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Abstract. Let R be an arbitrary ring with identity and M a right R-module. In this paper,
we introduce a class of modules which is an analogous to that of δ -supplemented mod-
ules and principally ⊕-supplemented modules. The module M is called principally ⊕-δ -
supplemented if for any m ∈M there exists a direct summand A of M such that M = mR+A
and mR∩A is δ -small in A. We prove that some results of principally ⊕-supplemented
modules can be extended to principally ⊕-δ -supplemented modules for this general setting.
Several properties of these modules are given and it is shown that the class of principally⊕-
δ -supplemented modules lies strictly between classes of principally ⊕-supplemented mod-
ules and principally δ -supplemented modules. We investigate conditions which ensure that
any factor modules, direct summands and direct sums of principally ⊕-δ -supplemented
modules are also principally ⊕-δ -supplemented. We give a characterization of principally
⊕-δ -supplemented modules over a semisimple ring and a new characterization of princi-
pally δ -semiperfect rings is obtained by using principally ⊕-δ -supplemented modules.
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1. Introduction

Throughout this paper all rings have an identity and all modules are unitary right modules.
N ≤M will mean N is a submodule of M. A submodule N of a module M is called small in
M if for every K ≤M the equality M = N +K implies M = K. Let N and P be submodules
of M. We call P a supplement of N in M if M = P+N and P∩N is small in P. A module M
is called supplemented if every submodule of M has a supplement in M [10]. In [18], Zhou
introduced the concept of δ -small submodules as a generalization of small submodules.
A submodule N of M is said to be δ -small in M if whenever M = N + K and M/K is
singular, we have M = K. Let N be a submodule of M. A submodule L of M is called a
δ -supplement of N in M if M = N + L and N ∩L is δ -small in L (therefore in M), and M
is called δ -supplemented in case every submodule of M has a δ -supplement in M (see [8]
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in detail). Note that every supplemented module is δ -supplemented. Following [10], the
module M is called ⊕-supplemented if for any submodule N of M, there exists a direct
summand K of M with M = N +K and N ∩K small in K, i.e., every submodule of M has a
direct summand supplement in M, while in [14] M is called principally ⊕-supplemented if
every cyclic submodule of M has a direct summand supplement in M. Let M be a module,
K and L submodules of M. K is called a ⊕-δ -supplement of N in M if M = K + N, K is
a direct summand of M and K ∩N is δ -small in K. Also M is called ⊕-δ -supplemented if
every submodule of M has a ⊕-δ -supplement in M. Clearly, ⊕-δ -supplemented modules
are δ -supplemented and ⊕-supplemented modules are ⊕-δ -supplemented.

In what follows, by Z, Q, Zn and Z/nZ we denote, respectively, integers, rational num-
bers, the ring of integers and the Z-module of integers modulo n. Mn(R) stands for the ring
of all n× n matrices over R. For unexplained concepts and notations, we refer the reader
to [1, 10].

2. δ -small submodules and δ -supplement submodules

We collect basic properties of δ -small submodules in the following lemma which is con-
tained in [18].

Lemma 2.1. Let M be a module. Then we have the following.

(1) If N is δ -small in M and M = X + N, then M = X ⊕Y for a projective semisimple
submodule Y with Y ⊆ N.

(2) If K is δ -small in M and f : M→ N is a homomorphism, then f (K) is δ -small in
N. In particular, if K is δ -small in M ⊆ N, then K is δ -small in N.

(3) Let K1 ⊆M1 ⊆M, K2 ⊆M2 ⊆M and M = M1⊕M2. Then K1⊕K2 is δ -small in
M1⊕M2 if and only if K1 is δ -small in M1 and K2 is δ -small in M2.

(4) Let N, K be submodules of M with K δ -small in M and N ≤ K. Then N is also
δ -small in M.

The next lemma is clear from definitions.

Lemma 2.2. Let M be a module and m ∈M. Then the following are equivalent.

