BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On A Class of δ -Supplemented Modules

¹BURCU UNGOR, ²SAIT HALICIOGLU AND ³ABDULLAH HARMANCI

^{1,2}Department of Mathematics, Ankara University, Ankara, Turkey ³Department of Mathematics, Hacettepe University, Ankara, Turkey ¹bungor@science.ankara.edu.tr, ²halici@ankara.edu.tr, ³harmanci@hacettepe.edu.tr

Abstract. Let *R* be an arbitrary ring with identity and *M* a right *R*-module. In this paper, we introduce a class of modules which is an analogous to that of δ -supplemented modules and principally \oplus -supplemented modules. The module *M* is called *principally* \oplus - δ -supplemented if for any $m \in M$ there exists a direct summand *A* of *M* such that M = mR + A and $mR \cap A$ is δ -small in *A*. We prove that some results of principally \oplus -supplemented modules can be extended to principally \oplus - δ -supplemented modules for this general setting. Several properties of these modules are given and it is shown that the class of principally \oplus - δ -supplemented modules lies strictly between classes of principally \oplus - δ -supplemented modules and principally δ -supplemented modules. We investigate conditions which ensure that any factor modules, direct summands and direct sums of principally \oplus - δ -supplemented modules are also principally \oplus - δ -supplemented. We give a characterization of principally \oplus - δ -supplemented modules over a semisimple ring and a new characterization of principally δ -semiperfect rings is obtained by using principally \oplus - δ -supplemented modules.

2010 Mathematics Subject Classification: 13C10, 16D10, 16E50

Keywords and phrases: Principally δ -lifting modules, principally δ -supplemented modules, principally \oplus -supplemented modules, principally \oplus - δ -supplemented modules, principally semisimple modules, right δ -V-rings.

1. Introduction

Throughout this paper all rings have an identity and all modules are unitary right modules. $N \le M$ will mean N is a submodule of M. A submodule N of a module M is called *small* in M if for every $K \le M$ the equality M = N + K implies M = K. Let N and P be submodules of M. We call P a supplement of N in M if M = P + N and $P \cap N$ is small in P. A module Mis called supplemented if every submodule of M has a supplement in M [10]. In [18], Zhou introduced the concept of δ -small submodules as a generalization of small submodules. A submodule N of M is said to be δ -small in M if whenever M = N + K and M/K is singular, we have M = K. Let N be a submodule of M. A submodule L of M is called a δ -supplement of N in M if M = N + L and $N \cap L$ is δ -small in L (therefore in M), and Mis called δ -supplemented in case every submodule of M has a δ -supplement in M (see [8]

Communicated by Siamak Yassemi.

Received: April 24, 2012; Revised: July 10, 2012.

in detail). Note that every supplemented module is δ -supplemented. Following [10], the module *M* is called \oplus -supplemented if for any submodule *N* of *M*, there exists a direct summand *K* of *M* with M = N + K and $N \cap K$ small in *K*, i.e., every submodule of *M* has a direct summand supplement in *M*, while in [14] *M* is called *principally* \oplus -supplemented if every cyclic submodule of *M* has a direct summand supplement in *M*. Let *M* be a module, *K* and *L* submodules of *M*. *K* is called $a \oplus \delta$ -supplement of *N* in *M* if M = K + N, *K* is a direct summand of *M* and $K \cap N$ is δ -small in *K*. Also *M* is called $\oplus \delta$ -supplemented if every submodule of *M* has a $\oplus \delta$ -supplement in *M*. Clearly, $\oplus \delta$ -supplemented modules are δ -supplemented and \oplus -supplemented modules are $\oplus \delta$ -supplemented.

In what follows, by \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_n and $\mathbb{Z}/n\mathbb{Z}$ we denote, respectively, integers, rational numbers, the ring of integers and the \mathbb{Z} -module of integers modulo *n*. $M_n(R)$ stands for the ring of all $n \times n$ matrices over *R*. For unexplained concepts and notations, we refer the reader to [1, 10].

2. δ -small submodules and δ -supplement submodules

We collect basic properties of δ -small submodules in the following lemma which is contained in [18].

Lemma 2.1. Let *M* be a module. Then we have the following.

- (1) If N is δ -small in M and M = X + N, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.
- (2) If K is δ -small in M and $f: M \to N$ is a homomorphism, then f(K) is δ -small in N. In particular, if K is δ -small in $M \subseteq N$, then K is δ -small in N.
- (3) Let $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2$ is δ -small in $M_1 \oplus M_2$ if and only if K_1 is δ -small in M_1 and K_2 is δ -small in M_2 .
- (4) Let N, K be submodules of M with K δ -small in M and N \leq K. Then N is also δ -small in M.

The next lemma is clear from definitions.

Lemma 2.2. *Let* M *be a module and* $m \in M$ *. Then the following are equivalent.*

- (1) mR is not δ -small in M.
- (2) There is a maximal submodule N of M such that $m \notin N$ and M/N is singular.

Lemma 2.3. Let M be a module and K,L,H submodules of M. If L is a δ -supplement of K in M and K is a δ -supplement of H in M, then K is a δ -supplement of L in M.

Proof. By assumption M = K + L = K + H, $K \cap L$ is δ -small in L and $K \cap H$ is δ -small in K. We prove $K \cap L$ is δ -small in K. Let X be a submodule of M such that $(K \cap L) + X = K$ and K/X is singular. Then $M = (K \cap L) + X + H$. Since $K \cap L$ is δ -small in M, by Lemma 2.1(1), there exists a projective semisimple submodule Y in $K \cap L$ such that $M = Y \oplus (X + H)$. Hence $K = (Y \oplus X) + (K \cap H)$. Since K/(X + Y) is singular as a homomorphic image of K/X and $K \cap H$ is δ -small in K, $K = X \oplus Y$. Thus Y = 0 as K/X is singular and Y is projective semisimple.

Lemma 2.4. Let *M* be a module and *K*,*N*,*T* submodules of *M*. If *K* is a \oplus - δ -supplement of *N* in *M* and *T* is δ -small in *M*, then *K* is a \oplus - δ -supplement of *N* + *T* in *M*.

Proof. Let *K* be a \oplus - δ -supplement of *N* in *M*. Then *K* is a direct summand of *M* such that M = N + K and $N \cap K$ is δ -small in *K*. We prove $(N + T) \cap K$ is δ -small in *K*. For if $[(N + T) \cap K] + L = K$ and K/L is singular for some $L \leq K$, then M = L + N + T and $M/(L+N) = (K+N)/(L+N) \cong K/(K+(L\cap N))$ is singular as a homomorphic image of K/L. Since *T* is δ -small in *M*, M = L + N. Hence $K = L + (K \cap N)$. Since $K \cap N$ is δ -small in *K* and K/L is singular, we have K = L.

3. Principally \oplus - δ -supplemented modules

In this section we define principally \oplus - δ -supplemented modules. We study properties, characterizations and decompositions of principally \oplus - δ -supplemented modules. We investigate the conditions under which any factor modules, direct summands and direct sums of a principally \oplus - δ -supplemented module are principally \oplus - δ -supplemented. For modules over a semisimple ring *R* we obtain that every *R*-module is principally \oplus - δ -supplemented if and only if every *R*-module is principally δ -semiperfect. Principally \oplus -supplemented modules are investigated in [14] and principally δ -lifting modules are studied in [6]. Recently, principally δ -supplemented modules are done in [7]. In this vein we introduce principally \oplus - δ -supplemented modules generalizing principally \oplus -supplemented modules, principally δ -lifting modules and strengthening principally δ -supplemented modules. Now we define principally \oplus - δ -supplemented modules with the next lemma.

