilde{x}\right\|\right)+\alpha_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle .
\end{aligned}
$$

From Lemma 2.4 we get that $x_{n} \rightarrow \tilde{x}$ which satisfies the variational inequality follows from the property of Q_{F}.

We will give some example of a family of multi-valued mappings and a sequence satisfying condition $\left(A^{\prime}\right)$ as following :

Example 3.1. Let $E=\mathbb{R}$ and $C=[0,1]$. For each $n \in \mathbb{N}$, define a multi-valued mapping $T_{n}: C \rightarrow \mathscr{C}(C)$ by

$$
T_{n}(x)=[0, x / n], \quad \text { for all } \quad x \in C .
$$

It is easy to see that $\{0\}=F\left(T_{n}\right)$ for all $n \in \mathbb{N}$. If $\left\{x_{n}\right\}=\{1 / n\}_{n \in \mathbb{N}}$, then $\left\{x_{n}\right\} \subseteq C$ and $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. From definition of T, we have that

$$
\begin{aligned}
d\left(x_{n+1}, T_{n}\left(x_{n}\right)\right) & =d\left(1 / n+1,\left[0,1 / n^{2}\right]\right) \\
& =1 / n+1-1 / n^{2} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ satisfies the condition $\left(A^{\prime}\right)$.
Remark 3.1. In general case, if A is any strongly positive bounded linear operator with coefficient $\bar{\gamma}$ and $0<\gamma<\bar{\gamma} / \alpha$. We define a bounded linear operator \bar{A} on E by

$$
\bar{A}=\|A\|^{-1} A .
$$

It is easy to see that \bar{A} is a strongly positive with coefficient $\|A\|^{-1} \bar{\gamma}>0$ such that $\|\bar{A}\|=1$ and

$$
0<\|A\|^{-1} \gamma<\|A\|^{-1} \bar{\gamma} / \alpha
$$

Let the sequence $\left\{x_{n}\right\}$ be defined by, for any $x_{0} \in E$,

$$
\begin{equation*}
x_{n+1}=\alpha_{n}\|A\|^{-1} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} \bar{A}\right) y_{n}, \quad n \geq 0 \tag{3.8}
\end{equation*}
$$

where $y_{n} \in P_{T_{n}}\left(x_{n}\right)$. Replacing A with \bar{A} in Theorem 3.1, we obtain the following result.
Theorem 3.2. Let E be a reflexive Banach space which admits weakly sequentially continuous duality mapping J_{φ} with gauge φ such that $\varphi(1)=1$. Let $f \in \Pi_{E}$ with coefficient $\alpha \in(0,1)$, A a strongly positive bounded linear operator on E with coefficient $\bar{\gamma}>0$, and $0<\gamma<\bar{\gamma} / \alpha$. Let $T_{i}: E \rightarrow \mathscr{P}(E), \forall i=0,1,2, \ldots$ be a family of multi-valued mappings with $F:=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \neq \emptyset$, which is sunny nonexpansive retract of E, with Q_{F} a nonexpansive retraction and $P_{T_{i}}$ a nonexpansive mapping. Let the sequence $\left\{x_{n}\right\}$ be defined by (3.8), where $\left\{\alpha_{n}\right\}$ is a real sequence in $(0,1)$ satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\infty
$$

If $\left\{x_{n}\right\}$ satisfies condition (A^{\prime}), $\left\{x_{n}\right\}$ converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}\left(\left(I-\|A\|^{-1}(A+\gamma f) \tilde{x}\right)\right)$ of a family $T_{i}, i=0,1,2, \ldots$. Moreover, \tilde{x} is a unique solution of the variational inequality: (3.1).