(1) mR is not δ -small in M.
(2) There is a maximal submodule N of M such that m 6∈ N and M/N is singular.

Lemma 2.3. Let M be a module and K,L,H submodules of M. If L is a δ -supplement of K
in M and K is a δ -supplement of H in M, then K is a δ -supplement of L in M.

Proof. By assumption M = K +L = K +H, K∩L is δ -small in L and K∩H is δ -small in K.
We prove K∩L is δ -small in K. Let X be a submodule of M such that (K∩L)+X = K and
K/X is singular. Then M = (K∩L)+X +H. Since K∩L is δ -small in M, by Lemma 2.1(1),
there exists a projective semisimple submodule Y in K ∩ L such that M = Y ⊕ (X + H).
Hence K = (Y ⊕X)+ (K ∩H). Since K/(X +Y ) is singular as a homomorphic image of
K/X and K ∩H is δ -small in K, K = X ⊕Y . Thus Y = 0 as K/X is singular and Y is
projective semisimple.

Lemma 2.4. Let M be a module and K,N,T submodules of M. If K is a ⊕-δ -supplement
of N in M and T is δ -small in M, then K is a ⊕-δ -supplement of N +T in M.
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Proof. Let K be a ⊕-δ -supplement of N in M. Then K is a direct summand of M such
that M = N + K and N ∩K is δ -small in K. We prove (N + T )∩K is δ -small in K. For
if [(N + T )∩K] + L = K and K/L is singular for some L ≤ K, then M = L + N + T and
M/(L+N) = (K +N)/(L+N)∼= K/(K +(L∩N)) is singular as a homomorphic image of
K/L. Since T is δ -small in M, M = L+N. Hence K = L+(K∩N). Since K∩N is δ -small
in K and K/L is singular, we have K = L.

3. Principally ⊕-δ -supplemented modules

In this section we define principally⊕-δ -supplemented modules. We study properties, char-
acterizations and decompositions of principally⊕-δ -supplemented modules. We investigate
the conditions under which any factor modules, direct summands and direct sums of a prin-
cipally ⊕-δ -supplemented module are principally ⊕-δ -supplemented. For modules over a
semisimple ring R we obtain that every R-module is principally ⊕-δ -supplemented if and
only if every R-module is principally δ -semiperfect. Principally ⊕-supplemented mod-
ules are investigated in [14] and principally δ -lifting modules are studied in [6]. Recently,
principally δ -supplemented modules are done in [7]. In this vein we introduce principally
⊕-δ -supplemented modules generalizing principally ⊕-supplemented modules, principally
δ -lifting modules and strengthening principally δ -supplemented modules. Now we define
principally ⊕-δ -supplemented modules with the next lemma.

Lemma 3.1. Let M be a module, m ∈M and L a direct summand of M. Then the following
are equivalent.

(1) M = mR+L and mR∩L is δ -small in L.
(2) M = mR+L and for any proper submodule K of L with L/K singular, M 6= mR+K.

Proof. (1)⇒ (2) Let K ≤ L and M = mR+K where L/K is singular. Then L = (L∩mR)+
K. Since L∩mR is δ -small in L, we have L = K.

(2)⇒ (1) Let M = mR + L and K ≤ L and L/K singular with L = (mR∩L)+ K. Then
M = mR+L = mR+K. By (2), K = L. So mR∩L is δ -small in L.