Lemma 3.1. Let M be a module, $m \in M$ and L a direct summand of M. Then the following are equivalent.

- (1) M = mR + L and $mR \cap L$ is δ -small in L.
- (2) M = mR + L and for any proper submodule K of L with L/K singular, $M \neq mR + K$.

Proof. (1) \Rightarrow (2) Let $K \leq L$ and M = mR + K where L/K is singular. Then $L = (L \cap mR) + K$. Since $L \cap mR$ is δ -small in L, we have L = K.

(2) \Rightarrow (1) Let M = mR + L and $K \le L$ and L/K singular with $L = (mR \cap L) + K$. Then M = mR + L = mR + K. By (2), K = L. So $mR \cap L$ is δ -small in L.

Let M be a module and $m \in M$. A submodule L is called a principally $\oplus \delta$ -supplement of mR in M if mR and L satisfy Lemma 3.1 and the module M is called principally $\oplus \delta$ supplemented if every cyclic submodule of M has a principally \oplus - δ -supplement in M, that is, for each $m \in M$ there exists a submodule A of M such that $M = mR + A = B \oplus A$ for some $B \le M$ with $mR \cap A$ δ -small in A, therefore in M. In [6], a module M is called prin*cipally* δ *-lifting* if for each $m \in M$, M has a decomposition $M = A \oplus B$ with $A \leq mR$ and $mR \cap B$ δ -small in B (equivalently, in M). Every principally δ -lifting module is a principally \oplus - δ -supplemented module. Principally \oplus -supplemented modules are introduced and investigated in [14]. The module M is called *principally* \oplus -supplemented if every cyclic submodule has a supplement which is a direct summand of M. Hence every principally \oplus supplemented module is also principally \oplus - δ -supplemented. In [7], M is said to be a principally δ -supplemented module if for every cyclic submodule of M has a δ -supplement in M. Note that, every principally \oplus - δ -supplemented module is principally δ -supplemented. We show that the class of principally \oplus - δ -supplemented modules lies strictly between classes of principally \oplus -supplemented modules (principally δ -lifting modules) and principally δ supplemented modules.

In the same direction as preceding paragraph one may define principally δ - \oplus -supplemented modules. A module *M* is called *principally* δ - \oplus -*supplemented* if for every cyclic submodule *mR* of *M*, *M* has a direct summand which is a δ -supplement of *mR* in *M*, that is, for any $m \in M$ there exists a direct summand *A* of *M* such that M = mR + A and $mR \cap A$ is δ -small in *A*. So a principally δ - \oplus -supplemented module is the same as a principally \oplus - δ -supplemented module.

Example 3.1.

- (1) Let *R* be an incomplete rank one discrete valuation ring, with quotient field *K*. By [10, Lemma A.5], the module $M = K \oplus K$ is principally \oplus - δ -supplemented but not lifting.
- (2) Consider the Z-module M = Q ⊕ (Z/2Z). We prove M is a principally ⊕-δ-supplemented module but neither supplemented nor lifting. It is routine to show that M = (1, 1)Z + (Q ⊕ (0)). Let (u, v) ∈ M. Assume that v = 1 and u ≠ 1. In this case we prove M = (u, v)Z + (Q ⊕ (0)). Let (x, v) ∈ M. We have two possibilities.
 (i) v = 1. Then (x, v) = (x, 1) = (u, 1) + (x u, 0) ∈ (u, 1)Z + (Q ⊕ (0)).
 - (ii) $\overline{y} = \overline{0}$. Then $(x,\overline{y}) = (x,\overline{0}) = (u,\overline{1})0 + (x,\overline{0}) \in (u,\overline{1})\mathbb{Z} + (\mathbb{Q} \oplus (\overline{0}))$.
 - Hence $M = (u, \overline{1})\mathbb{Z} + (\mathbb{Q} \oplus (\overline{0}))$. Since $((u, \overline{v})\mathbb{Z}) \cap (\mathbb{Q} \oplus (\overline{0}))$ is either zero or isomorphic to $\mathbb{Z} \oplus (\overline{0})$ which is small in $\mathbb{Q} \oplus (\overline{0})$, M is principally \oplus - δ -supplemented \mathbb{Z} -module. If M were supplemented \mathbb{Z} -module, its direct summand \mathbb{Q} would be supplemented \mathbb{Z} -module. A contradiction. So M is neither supplemented nor lifting.

Recall that a submodule *N* of a module of *M* is called *fully invariant* if $f(N) \le N$ for all endomorphisms *f* of *M*, and *M* is said to be a *duo module* (or *weak-duo*) if every submodule (or direct summand) of *M* is fully invariant (see for detail [12]). The module *M* is called *distributive* if for all submodules *K*, *L* and *N* of *M*, $N \cap (K+L) = (N \cap K) + (N \cap L)$ or $N + (K \cap L) = (N + K) \cap (N + L)$. Lemma 3.2 is well known and it is obvious from definitions.

Lemma 3.2. Let $M = M_1 \oplus M_2 = K + N$ and $K \le M_1$. If M is distributive and $K \cap N$ is δ -small in N, then $K \cap N$ is δ -small in $M_1 \cap N$.

Recall the definitions for some of the terms to be used in the sequel. An *R*-module *M* is said to be π -projective if for every two submodules *U*, *V* of *M* with U + V = M there exists $f \in \text{End}_R(M)$ with $\text{Im}(f) \leq U$ and $\text{Im}(1 - f) \leq V$ and *M* is called *refinable* if for any submodules *U* and *V* of *M* with M = U + V there is a direct summand *U'* of *M* such that $U' \subseteq U$ and M = U' + V (see, namely [16]). The module *M* has the summand intersection property if the intersection of two direct summands of *M* is again a direct summand of *M*.

Theorem 3.1. Every principally δ -lifting module is principally \oplus - δ -supplemented. The converse holds if M satisfies any of the following conditions.

- (1) *M* is a distributive module.
- (2) *M* is a π -projective module.
- (3) *M* is a duo module.
- (4) *M* is a refinable module with the summand intersection property.
- (5) *M* is an indecomposable module.