Proof. From Theorem 3.1, we have that $\left\{x_{n}\right\}$ is generated by (3.8) converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}\left(\left(I-\|A\|^{-1}(A+\gamma f) \tilde{x}\right)\right)$ is a unique solution of the variational inequality:

$$
\begin{equation*}
\|A\|^{-1}\left\langle(A-\gamma f) \tilde{x}, J_{\varphi}(z-\tilde{x})\right\rangle \leq 0, \quad z \in F . \tag{3.9}
\end{equation*}
$$

It is easy to see that (3.9) is equivalent to (3.1). Hence \tilde{x} is a unique solution of the variational inequality (3.1).

If $\gamma=1$ and $A \equiv I$, the identity mapping, in Theorem 3.2 , then the requirement that $\varphi(1)=1$ is not necessary. In fact, Theorem 3.3 can be obtain from Theorem 3.1 immediately.

Theorem 3.3. Let E be a reflexive Banach space which admits weakly sequentially continuous duality mapping J_{φ} with gauge φ. Let $f \in \Pi_{E}$ with coefficient $\alpha \in(0,1)$. Let T_{i} : $E \rightarrow \mathscr{P}(E), i=0,1,2, \ldots$ be a family of multi-valued mappings with $F:=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$, which is sunny nonexpansive retract of E, with Q_{F} a nonexpansive retraction and $P_{T_{i}}$ a nonexpansive mapping. Let the sequence $\left\{x_{n}\right\}$ be defined by

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n}, \quad n \geq 0
$$

where $y_{n} \in T_{n}\left(x_{n}\right), 0<\alpha_{n}<1$ satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=0}^{\infty} \alpha_{n}=\infty
$$

If $\left\{x_{n}\right\}$ satisfies condition $\left(A^{\prime}\right)$, then $\left\{x_{n}\right\}$ converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}(f(\tilde{x}))$ of a family $T_{i}, i=0,1,2, \ldots$. Moreover, \tilde{x} is a unique solution of the variational inequality:

$$
\left\langle(I-f) \tilde{x}, J_{\varphi}(z-\tilde{x})\right\rangle \leq 0, \quad z \in F
$$

Next, we prove the strong convergence theorem for a general multi-valued version of the modified Mann iteration.

Theorem 3.4. Let E be a reflexive Banach space with weakly sequentially continuous duality mapping J_{φ} with gauge φ such that $\varphi(1)=1$. Let $f \in \Pi_{E}$ with coefficient $\alpha \in(0,1)$, A a strongly positive bounded linear operator with coefficient $\bar{\gamma}>0$ such that $\|A\|=1$, and $0<\gamma<\bar{\gamma} / \alpha$. Let $T_{i}: E \rightarrow \mathscr{P}(E), i=0,1,2, \ldots$ be a family of multi-valued mappings such that

$$
H\left(T_{n+1} x, T_{n} y\right) \leq\|x-y\| \quad \text { for all } \quad n \in \mathbb{N}
$$

with $F:=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$ which is sunny nonexpansive retract of E, with Q_{F} a nonexpansive retraction and $P_{T_{i}}$ a nonexpansive mapping. Let the sequence $\left\{x_{n}\right\}$ be defined by (1.12), where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are real sequences in $(0,1)$ satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} \beta_{n}=0, \sum_{n=0}^{\infty} \beta_{n}=\infty
$$

and

$$
0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1
$$

If $\left\{x_{n}\right\}$ satisfies condition $\left(A^{\prime}\right)$, then $\left\{x_{n}\right\}$ converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}((I-A+\gamma f) \tilde{x})$ of a family $T_{i}, i=0,1,2, \ldots$. Moreover, \tilde{x} is a unique solution of the variational inequality (3.1).

