
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 37(3) (2014), 689–701

A General Iterative Method for Multi-Valued Mappings

1RABIAN WANGKEEREE AND 2PAKKAPON PREECHASILP
1 ,2Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

1rabianw@nu.ac.th, 2preechasilpp@gmail.com

Abstract. Our purpose in this paper is to introduce a new general iterative approximation
method for a family of multi-valued mappings in reflexive Banach spaces. Under suitable
conditions, some strong convergence theorems for approximating a common fixed point of
a family of multi-valued mappings are obtained. The main result extends various results
existing in the current literature.

2010 Mathematics Subject Classification: 47H09, 47H10, 47H17

Keywords and phrases: Multi-valued mapping, iterative approximation methods, common
fixed point, Banach space.

1. Introduction

In a Banach space E, a mapping T of E into itself is said to be Lipschitzian if there exists
L≥ 0 such that ‖T x−Ty‖ ≤ L‖x−y‖ for each x,y ∈ E. T is called a nonexpansive if L = 1.
A mapping f : E→ E is said to be contraction if there exists a constant α ∈ (0,1) such that

‖ f (x)− f (y)‖ ≤ α‖x− y‖, ∀ x,y ∈ E.

We use ΠE to denote the collection of all contractions on E, that is,

ΠE = { f : E→ E : f is a contraction on E}.

The set C⊆ E is called proximinal if, for each x ∈ E, there exists an element y ∈C such that
‖x−y‖= d(x,C), where d(x,C) = inf{‖x− z‖ : z ∈C}. We use P(E) to denote the family
of nonempty proximal bounded subsets of E, i.e.,

P(E) = {C ⊆ E : C is nonempty proximal and bounded}.

Let C B(E),C (E) denote the family of nonempty closed bounded subsets of E, and the
family of nonempty compact subsets of E, respectively. H(·, ·) denotes the Hausdorff matric
on C B(E), defined by

H(A,B) := max

{
sup
x∈A

inf
y∈B
‖x− y‖,sup

y∈B
inf
x∈A
‖x− y‖

}
, ∀ A,B ∈ C B(E).
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A multi-valued mapping T : E→ C B(E) is said to be nonexpansive if

H(T x,Ty)≤ ‖x− y‖, ∀ x,y ∈ E;

T is said to be quasi-nonexpansive if F(T ) 6∈ /0 and

H(T x,T p)≤ ‖x− p‖, ∀ x ∈ E, p ∈ F(T ).

The multi-valued mapping T : E→C B(E) is called hemicompact if, for any sequence {xn}
in E such that d(xn,T (xn))→ 0 as n→ ∞, there exists a subsequence {xnk} of {xn} such
that xnk → p ∈ E. It is noted that, if C is compact, then every multi-valued mapping T :
C→ C B(C) is hemicompact. {xn} is said to satisfy Condition (A′) if, for any subsequence
xnk ⇀ x and d(xn+1,Tn(xn)) → 0 implies that x ∈ F , where F :=

⋂
∞
i=1 F(Ti) 6= /0 is the

common fixed point set of the family of multi-valued mappings Ti, i = 1,2, . . ..
Since Banach’s Contraction Mapping Principle was extended nicely to multi-valued

mappings by Nadler [10] in 1969, many authors have studied the fixed point theory for
multi-valued mappings (see, e.g., [1, 6, 7, 17, 23]).

Let E∗ be the dual space of E, by a gauge function ϕ we mean a continuous strictly
increasing function ϕ : [0,∞)→ [0,∞) such that ϕ(0) = 0 and ϕ(t)→ ∞ as t → ∞. The
duality mapping Jϕ : E→ 2E∗ associated to a gauge function ϕ is defined by

Jϕ(x) = { f ∗ ∈ E∗ : 〈x, f ∗〉= ‖x‖ϕ(‖x‖),‖ f ∗‖= ϕ(‖x‖)}, ∀ x ∈ E.

In particular, the duality mapping with the gauge function ϕ(t) = t, denoted by J, is re-
ferred to as the normalized duality mapping. Clearly, there holds the relation Jϕ(x) =
ϕ(‖x‖)/‖x‖J(x) for all x 6= 0 (see [2]). Browder [2] initiated the study of certain classes of
nonlinear operators by means of the duality mapping Jϕ . Following Browder [2], we say that
a Banach space E has a weakly continuous duality mapping if there exists a gauge ϕ for
which the duality mapping Jϕ(x) is single-valued and continuous from the weak topology
to the weak* topology, that is, for any {xn} with xn ⇀ x, the sequence {Jϕ(xn)} converges
weakly* to Jϕ(x). It is known that lp has a weakly continuous duality mapping with a gauge
function ϕ(t) = t p−1 for all 1 < p < ∞. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ, ∀ t ≥ 0,

then
Jϕ(x) = ∂Φ(‖x‖), ∀ x ∈ E,

where ∂ denotes the sub-differential in the sense of convex analysis.
Sastry and Babu [15] defined the Mann iteration schemes for multi-valued mappings