Proof. Let *M* be a principally δ -lifting module and $m \in M$. Then *M* has a decomposition $M = A \oplus B$ such that $B \leq mR$ and $mR \cap A$ is δ -small in *A*. Since M = mR + A, *M* is principally \oplus - δ -supplemented. Conversely,

- (1) Let *M* be a distributive principally ⊕-δ-supplemented module and *m* ∈ *M*. There exists a direct summand *A* of *M* such that *M* = *mR* + *A* with *mR* ∩ *A* δ-small in *A*. Let *M* = *A* ⊕ *B* for some submodule *B* of *M*. Then by distributivity of *M*, we have *mR* = (*mR* ∩ *A*) ⊕ (*mR* ∩ *B*). Hence *M* = (*mR* ∩ *B*) ⊕ *A*. Thus *B* = *mR* ∩ *B* ≤ *mR*. Therefore *M* is principally δ-lifting.
- (2) Let *M* be a π-projective principally ⊕-δ-supplemented module and *m* ∈ *M*. Then we have *M* = *mR* + *A* and *mR* ∩ *A* is δ-small in *A* for some direct summand *A* of *M*. Since *M* is π-projective, by [15, 41.14], there exists *N* ≤ *mR* with *M* = *A* ⊕ *N*. Therefore *M* is principally δ-lifting.
- (3) Similar to the case (1).
- (4) Let *M* be a refinable principally ⊕-δ-supplemented module with the summand intersection property and *m* ∈ *M*. Then there exists a direct summand *A* of *M* such that *M* = *mR* + *A* and *mR* ∩ *A* is δ-small in *A*. Since *M* is refinable, there exists a direct summand *U* of *M* such that *U* is contained in *mR* and *M* = *U* + *A*. By the summand intersection property of *M*, *U* ∩ *A* is a direct summand of *M*. Let *M* = (*U* ∩ *A*) ⊕ *K* for some submodule *K* of *M*. Then *A* = (*U* ∩ *A*) ⊕ (*K* ∩ *A*), and so *M* = *U* ⊕ (*K* ∩ *A*). On the other hand, *mR* ∩ (*K* ∩ *A*) is δ-small in *A*. Since *K* ∩ *A* is a direct summand of *A*, *mR* ∩ (*K* ∩ *A*) is also δ-small in *K* ∩ *A*. This completes the proof.
- (5) Let *M* be an indecomposable module and $m \in M$. Since *M* is principally \oplus - δ -supplemented, there exist submodules *A* and *B* of *M* such that $mR \cap A$ is δ -small in *A* and $M = A \oplus B = mR + A$. By hypothesis, A = M and B = 0. So that $mR \cap A = mR$ is δ -small in *M*. Note that in this case, every cyclic submodule of *M* is δ -small in *M*.

Next example shows that there exists a principally \oplus - δ -supplemented module which is not principally δ -lifting.

Example 3.2. Consider the \mathbb{Z} -module $M = (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/8\mathbb{Z})$. Then $N_1 = (\overline{1}, \overline{2})\mathbb{Z}$, $N_2 = (\overline{1}, \overline{1})\mathbb{Z}$, $N_3 = (\overline{0}, \overline{2})\mathbb{Z}$, $N_4 = (\overline{0}, \overline{4})\mathbb{Z}$, $N_5 = (\overline{1}, \overline{4})\mathbb{Z}$, $N_6 = \mathbb{Z}/2\mathbb{Z}$ and $N_7 = \mathbb{Z}/8\mathbb{Z}$ are nonzero cyclic submodules of M. Hence $M = N_6 \oplus N_7 = N_2 \oplus N_5$ and N_3 , N_4 are small submodules of M. Thus M is a principally \oplus -supplemented module and so principally \oplus - δ -supplemented. On the other hand, M is not principally δ -lifting, by [6].

Every principally \oplus - δ -supplemented module need not be principally \oplus -supplemented, as Example 3.8 shows. But in some cases these modules coincide.

Proposition 3.1. Let M be a singular module. Then M is principally \oplus -supplemented if and only if it is principally \oplus - δ -supplemented.

Proof. The necessity is clear. For the sufficiency, let $m \in M$. Then there exists a direct summand *A* of *M* with M = mR + A and $mR \cap A \delta$ -small in *A*. Assume that $A = (mR \cap A) + K$ for some submodule *K* of *A*. Since *M* is singular, A/K is also singular. Hence we have A = K. Thus $mR \cap A$ is small in *A*. Therefore *M* is principally \oplus -supplemented.

Proposition 3.2. Let *M* be a principally \oplus - δ -supplemented module. If every cyclic submodule of *M* has a uniform principally \oplus - δ -supplement, then *M* is principally \oplus -supplemented.

Proof. Let $m \in M$. By hypothesis, there exists a uniform direct summand A of M with M = mR + A and $mR \cap A \delta$ -small in A. Assume that $(mR \cap A) + K = A$ for some submodule K of A. If K = 0, then there is nothing to do. Let $K \neq 0$. Since K is essential in A, A/K

is singular. Then we have K = A. Hence $mR \cap A$ is small in A. Thus M is principally \oplus -supplemented.

Proposition 3.3. Every principally \oplus - δ -supplemented module is principally δ -supplemented. The converse is true for refinable modules.

Proof. The first assertion is clear. Let M be a principally δ -supplemented module and $m \in M$. Let A be a submodule of M with M = mR + A and $mR \cap A \delta$ -small in A. Since M is refinable, there is a direct summand U of M such that $U \subseteq A$ and M = U + mR. Also U is a direct summand of A. This implies that $mR \cap U$ is δ -small in A. Hence $mR \cap U$ is δ -small in U.

Next example shows that there exists a principally δ -supplemented module which is not principally \oplus - δ -supplemented.

Example 3.3. Let *F* be a field and *x* and *y* commuting indeterminates over *F*. Consider the polynomial ring R = F[x, y], the ideals $I_1 = (x^2)$ and $I_2 = (y^2)$ of *R*, and the ring $S = R/(x^2, y^2)$. Let $M = \overline{x}S + \overline{y}S$. Then *M* is an indecomposable *S*-module, principally supplemented but not principally \oplus -supplemented. Hence *M* is principally δ -supplemented. On the other hand, since *M* is singular, it is not principally \oplus - δ -supplemented by Proposition 3.1.

Because of the following example it can be said that any submodule of a principally \oplus - δ -supplemented module may not be principally \oplus - δ -supplemented.

Example 3.4. Consider \mathbb{Q} as a \mathbb{Z} -module. Since every cyclic submodule of \mathbb{Q} is small and so δ -small in \mathbb{Q} , \mathbb{Q} is principally \oplus - δ -supplemented. But the submodule \mathbb{Z} of \mathbb{Q} is not principally \oplus - δ -supplemented as a \mathbb{Z} -module since $2\mathbb{Z}$ does not have any principally \oplus - δ -supplement in \mathbb{Z} .

Now we investigate conditions which ensure that a homomorphic image and so a direct summand of a principally \oplus - δ -supplemented module is principally \oplus - δ -supplemented.

Theorem 3.2. Let *M* be a distributive principally \oplus - δ -supplemented module. Then every homomorphic image of *M* is principally \oplus - δ -supplemented.

Proof. Let *L* be a submodule of *M* and (mR + L)/L a cyclic submodule of M/L. Then there exists a direct summand *A* of *M* such that $M = A \oplus B = mR + A$ for some $B \le M$ and $mR \cap A$ is δ -small in *A*. Now M/L = (mR + L)/L + (A + L)/L and, since *M* is distributive, $(mR + L) \cap (A + L) = L + (mR \cap A)$. So $((mR + L)/L) \cap ((A + L)/L) = (L + (mR \cap A))/L$ is δ -small in (A + L)/L as a homomorphic image of δ -small $mR \cap A$ in *A* under the natural map π from *A* onto (A + L)/L by Lemma 2.1(2). Again by distributivity of *M* and $A \cap B = 0$, we have $(A + L) \cap (B + L) = L$. Hence (A + L)/L is a direct summand of M/L.

Corollary 3.1. *Every direct summand of a distributive principally* \oplus - δ *-supplemented module is principally* \oplus - δ *-supplemented.*

Proposition 3.4. Let M be a module and N a submodule of M. If every cyclic submodule of M has a principally \oplus - δ -supplement which contains N, then M/N is principally \oplus - δ -supplemented.