Let M be a module and m ∈M. A submodule L is called a principally ⊕-δ -supplement
of mR in M if mR and L satisfy Lemma 3.1 and the module M is called principally ⊕-δ -
supplemented if every cyclic submodule of M has a principally ⊕-δ -supplement in M, that
is, for each m ∈ M there exists a submodule A of M such that M = mR + A = B⊕A for
some B ≤M with mR∩A δ -small in A, therefore in M. In [6], a module M is called prin-
cipally δ -lifting if for each m ∈ M, M has a decomposition M = A⊕B with A ≤ mR and
mR∩B δ -small in B (equivalently, in M). Every principally δ -lifting module is a princi-
pally ⊕-δ -supplemented module. Principally ⊕-supplemented modules are introduced and
investigated in [14]. The module M is called principally ⊕-supplemented if every cyclic
submodule has a supplement which is a direct summand of M. Hence every principally ⊕-
supplemented module is also principally⊕-δ -supplemented. In [7], M is said to be a princi-
pally δ -supplemented module if for every cyclic submodule of M has a δ -supplement in M.
Note that, every principally ⊕-δ -supplemented module is principally δ -supplemented. We
show that the class of principally ⊕-δ -supplemented modules lies strictly between classes
of principally ⊕-supplemented modules (principally δ -lifting modules) and principally δ -
supplemented modules.
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In the same direction as preceding paragraph one may define principally δ -⊕-supplemen-
ted modules. A module M is called principally δ -⊕-supplemented if for every cyclic sub-
module mR of M, M has a direct summand which is a δ -supplement of mR in M, that is,
for any m ∈ M there exists a direct summand A of M such that M = mR + A and mR∩A
is δ -small in A. So a principally δ -⊕-supplemented module is the same as a principally
⊕-δ -supplemented module.

Example 3.1.
(1) Let R be an incomplete rank one discrete valuation ring, with quotient field K.

By [10, Lemma A.5], the module M = K⊕K is principally ⊕-δ -supplemented but
not lifting.

(2) Consider the Z-module M = Q⊕ (Z/2Z). We prove M is a principally ⊕-δ -
supplemented module but neither supplemented nor lifting. It is routine to show
that M = (1,1)Z+(Q⊕ (0)). Let (u,v) ∈M. Assume that v = 1 and u 6= 1. In this
case we prove M = (u,v)Z+(Q⊕ (0)). Let (x,y) ∈M. We have two possibilities.

(i) y = 1. Then (x,y) = (x,1) = (u,1)+(x−u,0) ∈ (u,1)Z+(Q⊕ (0)).
(ii) y = 0. Then (x,y) = (x,0) = (u,1)0+(x,0) ∈ (u,1)Z+(Q⊕ (0)).
Hence M = (u,1)Z+(Q⊕ (0)). Since ((u,v)Z)∩ (Q⊕ (0)) is either zero or iso-
morphic to Z⊕ (0) which is small in Q⊕ (0), M is principally ⊕-δ -supplemented
Z-module. If M were supplemented Z-module, its direct summand Q would be
supplemented Z-module. A contradiction. So M is neither supplemented nor lift-
ing.

Recall that a submodule N of a module of M is called fully invariant if f (N)≤ N for all
endomorphisms f of M, and M is said to be a duo module (or weak-duo) if every submodule
(or direct summand) of M is fully invariant (see for detail [12]). The module M is called
distributive if for all submodules K, L and N of M, N∩ (K +L) = (N∩K)+(N∩L) or N +
(K∩L) = (N +K)∩ (N +L). Lemma 3.2 is well known and it is obvious from definitions.

Lemma 3.2. Let M = M1⊕M2 = K + N and K ≤ M1. If M is distributive and K ∩N is
δ -small in N, then K∩N is δ -small in M1∩N.

Recall the definitions for some of the terms to be used in the sequel. An R-module M
is said to be π-projective if for every two submodules U , V of M with U +V = M there
exists f ∈ EndR(M) with Im( f )≤U and Im(1− f )≤V and M is called refinable if for any
submodules U and V of M with M = U +V there is a direct summand U ′ of M such that
U ′ ⊆U and M = U ′+V (see, namely [16]). The module M has the summand intersection
property if the intersection of two direct summands of M is again a direct summand of M.

Theorem 3.1. Every principally δ -lifting module is principally ⊕-δ -supplemented. The
converse holds if M satisfies any of the following conditions.