T : C→P(C) and fixed point p ∈ F(T ). The sequence of Mann iterates is defined by

(1.1)

{
x0 ∈C,

xn+1 = (1−αn)xn +αnyn, ∀ n≥ 0,

where yn ∈ T (xn) such that ‖zn− p‖= d(p,T (xn)) and αn ∈ [0,1] for all n≥ 0. They proved
that the Mann iteration schemes for a multi-valued map T with a fixed point p converge to
a fixed point of T under certain conditions. Panyanak [11] extended the above result of
Sastry and Babu [15] to uniformly convex Banach spaces but the domain of T remains
compact. Furthermore, he also obtained the strong convergence theorem for nonexpansive
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multi-valued mapping. In 2009, Shahzad and Zegeye [16] obtained first the strong con-
vergence theorem of the Ishikawa iterative scheme for a multi-valued quasi-nonexpansive
mapping T : C→ C B(C) such that F(T ) is nonempty and

T (p) = {p} for any p ∈ F(T ).

Furthermore, for removing the rigid restriction on F(T ), that is T (p) = {p} for any p ∈
F(T ), Shahzad and Zegeye [16] proved the second strong convergence theorem of the
Ishikawa iterative scheme for a multi-valued quasi-nonexpansive mapping T : C→P(C)
such that F(T ) is nonempty.

In 2011, Song and Cho [18] modified and improved the proofs of the main results in [16].
Khan and Yildirim [5] further improved and generalized the results of [28] and [16].

Recently, Zuo [28] introduced two viscosity approximation sequence for a family of
multi-valued nonexpansive mappings in a Banach space. Let C be a nonempty closed convex
subset of Banach space E and Ti : C →P(C), i = 1,2, . . . , be a family of multi-valued
nonexpansive mappings with F :=

⋂
∞
n=1 F(Tn) 6= /0 which is sunny nonexpansive retract of

C, with Q a nonexpansive retract of C onto F . For each n ∈ N,

PTn(x) = {y ∈ Tn(x) : ‖x− y‖= d(x,Tn(x))}

and f : C→C is a contraction mapping with constant α ∈ (0,1). Let αn ∈ (0,1),βn ∈ (0,1);
for any given x0 ∈C,

(1.2) xn+1 = αn f (xn)+(1−αn)yn, n≥ 0,

where yn ∈PTn(xn), for each n∈N. Furthermore, Zuo introduced the following multi-valued
version of the modified Mann iteration:

(1.3) xn+1 = βn f (xn)+αnxn +(1−αn−βn)yn, n≥ 0,

where yn ∈ PTn(xn). It is proved in [28] that both sequences generated by (1.2) and (1.3)
converge strongly to a common fixed point x̃ = Q( f (x̃)) of a family of multi-valued non-
expansive mappings in a Banach spaces E which admits weakly sequentially continuous
duality mapping Jϕ with a gauge function ϕ . Moreover, x̃ is the unique solution of the
variational inequlity:

(1.4) 〈 f (x̃)− x̃, jϕ(y− x̃)〉 ≤ 0, ∀ y ∈
∞⋂

n=1

F(Tn).

On the other hand, iterative methods for nonexpansive mappings have recently been ap-
plied to solve convex minimization problems; see, e.g., [4,24–26] and the references therein.
Convex minimization problems have a great impact and influence in the development of al-
most all branches of pure and applied sciences. A typical problem is to minimize a quadratic
function over the set of the fixed points a nonexpansive mapping on a real Hilbert space:

(1.5) θ(x) = min
x∈C

1/2〈Ax,x〉−〈x,b〉,

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping T
and b is a given point in H. In [9] Marino and Xu considered a general iterative method for
a nonexpansive mapping in a Hilbert space H. Starting with arbitrary initial x0 ∈ H, define
a sequence {xn} by

(1.6) xn+1 = αnγ f (xn)+(I−αnA)T xn, n≥ 0,
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where A is a strongly positive bounded linear operator on H, i.e.,

(1.7) 〈Ax,x〉 ≥ γ̄‖x‖2 for all x ∈ H.

They proved that if the sequence {αn} of parameters satisfies the appropriate conditions,
then the sequence {xn} generated by (1.6) converges strongly to the unique solution x∗ in
F(T ) of the variational inequality

(1.8) 〈(A− γ f )x∗,x− x∗〉 ≥ 0, x ∈ F(T ),

which is the optimality condition for the minimization problem: minx∈C 1/2〈Ax,x〉−h(x),
where h is a potential function for γ f (i.e.,h′(x) = γ f (x) for x ∈ H). Many authors have
improved and extended the results of [9] in the framework of Hilbert spaces (see, e.g.,
[12–14, 22]).