Proof. Let $m \in M$ and consider the submodule \overline{mR} of M/N. By hypothesis, there exists a direct summand L of M such that $N \leq L$, M = mR + L and $mR \cap L$ is δ -small in L. Let

 $M = K \oplus L$ for some submodule *K* of *M* and π denote the natural epimorphism from *M* onto M/N. Then we have $M/N = (K+N)/N \oplus (L/N) = \overline{m}R + (L/N)$. On the other hand, $\pi(mR \cap L) = \pi(mR) \cap \pi(L) = \overline{m}R \cap (L/N)$ is δ -small in $\pi(L) = L/N$. Hence the proof is completed.

Lemma 3.3. Let *M* be a module and *N* a fully invariant submodule of *M*. If $M = M_1 \oplus M_2$ for some submodules M_1 and M_2 of *M*, then $M/N = (M_1 + N)/N \oplus (M_2 + N)/N$.

Proof. Clearly, $M/N = (M_1 + N)/N + (M_2 + N)/N$. If $m_1 + N = m_2 + N$ with $m_i \in M_i$ (i = 1, 2), then $m_1 - m_2 \in N$. As N is a fully invariant submodule of M, we see that $m_1, m_2 \in N$. Hence $(M_1 + N)/N \cap (M_2 + N)/N = 0$, as required.

Proposition 3.5. Let *M* be a principally \oplus - δ -supplemented module. Then *M*/*N* is principally \oplus - δ -supplemented for every fully invariant submodule *N* of *M*.

Proof. Let *N* be a fully invariant submodule of *M* and $\overline{m}R$ a submodule of *M*/*N*, where $m \in M$. Since *M* is principally \oplus - δ -supplemented, there exists a direct summand *A* of *M* such that M = mR + A and $mR \cap A$ is δ -small in *A*. Let $M = A \oplus B$ for some submodule *B* of *M*. By Lemma 3.3, we have $M/N = (A+N)/N \oplus (B+N)/N$. Also $M/N = (A+N)/N + \overline{m}R$. It is clear that $(A+N)/N \cap \overline{m}R$ is δ -small in (A+N)/N. This completes the proof.

As an immediate consequence of Proposition 3.5, we deduce that if *M* is principally \oplus - δ -supplemented, then so are *M*/Rad(*M*) and *M*/Soc(*M*).

Corollary 3.2. Let *M* be a weak-duo and principally \oplus - δ -supplemented module. Then every direct summand of *M* is principally \oplus - δ -supplemented.

Recall that a module *M* has D_3 if whenever M_1 and M_2 are direct summands of *M* with $M = M_1 + M_2$, $M_1 \cap M_2$ is also a direct summand of *M* [10].

Proposition 3.6. Let *M* be a principally \oplus - δ -supplemented module. If *M* has D_3 , then every direct summand of *M* is also principally \oplus - δ -supplemented.

Proof. Let *N* be a direct summand of *M* and $n \in N$. Since *M* is principally \oplus - δ -supplemented, there exists a direct summand *A* of *M* with M = A + nR and $A \cap nR$ δ -small in *A*. Hence M = A + N and $N = (A \cap N) + nR$. Due to D_3 , $A \cap N$ is a direct summand of *M*, *N* and *A*. By Lemma 2.1(3), $(A \cap N) \cap nR$ is δ -small in $A \cap N$ because $A \cap N$ is a direct summand of *A*. Thus *N* is principally \oplus - δ -supplemented.

Due to Proposition 3.6 and [5, Lemma 2.4] we obtain the following result.

Corollary 3.3. Let *M* be a principally \oplus - δ -supplemented and UC extending module. Then every direct summand of *M* is principally \oplus - δ -supplemented.

It is obvious that every module with the summand intersection property has D_3 . Then the following result is an immediate consequence of Proposition 3.6 and [4, Theorem 4.6].

Corollary 3.4. Let *R* be a right semihereditary ring and *F* a principally \oplus - δ -supplemented finitely generated free *R*-module. Then *R* is principally \oplus - δ -supplemented as an *R*-module.

Next example shows that for a module M and a submodule N, if M/N is principally \oplus - δ -supplemented, then M need not be principally \oplus - δ -supplemented.

Example 3.5. Consider the \mathbb{Z} -module $\mathbb{Z}/p^n\mathbb{Z}$, where *p* is a prime number and *n* is a positive integer. Then $\mathbb{Z}/p^n\mathbb{Z}$ is principally δ -lifting and so principally \oplus - δ -supplemented, but \mathbb{Z} is not principally \oplus - δ -supplemented.

Proposition 3.7. Let $M = M_1 \oplus M_2$ be a distributive module. Then M is principally \oplus - δ -supplemented if and only if M_1 and M_2 are principally \oplus - δ -supplemented.

Proof. Let *M* be a principally \oplus - δ -supplemented module. Due to Corollary 3.1, M_1 and M_2 are principally \oplus - δ -supplemented. Assume that M_1 and M_2 are principally \oplus - δ -supplemented modules and $m \in M$. By distributivity of *M*, we have $mR = (mR \cap M_1) \oplus (mR \cap M_2)$. Since $mR \cap M_1$ and $mR \cap M_2$ are cyclic submodules of M_1 and M_2 respectively, there exist direct summands *A* of M_1 and *B* of M_2 such that $M_1 = (mR \cap M_1) + A = A' \oplus A$ and $A \cap (mR \cap M_1) = A \cap mR$ is δ -small in *A*, and $M_2 = (mR \cap M_2) + B = B' \oplus B$ and $B \cap (mR \cap M_2) = B \cap mR$ is δ -small in *B*. Then $M = mR + A + B = (A' \oplus B') \oplus (A \oplus B)$. Again by distributivity, $mR \cap (A+B) = (mR \cap A) + (mR \cap B)$ is δ -small in A + B by Lemma 2.1(3). This completes the proof.

Proposition 3.8. Let $M = M_1 \oplus M_2$ be a duo module. Then M is principally \oplus - δ -supplemented if and only if M_1 and M_2 are principally \oplus - δ -supplemented.

Proof. Necessity is clear from Proposition 3.6 because duo modules satisfy the summand intersection property. Sufficiency is resemble to the proof of Proposition 3.7.

Corollary 3.5. Let M be a principally \oplus - δ -supplemented module and every finite direct sum of M a distributive (or duo) module. Then every finitely M-generated module is principally \oplus - δ -supplemented.

Recall that a module M is called *regular* (in the sense of Zelmanowitz) [17] if for any $m \in M$ there exists a map $\alpha \in \text{Hom}_R(M, R)$ such that $m = m\alpha(m)$ and it is known that every cyclic submodule of a regular module is a direct summand. Hence any regular module is principally \oplus - δ -supplemented. We give an example to show that principally \oplus - δ -supplemented modules need not be a regular module.

Example 3.6. Any cyclic submodule of \mathbb{Q} as a \mathbb{Z} -module is a small submodule of \mathbb{Q} . Therefore \mathbb{Q} is a principally \oplus - δ -supplemented \mathbb{Z} -module. On the other hand, \mathbb{Q} can not be a regular \mathbb{Z} -module since $\text{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) = 0$.