(1) M is a distributive module.
(2) M is a π-projective module.
(3) M is a duo module.
(4) M is a refinable module with the summand intersection property.
(5) M is an indecomposable module.

Proof. Let M be a principally δ -lifting module and m ∈ M. Then M has a decomposition
M = A⊕B such that B≤mR and mR∩A is δ -small in A. Since M = mR+A, M is principally
⊕-δ -supplemented. Conversely,
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(1) Let M be a distributive principally ⊕-δ -supplemented module and m ∈ M. There
exists a direct summand A of M such that M = mR + A with mR∩A δ -small in A.
Let M = A⊕B for some submodule B of M. Then by distributivity of M, we have
mR = (mR∩A)⊕ (mR∩B). Hence M = (mR∩B)⊕A. Thus B = mR∩B ≤ mR.
Therefore M is principally δ -lifting.

(2) Let M be a π-projective principally ⊕-δ -supplemented module and m ∈M. Then
we have M = mR + A and mR∩A is δ -small in A for some direct summand A of
M. Since M is π-projective, by [15, 41.14], there exists N ≤ mR with M = A⊕N.
Therefore M is principally δ -lifting.

(3) Similar to the case (1).
(4) Let M be a refinable principally ⊕-δ -supplemented module with the summand in-

tersection property and m∈M. Then there exists a direct summand A of M such that
M = mR+A and mR∩A is δ -small in A. Since M is refinable, there exists a direct
summand U of M such that U is contained in mR and M = U +A. By the summand
intersection property of M, U ∩A is a direct summand of M. Let M = (U ∩A)⊕K
for some submodule K of M. Then A = (U ∩A)⊕(K∩A), and so M =U⊕(K∩A).
On the other hand, mR∩ (K∩A) is δ -small in A. Since K∩A is a direct summand
of A, mR∩ (K∩A) is also δ -small in K∩A. This completes the proof.

(5) Let M be an indecomposable module and m ∈ M. Since M is principally ⊕-δ -
supplemented, there exist submodules A and B of M such that mR∩A is δ -small in
A and M = A⊕B = mR+A. By hypothesis, A = M and B = 0. So that mR∩A = mR
is δ -small in M. Note that in this case, every cyclic submodule of M is δ -small in
M.

Next example shows that there exists a principally ⊕-δ -supplemented module which is
not principally δ -lifting.

Example 3.2. Consider the Z-module M = (Z/2Z)⊕ (Z/8Z). Then N1 = (1,2)Z, N2 =
(1,1)Z, N3 = (0,2)Z, N4 = (0,4)Z, N5 = (1,4)Z, N6 = Z/2Z and N7 = Z/8Z are nonzero
cyclic submodules of M. Hence M = N6⊕N7 = N2⊕N5 and N3, N4 are small submodules of
M. Thus M is a principally ⊕-supplemented module and so principally ⊕-δ -supplemented.
On the other hand, M is not principally δ -lifting, by [6].

Every principally ⊕-δ -supplemented module need not be principally ⊕-supplemented,
as Example 3.8 shows. But in some cases these modules coincide.

Proposition 3.1. Let M be a singular module. Then M is principally ⊕-supplemented if
and only if it is principally ⊕-δ -supplemented.

Proof. The necessity is clear. For the sufficiency, let m ∈ M. Then there exists a direct
summand A of M with M = mR+A and mR∩A δ -small in A. Assume that A = (mR∩A)+K
for some submodule K of A. Since M is singular, A/K is also singular. Hence we have
A = K. Thus mR∩A is small in A. Therefore M is principally ⊕-supplemented.

Proposition 3.2. Let M be a principally⊕-δ -supplemented module. If every cyclic submod-
ule of M has a uniform principally⊕-δ -supplement, then M is principally⊕-supplemented.