In a Banach space E having a weakly continuous duality mapping Jϕ with a gauge func-
tion ϕ , an operator A is said to be strongly positive [21] if there exists a constant γ̄ > 0 with
the property

(1.9) 〈Ax,Jϕ(x)〉 ≥ γ̄‖x‖ϕ(‖x‖)

and

(1.10) ‖αI−βA‖= sup
‖x‖≤1

∣∣〈(αI−βA)x,Jϕ(x)〉
∣∣ , α ∈ [0,1], β ∈ [−1,1],

where I is the identity mapping. If E := H is a real Hilbert space, then the inequality (1.9)
reduce to (1.7).

In this paper, inspired and motivated by Sastry and Babu [15], Panyanak [11], Shahzad
and Zegeye [16], Song and Cho [18], Zuo [28], Marino and Xu [9], we consider the follow-
ing two general iterative schemes for a family of multi-valued mappings in a Banach space.
Let Ti : E →P(E), i = 1,2, . . . , be a family of multi-valued mappings. Let f ∈ ΠE with
coefficient α ∈ (0,1), A a strongly positive bounded linear operator on E with coefficient
γ̄ > 0, 0 < γ < γ̄/α and αn ∈ (0,1),βn ∈ (0,1). For any given x0 ∈ E,

(1.11) xn+1 = αnγ f (xn)+(I−αnA)yn, n≥ 0,

where yn ∈ PTn(xn). Furthermore, we introduce the following general multi-valued version
of the modified Mann iteration:

(1.12) xn+1 = βnγ f (xn)+αnxn +((1−αn)I−βnA)yn, n≥ 0,

where yn ∈ PTn(xn). Some strong convergence theorems are proved in the framework of
a reflexive Banach space which admits a weakly continuous duality mapping Jϕ , where
ϕ : [0,∞)→ [0,∞) is a gauge function. The results presented in this paper improve and
extend the corresponding results announced by Zuo [28], Marino and Xu [9], and many
others.

2. Preliminaries

Throughout this paper, let E be a real Banach space and E∗ be its dual space. We write
xn ⇀ x (respectively xn

∗
⇀ x) to indicate that the sequence {xn} weakly (respectively weak*)

converges to x; as usual xn→ x will symbolize strong convergence.
Now we collect some useful lemmas for proving the convergence result of this paper.
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Lemma 2.1. [21, Lemma 3.1] Assume that a Banach space E has a weakly continuous
duality mapping Jϕ with gauge ϕ . Let A be a strong positive linear bounded operator on E
with coefficient γ̄ > 0 and 0 < ρ ≤ ϕ(1)‖A‖−1. Then ‖I−ρA‖ ≤ ϕ(1)(1−ργ̄).

The first part of the next lemma is an immediate consequence of the subdifferential in-
equality and the proof of the second part can be found in [8].

Lemma 2.2. [8] Assume that a Banach space E has a weakly continuous duality mapping
Jϕ with gauge ϕ .

(i) For all x,y ∈ E, the following inequality holds:

Φ(‖x+ y‖)≤Φ(‖x‖)+ 〈y,Jϕ(x+ y)〉.

In particular, for all x,y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 +2〈y,J(x+ y)〉.

Let Q be a mapping of E onto C. Then Q is said to be sunny if Q(Q(x)+ t(x−Q(x))) =
Q(x) for all x ∈ E and t ≥ 0. A mapping Q of E into E is said to be retraction if Q2 = Q.
If a mapping Q is a retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is a range of
Q. A subset C of E is said to be a sunny nonexpansive retract of E if there exists a sunny
nonexpansive retraction of E onto C, and it is said to be a nonexpansive retract of E if there
exists a nonexpansive retraction of E onto C.

Lemma 2.3. [3] Let C be a nonempty convex subset of a smooth Banach space E, J : E→E∗

be the (normalized) duality mapping of E, and Q : E→C be a retraction. Then the following
are equivalent.

(1) 〈x−Qx, j(y−Qx)〉 ≤ 0 for all x ∈ E and y ∈C.
(2) Q is both sunny and nonexpansive.

It is noted that Lemma 2.3 still holds if the normalized duality map J is replaced by the
general duality map Jϕ , where ϕ is gauge function.

Lemma 2.4. [24, Lemma 2.1] Let {an} be a sequence of non-negative real numbers satis-
fying the property

an+1 ≤ (1− γn)an +δn, n≥ 0,

where {γn} ⊆ (0,1) and {δn} ⊆ R such that
∞

∑
n=1

γn = ∞, and either limsup
n→∞

δn/γn ≤ 0 or
∞

∑
n=1
|δn|< ∞.

Then limn→∞ an = 0.

Lemma 2.5. [19] Let {xn} and {yn} be bounded sequences in a Banach space E and
{βn} a sequence in [0,1] with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose that xn+1 =
(1−βn)yn +βnxn for all n≥ 0 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then limn→∞ ‖yn− xn‖= 0.
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3. Main results

In this section, we prove strong convergence theorems for a countable family of multi-
valued mappings.