A module *M* is said to be *principally semisimple* if every cyclic submodule is a direct summand of *M*. Tuganbaev calls a principally semisimple module as a regular module in [13], and lifting modules are named as semiregular modules. Every semisimple module is principally semisimple. Every principally semisimple module is principally δ -lifting and so principally \oplus - δ -supplemented. A ring *R* is called *principally semisimple* if the right *R*module *R* is principally semisimple. It is clear that every principally semisimple ring is von Neumann regular and vice versa. For a module *M*, we write $\operatorname{Rad}_{\delta}(M) = \sum \{L \mid L \text{ is a } \delta$ -small submodule of *M* }. Since every small submodule of *M* is δ -small, $\operatorname{Rad}(M) \leq \operatorname{Rad}_{\delta}(M)$. In the ring case, we shall denote $\operatorname{Rad}_{\delta}(M)$ by $J_{\delta}(R)$ and usually $\operatorname{Rad}(M)$ by J(R) for a ring *R*. It is shown that $J_{\delta}(R)$ is an ideal of *R*, and there are cases for a ring *R* such that $J_{\delta}(R)$ strictly contains J(R) (see namely [18]). Also note that for any module *M*, $\operatorname{Rad}_{\delta}(M)$ is a δ -small submodule of *M* is contained in a maximal submodule of *M*, therefore $J_{\delta}(R)$ is a δ -small right and δ -small left ideal of *R*.

Lemma 3.4. [10, Lemma 4.47] Let $M = S \oplus T = N + T$ where S is T-projective. Then $M = S' \oplus T$ where $S' \leq N$.

Lemma 3.5. Let M be a principally \oplus - δ -supplemented module. Then $M/\operatorname{Rad}_{\delta}(M)$ is a principally semisimple module if M has one of the following conditions.

- (1) *M* is a distributive module.
- (2) *M* is a projective module.

Proof.

(1) For any m ∈ M, there exists a direct summand A of M such that M = mR + A and mR ∩ A is δ-small in A. So mR ∩ A is δ-small in M. By distributivity of M, we have (mR + Rad_δ(M)) ∩ (A+Rad_δ(M)) = Rad_δ(M) + (mR ∩ A) = Rad_δ(M) since mR ∩ A is δ-small in M. Then

 $M/\operatorname{Rad}_{\delta}(M) = [(mR + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)] \oplus [(A + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)].$

(2) Let $m \in M$. There exists a direct summand A of M such that M = mR + A and $mR \cap A$ is δ -small in A. So $mR \cap A$ is δ -small in M. By projectivity of M, there exists a direct summand N of M such that $M = N \oplus A$ with $N \leq mR$ by Lemma 3.4. Then $(mR + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M) = (N + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)$ and $\operatorname{Rad}_{\delta}(M) = \operatorname{Rad}_{\delta}(N) \oplus \operatorname{Rad}_{\delta}(A)$ imply

 $M/\operatorname{Rad}_{\delta}(M) = [(mR + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)] \oplus [(A + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)].$

Hence every principal submodule of $M/\operatorname{Rad}_{\delta}(M)$ is a direct summand in either case. Therefore $M/\operatorname{Rad}_{\delta}(M)$ is principally semisimple.

Proposition 3.9. Let M be a principally \oplus - δ -supplemented module and N a submodule of M. If $N \cap Rad_{\delta}(M) = 0$, then N is principally semisimple.

Proof. Let $x \in N$. By hypothesis, there exists a direct summand A of M with M = A + xR and $A \cap xR$ δ -small in A. Hence $N = (A \cap N) + xR$ and $A \cap xR \leq \text{Rad}_{\delta}(M)$. Since $(A \cap N) \cap xR \leq N \cap \text{Rad}_{\delta}(M) = 0$, we have $N = (A \cap N) \oplus xR$. Therefore N is principally semisimple.

Theorem 3.3 may be proved easily by making use of Lemma 3.5 for distributive modules. But we prove it in another way.

Theorem 3.3. Let M be a principally \oplus - δ -supplemented module. Then M has a principally semisimple submodule M_1 such that M_1 has an essential socle and $Rad_{\delta}(M) \oplus M_1$ is essential in M.

Proof. By Zorn's Lemma we may find a submodule M_1 of M such that $\operatorname{Rad}_{\delta}(M) \oplus M_1$ is essential in M. By Proposition 3.9, M_1 is principally semisimple. Next we show that M_1 has an essential socle. For this we prove for any $m \in M_1$, mR has a simple submodule. If mRis simple, we have done. Otherwise let $m_1 \in mR$ such that $m_1R \neq mR$. By hypothesis there exists a direct summand C of M such that $M = m_1R + C$ with $m_1R \cap C$ δ -small in C. Then $m_1R \cap C \leq M_1 \cap \operatorname{Rad}_{\delta}(M) = 0$. So $M = m_1R \oplus C$ and then $mR = m_1R \oplus (mR \cap C)$. Clearly, $mR \cap C = m'_1R$ for some $m'_1 \in mR$ and $mR = m_1R \oplus m'_1R$. If m_1R and m'_1R are simple, then we stop. Otherwise let $m_2 \in m_1R$ such that $m_2R \neq m_1R$. Similarly, there is $m'_2 \in m_1R$ such that $m_1R = m_2R \oplus m'_2R$. Hence $mR = m_2R \oplus m'_2R \oplus m'_1R$. If m_2R is simple, then we stop. Otherwise we continue in this way. Since mR is cyclic, this process must terminate at a finite step, say n. At this step all direct summands of mR should be simple. This completes the proof.

Theorem 3.4. Let M be a principally \oplus - δ -supplemented module. Assume that M satisfies ascending chain condition on direct summands. Then M has a decomposition $M = M_1 \oplus M_2$, where M_1 is a semisimple module and M_2 is a module with $\operatorname{Rad}_{\delta}(M_2)$ essential in M_2 .

Proof. Let M_1 be a submodule of M such that $\operatorname{Rad}_{\delta}(M) \oplus M_1$ is essential in M and $m_1 \in M_1$. By Proposition 3.9, M_1 is principally semisimple. Since M is principally \oplus - δ -supplemented, there exists a direct summand A_1 of M such that $M = m_1 R + A_1$ and $m_1 R \cap A_1$ is δ -small in both A_1 and M. Hence $m_1 R \cap A_1 = 0$ and $M = m_1 R \oplus A_1$. Then $M_1 = m_1 R \oplus (M_1 \cap A_1)$. If $M_1 \cap A_1 \neq 0$, let $0 \neq m_2 \in M_1 \cap A_1$. There exists a direct summand A_2 of M such that $M = M_1 \cap A_1$. $m_2R + A_2$ and $m_2R \cap A_2$ is δ -small in both A_2 and M. Hence $m_2R \cap A_2 = 0, M = m_2R \oplus A_2 = 0$ $m_1 R \oplus m_2 R \oplus (A_1 \cap A_2)$. So $M_1 \cap A_1 = m_2 R \oplus (M_1 \cap A_1 \cap A_2)$ and $M_1 = m_1 R \oplus (M_1 \cap A_1) = m_1 R \oplus (M_1 \cap A_1)$ $m_1 R \oplus m_2 R \oplus (M_1 \cap A_1 \cap A_2)$. If $M_1 \cap A_1 \cap A_2 \neq 0$, let $0 \neq m_3 \in M_1 \cap A_1 \cap A_2$. There exists a direct summand A_3 of M such that $M = m_3 R \oplus A_3 = m_1 R \oplus m_2 R \oplus m_3 R \oplus (A_1 \cap A_2 \cap A_3)$ and $M_1 \cap A_1 \cap A_2 = m_3 R \oplus (M_1 \cap A_1 \cap A_2 \cap A_3)$ and $M_1 = m_1 R \oplus m_2 R \oplus m_3 R \oplus (M_1 \cap A_1 \cap A_3)$ $A_2 \cap A_3$). By hypothesis this procedure stops at a finite number of steps, say t. At this stage we may have $M = m_t R \oplus A_t = m_1 R \oplus m_2 R \oplus m_3 R \oplus \cdots \oplus m_t R \oplus (A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_t)$ and $M_1 = m_1 R \oplus m_2 R \oplus m_3 R \oplus \cdots \oplus m_t R$. Let $M_2 = A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_t$. Then $M = M_1 \oplus M_2$ $M_1 \oplus M_2$ with $\operatorname{Rad}_{\delta}(M) = \operatorname{Rad}_{\delta}(M_2)$. Since $M_1 \oplus \operatorname{Rad}_{\delta}(M)$ is essential in M, it follows that $\operatorname{Rad}_{\delta}(M_2)$ is essential in M_2 . Since M has the ascending chain condition on direct summands, without loss of generality, we may assume that all cyclic submodules m_1R , m_2R , $m_3R, ..., m_tR$ to be simple. This completes the proof.