Proof. Let m ∈ M. By hypothesis, there exists a uniform direct summand A of M with
M = mR+A and mR∩A δ -small in A. Assume that (mR∩A)+K = A for some submodule
K of A. If K = 0, then there is nothing to do. Let K 6= 0. Since K is essential in A, A/K
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is singular. Then we have K = A. Hence mR∩A is small in A. Thus M is principally
⊕-supplemented.

Proposition 3.3. Every principally⊕-δ -supplemented module is principally δ -supplemented.
The converse is true for refinable modules.

Proof. The first assertion is clear. Let M be a principally δ -supplemented module and
m ∈M. Let A be a submodule of M with M = mR+A and mR∩A δ -small in A. Since M is
refinable, there is a direct summand U of M such that U ⊆ A and M = U +mR. Also U is a
direct summand of A. This implies that mR∩U is δ -small in A. Hence mR∩U is δ -small
in U .

Next example shows that there exists a principally δ -supplemented module which is not
principally ⊕-δ -supplemented.

Example 3.3. Let F be a field and x and y commuting indeterminates over F . Consider
the polynomial ring R = F [x,y], the ideals I1 = (x2) and I2 = (y2) of R, and the ring
S = R/(x2,y2). Let M = xS + yS. Then M is an indecomposable S-module, principally sup-
plemented but not principally ⊕-supplemented. Hence M is principally δ -supplemented.
On the other hand, since M is singular, it is not principally ⊕-δ -supplemented by Proposi-
tion 3.1.

Because of the following example it can be said that any submodule of a principally
⊕-δ -supplemented module may not be principally ⊕-δ -supplemented.

Example 3.4. Consider Q as a Z-module. Since every cyclic submodule of Q is small
and so δ -small in Q, Q is principally ⊕-δ -supplemented. But the submodule Z of Q is
not principally ⊕-δ -supplemented as a Z-module since 2Z does not have any principally
⊕-δ -supplement in Z.

Now we investigate conditions which ensure that a homomorphic image and so a direct
summand of a principally ⊕-δ -supplemented module is principally ⊕-δ -supplemented.

Theorem 3.2. Let M be a distributive principally ⊕-δ -supplemented module. Then every
homomorphic image of M is principally ⊕-δ -supplemented.

Proof. Let L be a submodule of M and (mR + L)/L a cyclic submodule of M/L. Then
there exists a direct summand A of M such that M = A⊕B = mR +A for some B ≤M and
mR∩A is δ -small in A. Now M/L = (mR+L)/L +(A+L)/L and, since M is distributive,
(mR + L)∩ (A + L) = L +(mR∩A). So ((mR + L)/L)∩ ((A + L)/L) = (L +(mR∩A))/L
is δ -small in (A+L)/L as a homomorphic image of δ -small mR∩A in A under the natural
map π from A onto (A+L)/L by Lemma 2.1(2). Again by distributivity of M and A∩B = 0,
we have (A+L)∩ (B+L) = L. Hence (A+L)/L is a direct summand of M/L.

Corollary 3.1. Every direct summand of a distributive principally⊕-δ -supplemented mod-
ule is principally ⊕-δ -supplemented.

Proposition 3.4. Let M be a module and N a submodule of M. If every cyclic submodule
of M has a principally ⊕-δ -supplement which contains N, then M/N is principally ⊕-δ -
supplemented.

Proof. Let m ∈ M and consider the submodule mR of M/N. By hypothesis, there exists
a direct summand L of M such that N ≤ L, M = mR + L and mR∩L is δ -small in L. Let
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M = K⊕ L for some submodule K of M and π denote the natural epimorphism from M
onto M/N. Then we have M/N = (K +N)/N⊕ (L/N) = mR+(L/N). On the other hand,
π(mR∩L) = π(mR)∩π(L) = mR∩ (L/N) is δ -small in π(L) = L/N. Hence the proof is
completed.

Lemma 3.3. Let M be a module and N a fully invariant submodule of M. If M = M1⊕M2
for some submodules M1 and M2 of M, then M/N = (M1 +N)/N⊕ (M2 +N)/N.