Theorem 3.1. Let E be a reflexive Banach space which admits weakly sequentially con-
tinuous duality mapping Jϕ with gauge ϕ such that ϕ(1) = 1. Let f ∈ ΠE with coefficient
α ∈ (0,1), A a strongly positive bounded linear operator on E with coefficient γ̄ > 0 such
that ‖A‖ = 1, and 0 < γ < γ̄/α . Let Ti : E →P(E),∀ i = 0,1,2, . . . be a family of multi-
valued mappings with F :=

⋂
∞
i=1 F(Ti) 6= /0 which is sunny nonexpansive retract of E, with

QF a nonexpansive retraction and PTi a nonexpansive mapping. Let the sequence {xn} be
defined by (1.11), where a real sequence {αn} satisfies the following conditions :

lim
n→∞

αn = 0 and
∞

∑
n=0

αn = ∞.

If {xn} satisfies condition (A′), then {xn} converges strongly as n→ ∞ to a common fixed
point x̃ = QF((I−A+ γ f )x̃) of a family Ti, i = 1,2, . . .. Moreover, x̃ is a unique solution of
the variational inequality:

(3.1) 〈(A− γ f )x̃,Jϕ(z− x̃)〉 ≤ 0, ∀ z ∈ F.

Proof. We first show that the uniqueness of a solution of the variational inequality (3.1).
Suppose both x̃ ∈ F and x∗ ∈ F are solutions to (3.1), then

(3.2) 〈(A− γ f )x̃,Jϕ(x̃− x∗)〉 ≤ 0

and

(3.3) 〈(A− γ f )x∗,Jϕ(x∗− x̃)〉 ≤ 0.

Adding (3.2) and (3.3), we obtain

(3.4) 〈(A− γ f )x̃− (A− γ f )x∗,Jϕ(x̃− x∗)〉 ≤ 0.

Noticing that for any x,y ∈ E,

〈(A− γ f )x− (A− γ f )y,Jϕ(x− y)〉= 〈A(x− y),Jϕ(x− y)〉− γ〈 f (x)− f (y),Jϕ(x− y)〉
≥ γ̄‖x− y‖ϕ(‖x− y‖)− γ‖ f (x)− f (y)‖‖Jϕ(x− y)‖
≥ γ̄Φ(‖x− y‖)− γαΦ(‖x− y‖)
= (γ̄− γα)Φ(‖x− y‖)≥ 0.(3.5)

Therefore x̃ = x∗ and the uniqueness is proved. Below we use x̃ to denote the unique solution
of (3.1).

Note that p ∈ PTi(p) = {p} for any fixed point p ∈ F(Ti), i = 1,2, . . .. Then we have

‖xn+1− p‖= ‖αnγ f (xn)+(I−αnA)yn− p‖
= ‖αnγ f (xn)−αnγ f (p)+αnγ f (p)−αnA(p)+(I−αnA)yn− (I−αnA)p‖
≤ αnγα‖xn− p‖+αn‖γ f (p)−A(p)‖+ϕ(1)(1−αnγ̄)‖yn− p‖
= αnγα‖xn− p‖+αn‖γ f (p)−A(p)‖+ϕ(1)(1−αnγ̄)d (yn,PTn(p))

≤ αnγα‖xn− p‖+αn‖γ f (p)−A(p)‖+ϕ(1)(1−αnγ̄)H(PTn(xn),PTn(p))

≤ αnγα‖xn− p‖+αn‖γ f (p)−A(p)‖+ϕ(1)(1−αnγ̄)‖xn− p‖
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≤ αn‖γ f (p)−A(p)‖+(1−αn(ϕ(1)γ̄− γα))‖xn− p‖
≤max{‖xn− p‖,‖γ f (p)−A(p)‖/(γ̄− γα)}.

By induction, we obtain that ‖xn− p‖≤max{‖x0− p‖,‖γ f (p)−A(p)‖/(γ̄− γα)} ∀n∈N.
Hence {xn} is bounded, and so are {A(yn)} and { f (xn)}. Then we have

(3.6) d (xn+1,Tn(xn))≤ ‖xn+1− yn‖= αn‖γ f (xn)−A(yn)‖→ 0 as n→ ∞.

We observe that QF(I−A+ γ f ) is a contraction. Indeed, for all x,y ∈ E, we have

‖QF(γ f +(I−A))(x)−QF(γ f +(I−A))(y)‖ ≤ ‖(γ f +(I−A))(x)− (γ f +(I−A))(y)‖
≤ γ‖ f (x)− f (y)‖+‖I−A‖‖x− y‖
≤ γα‖x− y‖+(1− γ)‖x− y‖
≤ (1− (γ−αγ))‖x− y‖.

Banach’s Contraction Mapping Principle guarantees that QF(γ f + (I −A)) has a unique
fixed point, say x̃ ∈ E. That is, x̃ = QF(γ f +(I−A))(x̃).

Next, we shall show that

(3.7) 〈γ f (x̃)−A(x̃), jϕ(xn− x̃)〉 ≤ 0.