Theorem 3.5. Let *M* be a module with $Rad_{\delta}(M) = 0$. Then the following conditions are equivalent.

- (1) *M* is principally \oplus - δ -supplemented.
- (2) *M* is principally \oplus -supplemented
- (3) *M* is principally semisimple.

Proof. We prove only $(1) \Rightarrow (3)$ since $(2) \Leftrightarrow (3)$ is proved in [14] and $(3) \Rightarrow (1)$ is clear. Let M be a principally \oplus - δ -supplemented module and $m \in M$. There exists a direct summand A of M such that M = mR + A and $mR \cap A$ is δ -small in A. Since $mR \cap A$ is also δ -small in M and $\operatorname{Rad}_{\delta}(M) = 0$, mR is a direct summand of M. Therefore M is principally semisimple.

It is known that every von Neumann regular ring has zero Jacobson radical. But there are von Neumann regular rings *R* with $J_{\delta}(R) \neq 0$ as the following example shows.

Example 3.7. Let $Q = \prod_{i=1}^{\infty} F_i$, where each $F_i = \mathbb{Z}_2$. Let *R* be the subring of *Q* generated by $\bigoplus_{i=1}^{\infty} F_i$ and $\mathbb{1}_Q$. Then *R* is von Neumann regular and $\bigoplus_{i=1}^{\infty} F_i = Soc(R) = J_{\delta}(R)$.

Corollary 3.6. Let R be a ring. If R a is von Neumann regular ring, then R is a principally \oplus - δ -supplemented R-module. The converse holds if $J_{\delta}(R) = 0$.

Definition 3.1. Let M be a module. M is called a δ -hollow module (or a principally δ -hollow module) if every proper submodule (or cyclic submodule) is δ -small in M.

Note that each hollow module is δ -hollow, and each δ -hollow module is principally δ -hollow and so principally \oplus - δ -supplemented. Let *M* be a module. Clearly, if M = xR for every $x \in M \setminus \text{Rad}_{\delta}(M)$, then *M* is principally δ -hollow.

Theorem 3.6. Let M be a projective module having $Rad_{\delta}(M)$ finite uniform dimension. Consider the following statements.

- (1) *M* is a direct sum of principally \oplus - δ -supplemented modules.
- (2) *M* has a decomposition $M = M_1 \oplus M_2$ where M_1 is a direct sum of principally semisimple modules and M_2 is a finite direct sum of principally δ -hollow modules.

Then $(2) \Rightarrow (1)$. $(1) \Rightarrow (2)$ in case M satisfies ascending chain condition on direct summands.

Proof. (2) \Rightarrow (1) Assume that *M* has a decomposition $M = M_1 \oplus M_2$ with submodules M_1 and M_2 satisfying stated conditions in (2). Both M_1 and M_2 are direct sums of principally \oplus - δ -supplemented modules as M_1 is a direct sum of principally semisimple modules, and M_2 is a direct sum of principally δ -hollow modules and each principally δ -hollow module is principally \oplus - δ -supplemented.

(1) \Rightarrow (2) Assume that $M = \bigoplus_{i \in I} M_i$, where each M_i is a principally $\oplus -\delta$ -supplemented module and $\operatorname{Rad}_{\delta}(M)$ has finite uniform dimension. Since $\operatorname{Rad}_{\delta}(M) = \bigoplus_{i \in I} \operatorname{Rad}_{\delta}(M_i)$, there is a finite subset J of I with $\operatorname{Rad}_{\delta}(M_i) = 0$ for all $i \in I \setminus J$. Therefore, by Theorem 3.5, M_i is principally semisimple for all $i \in I \setminus J$. Hence $M = M_1 \oplus (\bigoplus_{i \in I} M_i)$, where M_1 is a direct sum of principally semisimple modules. Due to Theorem 3.4, without loss of generality, we may assume that $\operatorname{Rad}_{\delta}(M_j)$ is essential in M_j , where $j \in J$. Then for $j \in J$, M_j has finite uniform dimension by [3, Proposition 3.20]. Now we prove each M_i is principally δ -hollow or a finite direct sum of principally δ -hollow modules, for $j \in J$. Let $j \in J$. Since *M* is projective, M_i is also projective. Then $\operatorname{Rad}_{\delta}(M_i) \neq M_i$ by [18, Lemma 1.9]. We complete the proof by induction on the uniform dimension. Suppose that M_i has uniform dimension 1, and let $x \in M_i \setminus \text{Rad}_{\delta}(M_i)$. Since M_i is principally $\oplus \delta$ -supplemented, there exists a direct summand K of M_i such that $M_i = xR + K$ and $xR \cap K$ is δ -small in K. Let $M_i = K \oplus K_1$ for some submodule K_1 of M_i . Since M_i has uniform dimension 1, we have K = 0 or $K_1 = 0$. If $K_1 = 0$, then xR is a submodule of $\operatorname{Rad}_{\delta}(M_i)$. This is a contradiction. Hence K = 0 and so $M_j = xR$. It follows that M_j is principally δ -hollow. Now suppose that n > 1 be a positive integer and assume each M_i having uniform dimension $k(1 \le k < n)$ is principally δ -hollow or a finite direct sum of principally δ -hollow submodules. Let $j \in J$ and assume M_i has uniform dimension n. Suppose M_i is not principally δ -hollow. Let $x \in M_i \setminus \text{Rad}_{\delta}(M_i)$ such that $M_i \neq xR$. Since M_i is principally $\oplus \delta$ -supplemented, there exist submodules K, K_1 of M_i with $M_i = xR + K = K \oplus K_1$ and $xR \cap K \delta$ -small in K. Note that $K_1 \neq 0$ and $K \neq 0$. Since projective modules have D_3 and then by Proposition 3.6, K and K_1 are principally \oplus - δ -supplemented modules by induction, K and K_1 are principally δ -hollow or a finite direct sum of principally δ -hollow submodules. So (1) \Rightarrow (2) holds and this completes the proof.

One may ask what happens to Theorem 3.5 in which the condition " $\operatorname{Rad}_{\delta}(M) = 0$ " changes to " $\operatorname{Rad}_{\delta}(M)$ is δ -small in M".

Theorem 3.7. Let *M* be a projective module with $\operatorname{Rad}_{\delta}(M)$ δ -small in *M* and consider the following conditions.