Proof. Clearly, M/N = (M1 +N)/N +(M2 +N)/N. If m1 +N = m2 +N with mi ∈Mi (i =
1,2), then m1−m2 ∈ N. As N is a fully invariant submodule of M, we see that m1,m2 ∈ N.
Hence (M1 +N)/N∩ (M2 +N)/N = 0, as required.

Proposition 3.5. Let M be a principally ⊕-δ -supplemented module. Then M/N is princi-
pally ⊕-δ -supplemented for every fully invariant submodule N of M.

Proof. Let N be a fully invariant submodule of M and mR a submodule of M/N, where m ∈
M. Since M is principally ⊕-δ -supplemented, there exists a direct summand A of M such
that M = mR+A and mR∩A is δ -small in A. Let M = A⊕B for some submodule B of M.
By Lemma 3.3, we have M/N = (A+N)/N⊕ (B+N)/N. Also M/N = (A+N)/N +mR.
It is clear that (A+N)/N∩mR is δ -small in (A+N)/N. This completes the proof.

As an immediate consequence of Proposition 3.5, we deduce that if M is principally
⊕-δ -supplemented, then so are M/Rad(M) and M/Soc(M).

Corollary 3.2. Let M be a weak-duo and principally ⊕-δ -supplemented module. Then
every direct summand of M is principally ⊕-δ -supplemented.

Recall that a module M has D3 if whenever M1 and M2 are direct summands of M with
M = M1 +M2, M1∩M2 is also a direct summand of M [10].

Proposition 3.6. Let M be a principally ⊕-δ -supplemented module. If M has D3, then
every direct summand of M is also principally ⊕-δ -supplemented.

Proof. Let N be a direct summand of M and n∈N. Since M is principally⊕-δ -supplemented,
there exists a direct summand A of M with M = A + nR and A∩ nR δ -small in A. Hence
M = A + N and N = (A∩N)+ nR. Due to D3, A∩N is a direct summand of M, N and A.
By Lemma 2.1(3), (A∩N)∩nR is δ -small in A∩N because A∩N is a direct summand of
A. Thus N is principally ⊕-δ -supplemented.

Due to Proposition 3.6 and [5, Lemma 2.4] we obtain the following result.

Corollary 3.3. Let M be a principally ⊕-δ -supplemented and UC extending module. Then
every direct summand of M is principally ⊕-δ -supplemented.

It is obvious that every module with the summand intersection property has D3. Then
the following result is an immediate consequence of Proposition 3.6 and [4, Theorem 4.6].

Corollary 3.4. Let R be a right semihereditary ring and F a principally⊕-δ -supplemented
finitely generated free R-module. Then R is principally ⊕-δ -supplemented as an R-module.

Next example shows that for a module M and a submodule N, if M/N is principally
⊕-δ -supplemented, then M need not be principally ⊕-δ -supplemented.

Example 3.5. Consider the Z-module Z/pnZ, where p is a prime number and n is a positive
integer. Then Z/pnZ is principally δ -lifting and so principally ⊕-δ -supplemented, but Z is
not principally ⊕-δ -supplemented.
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Proposition 3.7. Let M = M1⊕M2 be a distributive module. Then M is principally ⊕-δ -
supplemented if and only if M1 and M2 are principally ⊕-δ -supplemented.

Proof. Let M be a principally⊕-δ -supplemented module. Due to Corollary 3.1, M1 and M2
are principally⊕-δ -supplemented. Assume that M1 and M2 are principally⊕-δ -supplemen-
ted modules and m ∈ M. By distributivity of M, we have mR = (mR∩M1)⊕ (mR∩M2).
Since mR∩M1 and mR∩M2 are cyclic submodules of M1 and M2 respectively, there exist
direct summands A of M1 and B of M2 such that M1 = (mR∩M1) + A = A′⊕A and A∩
(mR∩M1) = A∩mR is δ -small in A, and M2 = (mR∩M2)+B = B′⊕B and B∩(mR∩M2) =
B∩mR is δ -small in B. Then M = mR+A+B = (A′⊕B′)⊕(A⊕B). Again by distributivity,
mR∩ (A+B) = (mR∩A)+(mR∩B) is δ -small in A+B by Lemma 2.1(3). This completes
the proof.