Since E is reflexive and {xn} is bounded, there exists a subsequence {xnk} of {xn} such that
xnk ⇀ z ∈ E and

limsup
n→∞

〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉= lim
k→∞
〈γ f (x̃)−A(x̃), jϕ(xnk − x̃)〉.

From (3.6), and since {xn} satisfies condition (A′), we obtain that z ∈ F . On the other hand,
the assumption that the duality mapping Jϕ is weakly continuous, we then have

limsup
n→∞

〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉= lim
k→∞
〈γ f (x̃)−A(x̃), jϕ(xnk − x̃)〉

= 〈γ f (x̃)−A(x̃), jϕ(z− x̃)〉 ≤ 0.

Finally, we will show that xn → x̃ as n→ ∞. In fact, since Φ(t) =
∫ t

0 ϕ(τ)dτ,∀t ≥ 0, and
ϕ : [0,∞)→ [0,∞) is a gauge function, then for 1≥ k ≥ 0, ϕ(kx)≤ ϕ(x) and

Φ(kt) =
∫ kt

0
ϕ(τ)dτ = k

∫ t

0
ϕ(kx)dx≤ k

∫ t

0
ϕ(x)dx = kΦ(t).

Using Lemma 2.2, we get that

Φ(‖xn+1− x̃‖)
= Φ

(
‖αnγ f (xn)+(I−αnA)yn− x̃‖

)
≤Φ

(
‖αnγ f (xn)−αnγ f (x̃)+(I−αnA)yn− (I−αnA)x̃+αnγ f (x̃)−αnA(x̃)‖

)
≤Φ

(
‖αnγ f (xn)−αnγ f (x̃)+(I−αnA)yn− (I−αnA)x̃‖

)
+αn〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉

≤Φ
(
αnγ‖ f (xn)− f (x̃)‖+ϕ(1)(1−αnγ̄)‖yn− x̃‖

)
+αn〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉

≤Φ
(
αnγα‖xn− x̃‖+(1−αnγ̄)H(PTn(xn),PTn(x̃))

)
+αn〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉

≤Φ
(
αnγα‖xn− x̃‖+(1−αnγ̄)‖xn− x̃‖

)
+αn〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉

≤Φ
(
(1−αn(γ̄− γα))‖xn− x̃‖

)
+αn〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉

≤ (1−αn(γ̄− γα))Φ(‖xn− x̃‖)+αn〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉.
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From Lemma 2.4 we get that xn→ x̃ which satisfies the variational inequality follows from
the property of QF .

We will give some example of a family of multi-valued mappings and a sequence satis-
fying condition (A′) as following :

Example 3.1. Let E = R and C = [0,1]. For each n ∈ N, define a multi-valued mapping
Tn : C→ C (C) by

Tn(x) = [0,x/n], for all x ∈C.

It is easy to see that {0} = F(Tn) for all n ∈ N. If {xn} = {1/n}n∈N, then {xn} ⊆ C and
xn→ 0 as n→ ∞. From definition of T , we have that

d (xn+1,Tn(xn)) = d
(
1/n+1,

[
0,1/n2])

= 1/n+1−1/n2→ 0 as n→ ∞.

Hence {xn} satisfies the condition (A′).

Remark 3.1. In general case, if A is any strongly positive bounded linear operator with
coefficient γ̄ and 0 < γ < γ̄/α . We define a bounded linear operator A on E by

A = ‖A‖−1A.

It is easy to see that A is a strongly positive with coefficient ‖A‖−1
γ̄ > 0 such that ‖A‖= 1

and
0 < ‖A‖−1

γ < ‖A‖−1
γ̄/α.

Let the sequence {xn} be defined by, for any x0 ∈ E,

(3.8) xn+1 = αn‖A‖−1
γ f (xn)+(I−αnA)yn, n≥ 0,

where yn ∈ PTn(xn). Replacing A with A in Theorem 3.1, we obtain the following result.

Theorem 3.2. Let E be a reflexive Banach space which admits weakly sequentially con-
tinuous duality mapping Jϕ with gauge ϕ such that ϕ(1) = 1. Let f ∈ ΠE with coefficient
α ∈ (0,1), A a strongly positive bounded linear operator on E with coefficient γ̄ > 0, and
0 < γ < γ̄/α . Let Ti : E→P(E),∀i = 0,1,2, . . . be a family of multi-valued mappings with
F :=

⋂
∞
i=1 F(Ti) 6= /0, which is sunny nonexpansive retract of E, with QF a nonexpansive re-

traction and PTi a nonexpansive mapping. Let the sequence {xn} be defined by (3.8), where
{αn} is a real sequence in (0,1) satisfying the following conditions:

lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

If {xn} satisfies condition (A′), {xn} converges strongly as n→ ∞ to a common fixed point
x̃ = QF

(
(I−‖A‖−1(A+ γ f )x̃)

)
of a family Ti, i = 0,1,2, . . .. Moreover, x̃ is a unique solu-

tion of the variational inequality: (3.1).