- (1) *M* is principally \oplus - δ -supplemented.
- (2) $M/\operatorname{Rad}_{\delta}(M)$ is principally semisimple.

Then (1) \Rightarrow (2). If M is a refinable module, then (2) \Rightarrow (1).

Proof. (1) \Rightarrow (2) Since *M* is a principally \oplus - δ -supplemented module, $M/\operatorname{Rad}_{\delta}(M)$ is principally semisimple by Lemma 3.5.

(2) \Rightarrow (1) Let *mR* be any cyclic submodule of *M*. By (2), there exists a submodule *U* of *M* such that $M/\operatorname{Rad}_{\delta}(M) = [(mR + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)] \oplus [U/\operatorname{Rad}_{\delta}(M)]$. Then M = mR + U and $(mR + \operatorname{Rad}_{\delta}(M)) \cap U = (mR \cap U) + \operatorname{Rad}_{\delta}(M) = \operatorname{Rad}_{\delta}(M)$. Hence $mR \cap U \leq \operatorname{Rad}_{\delta}(M)$ and it is δ -small in *M*. Since M = mR + U and being *M* refinable, there exists a direct

summand *A* of *M* such that $A \le U$ and M = mR + A. Since $mR \cap A \le mR \cap U$ is δ -small in *M* and *A* is a direct summand of *M*, by Lemma 2.1(3), $mR \cap A$ is δ -small in *A*. Hence *A* is a principally \oplus - δ -supplement of *mR* in *M*. This completes the proof.

Recall that *R* is called a *right V-ring* if every simple right *R*-module is injective, equivalently, by [9, Theorem 3.75], for any right *R*-module *M*, $\operatorname{Rad}(M) = 0$. In this note we shall call the ring *R* is a *right* δ -*V-ring* if for any right *R*-module *M*, $\operatorname{Rad}_{\delta}(M) = 0$. Since every small submodule is δ -small, $\operatorname{Rad}(M) \leq \operatorname{Rad}_{\delta}(M)$ for any module *M*.

We adopt the definition of a small projective module in [15, 19.10(8)] and we say an *R*-module $M \ \delta$ -small projective if Hom(M, -) is exact with respect to the exact sequences of right *R*-modules $0 \rightarrow K \xrightarrow{i} L \rightarrow N \rightarrow 0$ with i(K) a δ -small submodule of *L*. If *R* is a δ -V-ring, then every module is δ -small projective. In a subsequent paper the present authors study δ -small projective modules in detail. As is usual, to study δ -V-rings it is convenient to deal with an injective notion. A module *M* is called δ -small *injective* if Hom(-,M) is exact with respect to the exact sequences of right *R*-modules $0 \rightarrow K \xrightarrow{i} L \rightarrow N \rightarrow 0$ with i(K) a δ -small submodule of *L*. Clearly for a *R* right δ -V-ring, every right *R*-module is both δ -small projective and δ -small injective.

Lemma 3.6. Let R be a ring and consider the following conditions.

- (1) *R* is a right δ -V-ring.
- (2) Every right R-module is δ -small projective.
- (3) Every right R-module is δ -small injective.

Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

Proof. (1) \Rightarrow (2) Clear. (2) \Rightarrow (3) Let *M* be a right *R*-module and an exact sequence of right *R*-modules with *i*(*K*) a δ -small submodule of *L*

$$(3.1) 0 \to K \xrightarrow{i} L \xrightarrow{f} N \to 0$$

Applying Hom(N, -) to that sequence, by (2) we have an exact sequence

$$0 \to \operatorname{Hom}(N, K) \xrightarrow{i^*} \operatorname{Hom}(N, L) \xrightarrow{f^*} \operatorname{Hom}(N, N) \to 0$$

For the identity map $1 \in \text{Hom}(N, N)$ we have a map $g \in \text{Hom}(N, L)$ such that $1 = f^*g$. Hence the sequence (3.1) splits and so any map from *K* to *M* extends from *L* to *M*. (3) \Rightarrow (2) Dual to (2) \Rightarrow (3).

Theorem 3.8. Let R be a right V-ring. If every right R-module is δ -small projective, then every principally \oplus - δ -supplemented module is a direct sum of a projective semisimple module and a principally semisimple module.

Proof. Let *R* be a right V-ring and *M* any right *R*-module. We have $\operatorname{Rad}(M) = 0$. By [2, Proposition 3.1] or [9, Theorem 3.75] every submodule of *M* is contained in a maximal submodule, and [18, Lemma 1.5(4)] implies $\operatorname{Rad}_{\delta}(M)$ is δ -small in *M*. Since every right *R*-module is δ -small projective, we apply the functor $\operatorname{Hom}(M/\operatorname{Rad}_{\delta}(M), -)$ to the sequence $0 \to \operatorname{Rad}_{\delta}(M) \to M \to M/\operatorname{Rad}_{\delta}(M) \to 0$ we have $M = \operatorname{Rad}_{\delta}(M) \oplus K$ for some submodule *K* of *M*. By Lemma 2.1(1), there exists a projective semisimple submodule *Y* of $\operatorname{Rad}_{\delta}(M)$ such that $M = Y \oplus K$. Hence $Y = \operatorname{Rad}_{\delta}(M)$. Due to Proposition 3.9, *K* is principally semisimple and this completes the proof.

A ring *R* is called δ -semiregular if every cyclically presented *R*-module has a projective δ -cover. By combining Lemma 3.5, Theorem 3.5 and Theorem 3.8 we obtain the next result.

Theorem 3.9. Let R be a right δ -V-ring and consider the following conditions.

- (1) Every right *R*-module is principally \oplus - δ -supplemented.
- (2) Every right *R*-module is principally \oplus -supplemented.
- (3) Every right R-module is principally semisimple.
- (4) R is von Neumann regular.
- (5) Every projective *R*-module is principally \oplus - δ -supplemented.
- (6) *R* is δ -semiregular.

Then $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ and $(3) \Rightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$.

Proof. (4) \Rightarrow (5) Let *M* be a projective right *R*-module. By [13, Proposition 1.25], *M* is principally semisimple. This implies that *M* is principally \oplus - δ -supplemented.

(5) \Rightarrow (4) Since *R* is projective as a right *R*-module, *R* is principally \oplus - δ -supplemented. Being $J_{\delta}(R) = 0$, *R* is principally semisimple by Theorem 3.5. Hence *R* is von Neumann regular.

(4) \Leftrightarrow (6) Clear by [18, Theorem 3.5] since $J_{\delta}(R) = 0$.

Theorem 3.10. Let *R* be a ring with $J_{\delta}(R) = 0$. Then the following are equivalent.

- (1) Every projective *R*-module is principally \oplus - δ -supplemented.
- (2) Every free *R*-module is principally \oplus - δ -supplemented.
- (3) Every projective R-module is principally semisimple.
- (4) Every free R-module is principally semisimple.

Proof. (2) \Rightarrow (1) Let every free *R*-module be principally \oplus - δ -supplemented and *P* a projective module. Then there exists a free module *F* such that *P* is a direct summand of *F*. By (2), *F* is principally \oplus - δ -supplemented with Rad_{δ}(*F*) = 0 since J_{δ}(*R*) = 0. Lemma 3.5 implies *F* is principally semisimple and then *P* is principally semisimple, therefore *P* is principally \oplus - δ -supplemented. The rest is clear.

At the moment we have the following conjecture.