Proof. Notice that $\beta_{n} \rightarrow 0$, we may assume, without loss of generality, that $\beta_{n} \leq 1-\alpha_{n}$. Since A is a strongly positive bounded linear operator, then

$$
\|A\|=\sup \left\{\left|\left\langle A x, J_{\varphi}(x)\right\rangle\right|: x \in E,\|x\|=1\right\}
$$

Now for any $x \in E$ with $\|x\|=1$, we see that

$$
\left\langle\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) x, J_{\varphi}(x)\right\rangle=\left(1-\alpha_{n}\right)\left\langle x, J_{\varphi}(x)\right\rangle-\beta_{n}\left\langle A x, J_{\varphi}(x)\right\rangle
$$

$$
\begin{aligned}
& =\left(1-\alpha_{n}\right) \varphi(1)-\beta_{n}\left\langle A x, J_{\varphi}(x)\right\rangle \\
& \geq\left(1-\alpha_{n}\right) \varphi(1)-\beta_{n}\|A\|=1-\alpha_{n}-\beta_{n} \geq 0 .
\end{aligned}
$$

That is $\left(1-\alpha_{n}\right) I-\beta_{n} A$ is positive. It follows that

$$
\begin{aligned}
\left\|\left(1-\alpha_{n}\right) I-\beta_{n} A\right\| & =\sup \left\{\left\langle\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) x, J_{\varphi}(x)\right\rangle: x \in E,\|x\|=1\right\} \\
& =\sup \left\{\varphi(1)\left(1-\alpha_{n}\right)-\beta_{n}\left\langle A x, J_{\varphi}(x)\right\rangle: x \in E,\|x\|=1\right\} \\
& \leq \varphi(1)\left(1-\alpha_{n}\right)-\beta_{n} \bar{\gamma} \varphi(1)=1-\alpha_{n}-\beta_{n} \bar{\gamma} .
\end{aligned}
$$

Firstly, we show that $\left\{x_{n}\right\}$ is bounded. Indeed, take $p \in T_{i}(p)=\{p\}$, then

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\| \\
& =\left\|\beta_{n} \gamma f\left(x_{n}\right)+\alpha_{n} x_{n}+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) y_{n}-p\right\| \\
& =\left\|\beta_{n} \gamma f\left(x_{n}\right)-\beta_{n} A(p)+\alpha_{n} x_{n}-\alpha_{n} p+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) y_{n}-p+\alpha_{n} p+\beta_{n} A(p)\right\| \\
& \leq \beta_{n}\left\|\gamma f\left(x_{n}\right)-A(p)\right\|+\alpha_{n}\left\|x_{n}-p\right\|+\left\|\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) y_{n}-\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) p\right\| \\
& \leq \beta_{n}\left\|\gamma f\left(x_{n}\right)-\gamma f(p)\right\|+\beta_{n}\|\gamma f(p)-A(p)\|+\alpha_{n}\left\|x_{n}-p\right\|+\left\|\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right)\right\|\left\|y_{n}-p\right\| \\
& \leq \beta_{n} \gamma\left\|f\left(x_{n}\right)-f(p)\right\|+\beta_{n}\|\gamma f(p)-A(p)\|+\alpha_{n}\left\|x_{n}-p\right\| \\
& \quad+\varphi(1)\left(1-\alpha_{n}-\beta_{n} \bar{\gamma}\right) d\left(y_{n}, P_{T_{n}}(p)\right) \\
& \leq \beta_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\|\gamma f(p)-A(p)\|+\alpha_{n}\left\|x_{n}-p\right\| \\
& \quad+\varphi(1)\left(1-\alpha_{n}-\beta_{n} \bar{\gamma}\right) H\left(P_{T_{n}}\left(x_{n}\right), P_{T_{n}}(p)\right) \\
& \leq \beta_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\|\gamma f(p)-A(p)\|+\alpha_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}-\beta_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& =\beta_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\|\gamma f(p)-A(p)\|+\alpha_{n}\left\|x_{n}-p\right\|+\varphi(1)\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|-\beta_{n} \bar{\gamma}\left\|x_{n}-p\right\| \\
& \leq \beta_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\|\gamma f(p)-A(p)\|+\alpha_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|-\beta_{n} \bar{\gamma}\left\|x_{n}-p\right\| \\
& =\beta_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\|\gamma f(p)-A(p)\|+\left\|x_{n}-p\right\|-\beta_{n} \bar{\gamma}\left\|x_{n}-p\right\| \\
& =\left(1-\beta_{n}(\varphi(1) \bar{\gamma}-\gamma \alpha)\right)\left\|x_{n}-p\right\|+\beta_{n}\|\gamma f(p)-A(p)\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|,\|\gamma f(p)-A(p)\| /(\bar{\gamma}-\gamma \alpha)\right\} .
\end{aligned}
$$