Proposition 3.8. Let M = M1⊕M2 be a duo module. Then M is principally⊕-δ -supplemented
if and only if M1 and M2 are principally ⊕-δ -supplemented.

Proof. Necessity is clear from Proposition 3.6 because duo modules satisfy the summand
intersection property. Sufficiency is resemble to the proof of Proposition 3.7.

Corollary 3.5. Let M be a principally⊕-δ -supplemented module and every finite direct sum
of M a distributive (or duo) module. Then every finitely M-generated module is principally
⊕-δ -supplemented.

Recall that a module M is called regular (in the sense of Zelmanowitz) [17] if for any
m ∈ M there exists a map α ∈ HomR(M,R) such that m = mα(m) and it is known that
every cyclic submodule of a regular module is a direct summand. Hence any regular mod-
ule is principally ⊕-δ -supplemented. We give an example to show that principally ⊕-δ -
supplemented modules need not be a regular module.

Example 3.6. Any cyclic submodule of Q as a Z-module is a small submodule of Q. There-
fore Q is a principally ⊕-δ -supplemented Z-module. On the other hand, Q can not be a
regular Z-module since HomZ(Q,Z) = 0.

A module M is said to be principally semisimple if every cyclic submodule is a direct
summand of M. Tuganbaev calls a principally semisimple module as a regular module
in [13], and lifting modules are named as semiregular modules. Every semisimple module
is principally semisimple. Every principally semisimple module is principally δ -lifting and
so principally ⊕-δ -supplemented. A ring R is called principally semisimple if the right R-
module R is principally semisimple. It is clear that every principally semisimple ring is von
Neumann regular and vice versa. For a module M, we write Radδ (M) = ∑{L | L is a δ -small
submodule of M}. Since every small submodule of M is δ -small, Rad(M) ≤ Radδ (M). In
the ring case, we shall denote Radδ (M) by Jδ (R) and usually Rad(M) by J(R) for a ring
R. It is shown that Jδ (R) is an ideal of R, and there are cases for a ring R such that Jδ (R)
strictly contains J(R) (see namely [18]). Also note that for any module M, Radδ (M) is a
δ -small submodule of M provided every proper submodule of M is contained in a maximal
submodule of M, therefore Jδ (R) is a δ -small right and δ -small left ideal of R.

Lemma 3.4. [10, Lemma 4.47] Let M = S⊕ T = N + T where S is T -projective. Then
M = S′⊕T where S′ ≤ N.

Lemma 3.5. Let M be a principally ⊕-δ -supplemented module. Then M/Radδ (M) is a
principally semisimple module if M has one of the following conditions.
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(1) M is a distributive module.
(2) M is a projective module.

Proof.
(1) For any m ∈M, there exists a direct summand A of M such that M = mR + A and

mR∩A is δ -small in A. So mR∩A is δ -small in M. By distributivity of M, we
have (mR+ Radδ (M))∩ (A+Radδ (M)) = Radδ (M)+(mR∩A) = Radδ (M) since
mR∩A is δ -small in M. Then

M/Radδ (M) = [(mR+Radδ (M))/Radδ (M)]⊕ [(A+Radδ (M))/Radδ (M)].

(2) Let m ∈ M. There exists a direct summand A of M such that M = mR + A and
mR∩A is δ -small in A. So mR∩A is δ -small in M. By projectivity of M, there
exists a direct summand N of M such that M = N⊕A with N ≤mR by Lemma 3.4.
Then (mR+ Radδ (M))/Radδ (M) = (N+ Radδ (M))/Radδ (M) and Radδ (M) =
Radδ (N)⊕Radδ (A) imply

M/Radδ (M) = [(mR+Radδ (M))/Radδ (M)]⊕ [(A+Radδ (M))/Radδ (M)].