Proof. From Theorem 3.1, we have that {xn} is generated by (3.8) converges strongly as
n→ ∞ to a common fixed point x̃ = QF((I−‖A‖−1(A + γ f )x̃)) is a unique solution of the
variational inequality:

(3.9) ‖A‖−1〈(A− γ f )x̃,Jϕ(z− x̃)〉 ≤ 0, z ∈ F.

It is easy to see that (3.9) is equivalent to (3.1). Hence x̃ is a unique solution of the variational
inequality (3.1).



A General Iterative Method for Multi-Valued Mappings 697

If γ = 1 and A ≡ I, the identity mapping, in Theorem 3.2, then the requirement that
ϕ(1) = 1 is not necessary. In fact, Theorem 3.3 can be obtain from Theorem 3.1 immedi-
ately.

Theorem 3.3. Let E be a reflexive Banach space which admits weakly sequentially con-
tinuous duality mapping Jϕ with gauge ϕ . Let f ∈ ΠE with coefficient α ∈ (0,1). Let Ti :
E→P(E), i = 0,1,2, . . . be a family of multi-valued mappings with F :=

⋂
∞
n=1 F(Tn) 6= /0,

which is sunny nonexpansive retract of E, with QF a nonexpansive retraction and PTi a
nonexpansive mapping. Let the sequence {xn} be defined by

xn+1 = αn f (xn)+(1−αn)yn, n≥ 0,

where yn ∈ Tn(xn), 0 < αn < 1 satisfying the following conditions:

lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

If {xn} satisfies condition (A′), then {xn} converges strongly as n→ ∞ to a common fixed
point x̃ = QF ( f (x̃)) of a family Ti, i = 0,1,2, . . .. Moreover, x̃ is a unique solution of the
variational inequality:

〈(I− f )x̃,Jϕ(z− x̃)〉 ≤ 0, z ∈ F.

Next, we prove the strong convergence theorem for a general multi-valued version of the
modified Mann iteration.

Theorem 3.4. Let E be a reflexive Banach space with weakly sequentially continuous du-
ality mapping Jϕ with gauge ϕ such that ϕ(1) = 1. Let f ∈ ΠE with coefficient α ∈ (0,1),
A a strongly positive bounded linear operator with coefficient γ̄ > 0 such that ‖A‖= 1, and
0 < γ < γ̄/α . Let Ti : E →P(E), i = 0,1,2, . . . be a family of multi-valued mappings such
that

H(Tn+1x,Tny)≤ ‖x− y‖ for all n ∈ N
with F :=

⋂
∞
n=1 F(Tn) 6= /0 which is sunny nonexpansive retract of E, with QF a nonexpansive

retraction and PTi a nonexpansive mapping. Let the sequence {xn} be defined by (1.12),
where {αn},{βn} are real sequences in (0,1) satisfying the following conditions:

lim
n→∞

βn = 0,
∞

∑
n=0

βn = ∞

and
0 < liminf

n→∞
αn ≤ limsup

n→∞

αn < 1.

If {xn} satisfies condition (A′), then {xn} converges strongly as n→ ∞ to a common fixed
point x̃ = QF((I−A + γ f )x̃) of a family Ti, i = 0,1,2, . . .. Moreover, x̃ is a unique solution
of the variational inequality (3.1).

Proof. Notice that βn → 0, we may assume, without loss of generality, that βn ≤ 1−αn.
Since A is a strongly positive bounded linear operator, then

‖A‖= sup
{
|〈Ax,Jϕ(x)〉| : x ∈ E,‖x‖= 1

}
,

Now for any x ∈ E with ‖x‖= 1, we see that

〈((1−αn)I−βnA)x,Jϕ(x)〉= (1−αn)〈x,Jϕ(x)〉−βn〈Ax,Jϕ(x)〉
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= (1−αn)ϕ(1)−βn〈Ax,Jϕ(x)〉
≥ (1−αn)ϕ(1)−βn‖A‖= 1−αn−βn ≥ 0.

That is (1−αn)I−βnA is positive. It follows that

‖(1−αn)I−βnA‖= sup
{
〈((1−αn)I−βnA)x,Jϕ(x)〉 : x ∈ E,‖x‖= 1

}
= sup

{
ϕ(1)(1−αn)−βn〈Ax,Jϕ(x)〉 : x ∈ E,‖x‖= 1

}
≤ ϕ(1)(1−αn)−βnγ̄ϕ(1) = 1−αn−βnγ̄.