It follows from induction that

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|,\|\gamma f(p)-A(p)\| /(\bar{\gamma}-\gamma \alpha)\right\}, \quad n \geq 0 . \tag{3.10}
\end{equation*}
$$

Hence $\left\{x_{n}\right\}$ is bounded, and so are $\left\{A\left(y_{n}\right)\right\}$ and $\left\{f\left(x_{n}\right)\right\}$. Next, we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, T_{n}\left(x_{n}\right)\right)=0 . \tag{3.11}
\end{equation*}
$$

Set $\lambda_{n}=\beta_{n} /\left(1-\alpha_{n}\right)$ and $z_{n}=\lambda_{n} \gamma f\left(x_{n}\right)+\left(1-\lambda_{n} A\right) y_{n}$. Then

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n} \quad \text { and } \quad \lim _{n \rightarrow \infty} \lambda_{n}=0 .
$$

Thus

$$
\begin{align*}
d\left(x_{n+1}, T_{n}\left(x_{n}\right)\right) & \leq\left\|x_{n+1}-y_{n}\right\| \leq\left\|x_{n+1}-z_{n}\right\|+\left\|z_{n}-y_{n}\right\| \\
& \leq \alpha_{n}\left\|x_{n}-z_{n}\right\|+\lambda_{n}\left\|\gamma f\left(x_{n}\right)-A\left(y_{n}\right)\right\| . \tag{3.12}
\end{align*}
$$

It suffices to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

From definition of z_{n}, we have that

$$
\begin{aligned}
& \left\|z_{n+1}-z_{n}\right\| \\
& =\left\|\lambda_{n+1} \gamma f\left(x_{n+1}\right)+\left(1-\lambda_{n+1} A\right) y_{n+1}-\lambda_{n} \gamma f\left(x_{n}\right)-\left(1-\lambda_{n} A\right) y_{n}\right\| \\
& =\left\|\lambda_{n+1} \gamma f\left(x_{n+1}\right)-\lambda_{n} \gamma f\left(x_{n}\right)\right\|+\left\|y_{n+1}-y_{n}\right\|+\lambda_{n}\left\|y_{n}\right\|+\lambda_{n+1}\left\|y_{n+1}\right\| \\
& \leq \lambda_{n+1} \gamma\left\|f\left(x_{n+1}\right)\right\|+\lambda_{n} \gamma\left\|f\left(x_{n}\right)\right\|+\lambda_{n}\left\|y_{n}\right\|+\lambda_{n+1}\left\|y_{n+1}\right\|+H\left(P_{T_{n+1}}\left(x_{n+1}\right), P_{T_{n}}\left(x_{n}\right)\right) \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\lambda_{n+1} \gamma\left\|f\left(x_{n+1}\right)\right\|+\lambda_{n} \gamma\left\|f\left(x_{n}\right)\right\|+\lambda_{n}\left\|y_{n}\right\|+\lambda_{n+1}\left\|y_{n+1}\right\| .
\end{aligned}
$$

Thus

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq \limsup _{n \rightarrow \infty} 2\left(\lambda_{n}+\lambda_{n+1}\right) M=0 .
$$

Lemma 2.5 implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$ as required. It follow from (3.12) that

$$
\lim _{n \rightarrow \infty} d\left(x_{n+1}, T_{n}\left(x_{n}\right)\right)=0 .
$$