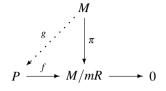
Conjecture 3.1. *Every right V-ring is right* δ *-V-ring.*

By [18], a projective module *P* is called *a projective* δ -cover of a module *M* if there exists an epimorphism $f: P \longrightarrow M$ with *Kerf* δ -small in *P*, and a ring *R* is called δ -perfect (δ -semiperfect) if every *R*-module (simple *R*-module) has a projective δ -cover. Clearly, every δ -perfect ring is δ -semiperfect. A module *M* is said to be principally δ -semiperfect if every factor module of *M* by a cyclic submodule has a projective δ -cover. A ring *R* is called principally δ -semiperfect in case the right *R*-module *R* is principally δ -semiperfect. Every δ -semiperfect module is principally δ -semiperfect. Next we characterize projective principally \oplus - δ -supplemented modules.

Theorem 3.11. Let M be a projective module. Then the following are equivalent.

- (1) *M* is principally δ -semiperfect.
- (2) *M* is principally \oplus - δ -supplemented.

Proof. (1) \Rightarrow (2) Let $m \in M$ and $P \xrightarrow{f} M/mR$ be a projective δ -cover and $M \xrightarrow{\pi} M/mR$ the natural epimorphism.



Then there exists a map $M \xrightarrow{g} P$ such that $fg = \pi$. Hence P = g(M) + Ker f. Since Ker f is δ -small, by Lemma 2.1(1), there exists a projective semisimple submodule Y of Ker f such that $P = g(M) \oplus Y$. So g(M) is projective. Thus $M = K \oplus$ Kerg for some submodule K of M. Let $x \in \text{Kerg}$. Then $fg = \pi$ implies $\pi(x) = 0$. Hence Kerg $\leq mR$. Next we show $g(K) \cap \text{Ker} f = g(K \cap mR)$. Let $x \in K \cap mR$. Then $0 = \pi(x) = fg(x)$. So $x \in g^{-1}(\text{Ker} f)$ and $K \cap mR \leq g^{-1}(\text{Ker} f)$ and $K \cap mR \leq g^{-1}(\text{Ker} f) \cap K$. Then $g(K \cap mR) \leq g(g^{-1}(\text{Ker} f) \cap K) = \text{Ker} f \cap g(K)$. Let $x \in \text{Ker} f \cap g(K)$. There is $y \in K$ such that g(y) = x and f(x) = 0. Then $\pi(y) = f(g(y)) = f(x) = 0$. So $y \in mR$ and $x = g(y) \in g(K \cap mR)$. Hence $g(K) \cap \text{Ker} f = g(K \cap mR)$ and it is δ -small in P and therefore in g(K). Since g is an isomorphism between K and g(K), $g^{-1}(g(K) \cap \text{Ker} f)$ is δ -small in K. Because $K \cap mR \leq g^{-1}(g(K) \cap \text{Ker} f)$, $K \cap mR$ is δ -small in K by Lemma 2.1(4).

(2) \Rightarrow (1) Assume that *M* is a principally \oplus - δ -supplemented module. Let $m \in M$. There exists a direct summand *A* of *M* such that M = mR + A with $mR \cap A \delta$ -small in *A*. Consider the maps $A \xrightarrow{\pi} A/(mR \cap A) \xrightarrow{h} M/mR$ where π is the natural epimorphism and *h* is the isomorphism $A/(mR \cap A) \cong M/mR$. Since Ker $(h\pi) = \text{Ker}\pi = mR \cap A$ is δ -small in *A*, *A* is a projective δ -cover of M/mR. So *M* is principally δ -semiperfect.

Now we can give a characterization of principally δ -semiperfect rings by using the notion of principally \oplus - δ -supplemented.

Corollary 3.7. *Let R be a ring. Then the following are equivalent.*

- (1) *R* is principally δ -semiperfect.
- (2) *R* is principally \oplus - δ -supplemented.

Proof. Clear by Theorem 3.11.

It is known that a ring *R* is semisimple if and only if every *R*-module is projective. As a consequence of Theorem 3.11, we have the next result.

Corollary 3.8. Let R be a semisimple ring. Then every R-module is principally \oplus - δ -supplemented if and only if every R-module is principally δ -semiperfect.

We conclude this paper by giving the aforementioned example which shows that every principally \oplus - δ -supplemented module need not be principally \oplus -supplemented.

Example 3.8. Let *F* be a field, $I = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, and consider the ring

 $R = \{(x_1, ..., x_n, x, x, ...) : n \in \mathbb{N}, x_i \in M_2(F), x \in I\}$

with componentwise operations. By [11, Example 2.15], J(R) = 0 and R is not a von Neumann regular ring. Then R is not principally \oplus -supplemented as an R-module due to [14, Theorem 3.30]. On the other hand, it is known that, from [18, Example 4.3],

 $J_{\delta}(R) = \{(x_1, \dots, x_n, x, x, \dots) : n \in \mathbb{N}, x_i \in M_2(F), x \in K\}$, where $K = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$ and R is δ -perfect. Hence R is principally δ -semiperfect. By Corollary 3.7, R is principally \oplus - δ -supplemented.

References

- F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, second edition, Graduate Texts in Mathematics, 13, Springer, New York, 1992.
- [2] K. R. Fuller, Relative projectivity and injectivity classes determined by simple modules, J. London Math. Soc. (2) 5 (1972), 423–431.
- [3] K. R. Goodearl, Ring Theory, Dekker, New York, 1976.
- [4] A. Hamdouni, A. Ç. Özcan and A. Harmanci, Characterization of modules and rings by the summand intersection property and the summand sum property, JP J. Algebra Number Theory Appl. 5 (2005), no. 3, 469–490.
- [5] A. Harmanci, D. Keskin and P. F. Smith, On ⊕-supplemented modules, Acta Math. Hungar. 83 (1999), no. 1-2, 161–169.
- [6] H. Inankil, S. Halicioglu and A. Harmanci, On a class of lifting modules, *Vietnam J. Math.* 38 (2010), no. 2, 189–201.
- [7] H. Inankil, S. Halicioglu and A. Harmanci, A generalization of supplemented modules, Algebra Discrete Math. 11 (2011), no. 1, 59–74.
- [8] M. T. Koşan, δ -lifting and δ -supplemented modules, *Algebra Colloq.* 14 (2007), no. 1, 53–60.
- [9] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999.
- [10] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*, London Mathematical Society Lecture Note Series, 147, Cambridge Univ. Press, Cambridge, 1990.
- [11] W. K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (1976), no. 5, 1105–1120.
- [12] A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J. 48 (2006), no. 3, 533-545.
- [13] A. A. Tuganbaev, Semiregular, weakly regular, and π -regular rings, J. Math. Sci. (New York) **109** (2002), no. 3, 1509–1588.
- [14] B. Ungor, S. Halicioglu and A. Harmanci, On a class of ⊕-supplemented modules, in Ring Theory and Its Applications, Contemporary Mathematics, Amer. Math. Soc., Providence RI 609 2014, 123–136.
- [15] R. Wisbauer, Foundations of module and ring theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach, Philadelphia, PA, 1991.
- [16] R. Wisbauer, Modules and algebras: bimodule structure and group actions on algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics, 81, Longman, Harlow, 1996.
- [17] J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163 (1972), 341-355.
- [18] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, *Algebra Colloq.* 7 (2000), no. 3, 305–318.