Firstly, we show that {xn} is bounded. Indeed, take p ∈ Ti(p) = {p}, then

‖xn+1− p‖
= ‖βnγ f (xn)+αnxn +((1−αn)I−βnA)yn− p‖
= ‖βnγ f (xn)−βnA(p)+αnxn−αn p+((1−αn)I−βnA)yn− p+αn p+βnA(p)‖
≤ βn‖γ f (xn)−A(p)‖+αn‖xn− p‖+‖((1−αn)I−βnA)yn− ((1−αn)I−βnA)p‖
≤ βn‖γ f (xn)− γ f (p)‖+βn‖γ f (p)−A(p)‖+αn‖xn− p‖+‖((1−αn)I−βnA)‖‖yn− p‖
≤ βnγ‖ f (xn)− f (p)‖+βn‖γ f (p)−A(p)‖+αn‖xn− p‖

+ϕ(1)(1−αn−βnγ̄)d(yn,PTn(p))

≤ βnγα‖xn− p‖+βn‖γ f (p)−A(p)‖+αn‖xn− p‖
+ϕ(1)(1−αn−βnγ̄)H (PTn(xn),PTn(p))

≤ βnγα‖xn− p‖+βn‖γ f (p)−A(p)‖+αn‖xn− p‖+(1−αn−βnγ̄)‖xn− p‖
= βnγα‖xn− p‖+βn‖γ f (p)−A(p)‖+αn‖xn− p‖+ϕ(1)(1−αn)‖xn− p‖−βnγ̄‖xn− p‖
≤ βnγα‖xn− p‖+βn‖γ f (p)−A(p)‖+αn‖xn− p‖+(1−αn)‖xn− p‖−βnγ̄‖xn− p‖
= βnγα‖xn− p‖+βn‖γ f (p)−A(p)‖+‖xn− p‖−βnγ̄‖xn− p‖
= (1−βn(ϕ(1)γ̄− γα))‖xn− p‖+βn‖γ f (p)−A(p)‖
≤max{‖xn− p‖,‖γ f (p)−A(p)‖/(γ̄− γα)}.

It follows from induction that

(3.10) ‖xn− p‖ ≤max{‖x0− p‖,‖γ f (p)−A(p)‖/(γ̄− γα)}, n≥ 0.

Hence {xn} is bounded, and so are {A(yn)} and { f (xn)}. Next, we show that

(3.11) lim
n→∞

d(xn+1,Tn(xn)) = 0.

Set λn = βn/(1−αn) and zn = λnγ f (xn)+(1−λnA)yn. Then

xn+1 = αnxn +(1−αn)zn and lim
n→∞

λn = 0.

Thus

d(xn+1,Tn(xn))≤ ‖xn+1− yn‖ ≤ ‖xn+1− zn‖+‖zn− yn‖
≤ αn‖xn− zn‖+λn‖γ f (xn)−A(yn)‖.(3.12)

It suffices to prove that

(3.13) lim
n→∞
‖xn− zn‖= 0.
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From definition of zn, we have that

‖zn+1− zn‖
= ‖λn+1γ f (xn+1)+(1−λn+1A)yn+1−λnγ f (xn)− (1−λnA)yn‖
= ‖λn+1γ f (xn+1)−λnγ f (xn)‖+‖yn+1− yn‖+λn‖yn‖+λn+1‖yn+1‖
≤ λn+1γ‖ f (xn+1)‖+λnγ‖ f (xn)‖+λn‖yn‖+λn+1‖yn+1‖+ H(PTn+1(xn+1),PTn(xn))

≤ ‖xn+1− xn‖+λn+1γ‖ f (xn+1)‖+λnγ‖ f (xn)‖+λn‖yn‖+λn+1‖yn+1‖.
Thus

limsup
n→∞

(‖zn+1− zn‖−‖xn+1− xn‖)≤ limsup
n→∞

2(λn +λn+1)M = 0.

Lemma 2.5 implies that limn→∞ ‖xn− zn‖= 0 as required. It follow from (3.12) that

lim
n→∞

d(xn+1,Tn(xn)) = 0.

Applying the condition (A′) of {xn} and using the same argument as in the proof of Theorem
3.1, there exists x̃ ∈ F such that

(3.14) 〈γ f (x̃)−A(x̃), jϕ(xn+1− x̃)〉 ≤ 0.

Finally, we will show that xn→ x̃ as n→ ∞. Applying (1.11) and Lemma 2.2, we have

Φ(‖xn+1− x̃‖)
= Φ

(
‖βnγ f (xn)+αnxn +((1−αn)I−βnA)yn− x̃‖

)
= Φ

(
‖βnγ f (xn)−βnA(x̃)+αnxn−αnx̃+((1−αn)I−βnA)yn− x̃+αnx̃+βnA(x̃)‖

)
= Φ

(
‖βnγ f (xn)−βnγ f (x̃)+βnγ f (x̃)−βnA(x̃)+αnxn−αnx̃+((1−αn)I−βnA)yn

− ((1−αn)I−βnA)x̃‖
)