Applying the condition $\left(A^{\prime}\right)$ of $\left\{x_{n}\right\}$ and using the same argument as in the proof of Theorem 3.1, there exists $\tilde{x} \in F$ such that

$$
\begin{equation*}
\left\langle\gamma f(\tilde{x})-A(\tilde{x}), j_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \leq 0 . \tag{3.14}
\end{equation*}
$$

Finally, we will show that $x_{n} \rightarrow \tilde{x}$ as $n \rightarrow \infty$. Applying (1.11) and Lemma 2.2, we have

$$
\begin{aligned}
& \Phi\left(\left\|x_{n+1}-\tilde{x}\right\|\right) \\
&= \Phi\left(\left\|\beta_{n} \gamma f\left(x_{n}\right)+\alpha_{n} x_{n}+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) y_{n}-\tilde{x}\right\|\right) \\
&= \Phi\left(\left\|\beta_{n} \gamma f\left(x_{n}\right)-\beta_{n} A(\tilde{x})+\alpha_{n} x_{n}-\alpha_{n} \tilde{x}+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) y_{n}-\tilde{x}+\alpha_{n} \tilde{x}+\beta_{n} A(\tilde{x})\right\|\right) \\
&= \Phi\left(\| \beta_{n} \gamma f\left(x_{n}\right)-\beta_{n} \gamma f(\tilde{x})+\beta_{n} \gamma f(\tilde{x})-\beta_{n} A(\tilde{x})+\alpha_{n} x_{n}-\alpha_{n} \tilde{x}+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) y_{n}\right. \\
&\left.-\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right) \tilde{x} \|\right) \\
&= \Phi\left(\left\|\beta_{n} \gamma\left(f\left(x_{n}\right)-f(\tilde{x})\right)+\alpha_{n}\left(x_{n}-\tilde{x}\right)+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right)\left(y_{n}-\tilde{x}\right)+\beta_{n} \gamma f(\tilde{x})-\beta_{n} A(\tilde{x})\right\|\right) \\
& \leq \Phi\left(\left\|\beta_{n} \gamma\left(f\left(x_{n}\right)-f(\tilde{x})\right)+\alpha_{n}\left(x_{n}-\tilde{x}\right)+\left(\left(1-\alpha_{n}\right) I-\beta_{n} A\right)\left(y_{n}-\tilde{x}\right)\right\|\right) \\
&+\beta_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), J_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\beta_{n} \gamma \alpha\left\|x_{n}-\tilde{x}\right\|+\alpha_{n}\left\|x_{n}-\tilde{x}\right\|+\left\|\left(1-\alpha_{n}\right) I-\beta_{n} A\right\|\left\|y_{n}-\tilde{x}\right\|\right) \\
&+\beta_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), J_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\beta_{n} \gamma \alpha\left\|x_{n}-\tilde{x}\right\|+\alpha_{n}\left\|x_{n}-\tilde{x}\right\|+\left\|\left(1-\alpha_{n}\right) I-\beta_{n} A\right\| H\left(P_{T_{n}}\left(x_{n}\right), P_{T_{n}}(\tilde{x})\right)\right) \\
&+\beta_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), J_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\beta_{n} \gamma \alpha\left\|x_{n}-\tilde{x}\right\|+\alpha_{n}\left\|x_{n}-\tilde{x}\right\|+\varphi(1)\left(1-\alpha_{n}-\beta_{n} \bar{\gamma}\right)\left\|x_{n}-\tilde{x}\right\|\right) \\
&+\beta_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), J_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle \\
& \leq \Phi\left(\left(1-\beta_{n}(\varphi(1) \bar{\gamma}-\gamma \alpha)\right)\left\|x_{n}-\tilde{x}\right\|\right)+\beta_{n}\left\langle\gamma f(\tilde{x})-A(\tilde{x}), J_{\varphi}\left(x_{n+1}-\tilde{x}\right)\right\rangle .
\end{aligned}
$$

Applying Lemma 2.4 to the above inequality, we can conclude that $x_{n} \rightarrow \tilde{x}$ as $n \rightarrow \infty$. This completes the proof.

In general case, if A is any strongly positive bounded linear operator with coefficient $\bar{\gamma}$ and $0<\gamma<\bar{\gamma} / \alpha$, we obtain the following result.

Theorem 3.5. Let E be a reflexive Banach space with weakly sequentially continuous duality mapping J_{φ} with gauge φ such that $\varphi(1)=1$. Let $f \in \Pi_{E}$ with coefficient $\alpha \in(0,1)$,

A a strongly positive bounded linear operator with coefficient $\bar{\gamma}>0$, and $0<\gamma<\bar{\gamma} / \alpha$. Let $T_{i}: E \rightarrow \mathscr{P}(E), i=0,1,2, \ldots$ be a family of multi-valued mappings such that

$$
H\left(T_{n+1} x, T_{n} y\right) \leq\|x-y\| \quad \text { for all } \quad n \in \mathbb{N}
$$

with $F:=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$, which is sunny nonexpansive retract of E, with Q_{F} a nonexpansive retraction and $P_{T_{i}}$ a nonexpansive. Let the sequence $\left\{x_{n}\right\}$ be defined by

$$
\begin{equation*}
x_{n+1}=\beta_{n}\|A\|^{-1} \gamma f\left(x_{n}\right)+\alpha_{n} x_{n}+\left(\left(1-\alpha_{n}\right) I-\beta_{n} \bar{A}\right) y_{n}, \quad n \geq 0, \tag{3.15}
\end{equation*}
$$

where $y_{n} \in T_{n}\left(x_{n}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are real sequences in $(0,1)$ satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \sum_{n=0}^{\infty} \beta_{n}=\infty
$$

and

$$
0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1 .
$$

If $\left\{x_{n}\right\}$ satisfies condition $\left(A^{\prime}\right)$, then $\left\{x_{n}\right\}$ converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}((I-A+\gamma f) \tilde{x})$ of a family $T_{i}, i=1,2, \ldots$. Moreover, \tilde{x} is a unique solution of the variational inequality (3.1).

Proof. From Remark 3.1 and Theorem 3.4, we have that $\left\{x_{n}\right\}$ is generated by (3.15) converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}\left(\left(I-\|A\|^{-1}(A+\gamma f) \tilde{x}\right)\right)$ is a unique solution of the variational inequality:

$$
\begin{equation*}
\|A\|^{-1}\left\langle(A-\gamma f) \tilde{x}, J_{\varphi}(z-\tilde{x})\right\rangle \leq 0, \quad z \in F . \tag{3.16}
\end{equation*}
$$

This is equivalent to (3.1).
Setting $\gamma=1$ and $A \equiv I$, the identity mapping, the requirement $\varphi(1)=1$ is not necessary. In fact, the following theorem can be obtain from Theorem 3.5 immediately.

Theorem 3.6. Let E be a reflexive Banach space with weakly sequentially continuous duality mapping J_{φ} with gauge φ. Let $f \in \Pi_{E}$ with coefficient $\alpha \in(0,1)$. Let $T_{i}: E \rightarrow \mathscr{P}(E), i=$ $0,1,2, \ldots$ be a family of multi-valued mappings such that $H\left(T_{n+1} x, T_{n} y\right) \leq\|x-y\|$ for all $n \in \mathbb{N}$ with $F:=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$, which is sunny nonexpansive retract of E, with Q_{F} a nonexpansive retraction and $P_{T_{i}}$ a nonexpansive mapping. Let the sequence $\left\{x_{n}\right\}$ be defined by

$$
x_{n+1}=\beta_{n} f\left(x_{n}\right)+\alpha_{n} x_{n}+\left(1-\alpha_{n}-\beta_{n}\right) y_{n}, \quad n \geq 0
$$