= Φ
(
‖βnγ( f (xn)− f (x̃))+αn(xn− x̃)+((1−αn)I−βnA)(yn− x̃)+βnγ f (x̃)−βnA(x̃)‖

)
≤Φ

(
‖βnγ( f (xn)− f (x̃))+αn(xn− x̃)+((1−αn)I−βnA)(yn− x̃)‖

)
+βn〈γ f (x̃)−A(x̃),Jϕ(xn+1− x̃)〉
≤Φ

(
βnγα‖xn− x̃‖+αn‖xn− x̃‖+‖(1−αn)I−βnA‖‖yn− x̃‖

)
+βn〈γ f (x̃)−A(x̃),Jϕ(xn+1− x̃)〉
≤Φ

(
βnγα‖xn− x̃‖+αn‖xn− x̃‖+‖(1−αn)I−βnA‖H(PTn(xn),PTn(x̃))

)
+βn〈γ f (x̃)−A(x̃),Jϕ(xn+1− x̃)〉
≤Φ

(
βnγα‖xn− x̃‖+αn‖xn− x̃‖+ϕ(1)(1−αn−βnγ̄)‖xn− x̃‖

)
+βn〈γ f (x̃)−A(x̃),Jϕ(xn+1− x̃)〉
≤Φ

(
(1−βn(ϕ(1)γ̄− γα))‖xn− x̃‖

)
+βn〈γ f (x̃)−A(x̃),Jϕ(xn+1− x̃)〉.

Applying Lemma 2.4 to the above inequality, we can conclude that xn→ x̃ as n→ ∞. This
completes the proof.

In general case, if A is any strongly positive bounded linear operator with coefficient γ̄

and 0 < γ < γ̄/α , we obtain the following result.

Theorem 3.5. Let E be a reflexive Banach space with weakly sequentially continuous du-
ality mapping Jϕ with gauge ϕ such that ϕ(1) = 1. Let f ∈ ΠE with coefficient α ∈ (0,1),
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A a strongly positive bounded linear operator with coefficient γ̄ > 0, and 0 < γ < γ̄/α . Let
Ti : E→P(E), i = 0,1,2, . . . be a family of multi-valued mappings such that

H(Tn+1x,Tny)≤ ‖x− y‖ for all n ∈ N

with F :=
⋂

∞
n=1 F(Tn) 6= /0, which is sunny nonexpansive retract of E, with QF a nonexpan-

sive retraction and PTi a nonexpansive. Let the sequence {xn} be defined by

(3.15) xn+1 = βn‖A‖−1
γ f (xn)+αnxn +((1−αn)I−βnA)yn, n≥ 0,

where yn ∈ Tn(xn) and {αn},{βn} are real sequences in (0,1) satisfying the following con-
ditions:

lim
n→∞

βn = 0,
∞

∑
n=0

βn = ∞

and
0 < liminf

n→∞
αn ≤ limsup

n→∞

αn < 1.

If {xn} satisfies condition (A′), then {xn} converges strongly as n→ ∞ to a common fixed
point x̃ = QF((I−A+ γ f )x̃) of a family Ti, i = 1,2, . . .. Moreover, x̃ is a unique solution of
the variational inequality (3.1).

Proof. From Remark 3.1 and Theorem 3.4, we have that {xn} is generated by (3.15) con-
verges strongly as n→ ∞ to a common fixed point x̃ = QF((I −‖A‖−1(A + γ f )x̃)) is a
unique solution of the variational inequality:

(3.16) ‖A‖−1〈(A− γ f )x̃,Jϕ(z− x̃)〉 ≤ 0, z ∈ F.

This is equivalent to (3.1).
Setting γ = 1 and A≡ I, the identity mapping, the requirement ϕ(1) = 1 is not necessary.

In fact, the following theorem can be obtain from Theorem 3.5 immediately.

Theorem 3.6. Let E be a reflexive Banach space with weakly sequentially continuous dual-
ity mapping Jϕ with gauge ϕ . Let f ∈ΠE with coefficient α ∈ (0,1). Let Ti : E→P(E), i =
0,1,2, . . . be a family of multi-valued mappings such that H(Tn+1x,Tny) ≤ ‖x− y‖ for all
n ∈ N with F :=

⋂
∞
n=1 F(Tn) 6= /0, which is sunny nonexpansive retract of E, with QF a

nonexpansive retraction and PTi a nonexpansive mapping. Let the sequence {xn} be defined
by

xn+1 = βn f (xn)+αnxn +(1−αn−βn)yn, n≥ 0,

where yn ∈ PTn(xn) and {αn},{βn} are real sequences in (0,1) satisfying αn + βn < 1 and
the following conditions:

lim
n→∞

βn = 0,
∞

∑
n=0

βn = ∞

and
0 < liminf

n→∞
αn ≤ limsup

n→∞

αn < 1.

If {xn} satisfies condition (A′), then {xn} converges strongly as n→ ∞ to a common fixed
point x̃ = QF( f (x̃)) of a family Ti, i = 1,2, . . .. Moreover, x̃ is a unique solution of the
variational inequality

〈(I− f )x̃,Jϕ(z− x̃)〉 ≤ 0, z ∈ F.
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