where $y_{n} \in P_{T_{n}}\left(x_{n}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are real sequences in $(0,1)$ satisfying $\alpha_{n}+\beta_{n}<1$ and the following conditions:

$$
\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \sum_{n=0}^{\infty} \beta_{n}=\infty
$$

and

$$
0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1 .
$$

If $\left\{x_{n}\right\}$ satisfies condition $\left(A^{\prime}\right)$, then $\left\{x_{n}\right\}$ converges strongly as $n \rightarrow \infty$ to a common fixed point $\tilde{x}=Q_{F}(f(\tilde{x}))$ of a family $T_{i}, i=1,2, \ldots$. Moreover, \tilde{x} is a unique solution of the variational inequality

$$
\left\langle(I-f) \tilde{x}, J_{\varphi}(z-\tilde{x})\right\rangle \leq 0, \quad z \in F .
$$

References

[1] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553-562.
[2] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225.
[3] R. E. Bruck, Jr., Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355.
[4] F. Deutsch and I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 33-56.
[5] S. H. Khan and I. Yildirim, Fixed points of multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2012, 73.
[6] W. A. Kirk, Transfinite methods in metric fixed-point theory, Abstr. Appl. Anal. 2003, no. 5, 311-324.
[7] T. C. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space, Bull. Amer. Math. Soc. 80 (1974), 1123-1126.
[8] T. C. Lim and H. K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal. 22 (1994), no. 11, 1345-1355.
[9] G. Marino and H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52.
[10] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[11] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comput. Math. Appl. 54 (2007), no. 6, 872-877.
[12] X. Qin, Y. J. Cho and S. M. Kang, An iterative method for an infinite family of nonexpansive mappings in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 2, 161-171.
[13] X. Qin and S. M. Kang, Convergence theorems on an iterative method for variational inequality problems and fixed point problems, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 155-167.
[14] A. Razani and M. Yazdi, A new iterative method for generalized equilibrium and fixed point problems of nonexpansive mappings, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 1049-1061.
[15] K. P. R. Sastry and G. V. R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J. 55(130) (2005), no. 4, 817-826.
[16] N. Shahzad and H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Anal. 71 (2009), no. 3-4, 838-844.
[17] Y. Shehu and G. C. Ugwunnadi, Convergence theorems for multi-valued mappings, Bull. Malays. Math. Sci. Soc. (2) 37 (2014),no. 2, 359-367.
[18] Y. Song and Y. J. Cho, Some notes on Ishikawa iteration for multi-valued mappings, Bull. Korean Math. Soc. 48 (2011), no. 3, 575-584.
[19] T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 135 (2007), no. 1, 99-106 (electronic).
[20] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[21] R. Wangkeeree, N. Petrot and R. Wangkeeree, The general iterative methods for nonexpansive mappings in Banach spaces, J. Global Optim. 51 (2011), no. 1, 27-46.
[22] R. Wangkeeree, An iterative approximation method for a countable family of nonexpansive mappings in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 3, 313-326.
[23] H.-K. Xu, Multivalued nonexpansive mappings in Banach spaces, Nonlinear Anal. 43 (2001), no. 6, Ser. A: Theory Methods, 693-706.
[24] H.-K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003), no. 3, 659678.
[25] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256.
[26] I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, in Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), 473-504, Stud. Comput. Math., 8 North-Holland, Amsterdam.
[27] Y. Yao, Y.-C. Liou and R. Chen, A general iterative method for an infinite family of nonexpansive mappings, Nonlinear Anal. 69 (2008), no. 5-6, 1644-1654.
[28] Z. Zuo, Viscosity approximation scheme for a family multivalued mapping, Math. Comput. Modelling 54 (2011), no. 9-10, 2423-2427.

[^0]: Communicated by V. Ravichandran.
 Received: November 30, 2011; Revised: July 3, 2012.