Hence every principal submodule of M/Radδ (M) is a direct summand in either
case. Therefore M/Radδ (M) is principally semisimple.

Proposition 3.9. Let M be a principally ⊕-δ -supplemented module and N a submodule of
M. If N∩Radδ (M) = 0, then N is principally semisimple.

Proof. Let x∈N. By hypothesis, there exists a direct summand A of M with M = A+xR and
A∩xR δ -small in A. Hence N = (A∩N)+xR and A∩xR≤Radδ (M). Since (A∩N)∩xR≤
N∩Radδ (M) = 0, we have N = (A∩N)⊕ xR. Therefore N is principally semisimple.

Theorem 3.3 may be proved easily by making use of Lemma 3.5 for distributive modules.
But we prove it in another way.

Theorem 3.3. Let M be a principally ⊕-δ -supplemented module. Then M has a princi-
pally semisimple submodule M1 such that M1 has an essential socle and Radδ (M)⊕M1 is
essential in M.

Proof. By Zorn’s Lemma we may find a submodule M1 of M such that Radδ (M)⊕M1 is
essential in M. By Proposition 3.9, M1 is principally semisimple. Next we show that M1 has
an essential socle. For this we prove for any m ∈M1, mR has a simple submodule. If mR
is simple, we have done. Otherwise let m1 ∈ mR such that m1R 6= mR. By hypothesis there
exists a direct summand C of M such that M = m1R +C with m1R∩C δ -small in C. Then
m1R∩C ≤M1∩ Radδ (M) = 0. So M = m1R⊕C and then mR = m1R⊕ (mR∩C). Clearly,
mR∩C = m′1R for some m′1 ∈ mR and mR = m1R⊕m′1R. If m1R and m′1R are simple, then
we stop. Otherwise let m2 ∈ m1R such that m2R 6= m1R. Similarly, there is m′2 ∈ m1R such
that m1R = m2R⊕m′2R. Hence mR = m2R⊕m′2R⊕m′1R. If m2R is simple, then we stop.
Otherwise we continue in this way. Since mR is cyclic, this process must terminate at a
finite step, say n. At this step all direct summands of mR should be simple. This completes
the proof.

Theorem 3.4. Let M be a principally ⊕-δ -supplemented module. Assume that M satisfies
ascending chain condition on direct summands. Then M has a decomposition M = M1⊕M2,
where M1 is a semisimple module and M2 is a module with Radδ (M2) essential in M2.



712 B. Ungor, S. Halicioglu and A. Harmanci

Proof. Let M1 be a submodule of M such that Radδ (M)⊕M1 is essential in M and m1 ∈M1.
By Proposition 3.9, M1 is principally semisimple. Since M is principally⊕-δ -supplemented,
there exists a direct summand A1 of M such that M = m1R+A1 and m1R∩A1 is δ -small in
both A1 and M. Hence m1R∩A1 = 0 and M = m1R⊕A1. Then M1 = m1R⊕ (M1∩A1). If
M1∩A1 6= 0, let 0 6= m2 ∈M1∩A1. There exists a direct summand A2 of M such that M =
m2R+A2 and m2R∩A2 is δ -small in both A2 and M. Hence m2R∩A2 = 0, M = m2R⊕A2 =
m1R⊕m2R⊕ (A1∩A2). So M1∩A1 = m2R⊕ (M1∩A1∩A2) and M1 = m1R⊕ (M1∩A1) =
m1R⊕m2R⊕ (M1∩A1∩A2). If M1∩A1∩A2 6= 0, let 0 6= m3 ∈M1∩A1∩A2. There exists
a direct summand A3 of M such that M = m3R⊕A3 = m1R⊕m2R⊕m3R⊕ (A1∩A2∩A3)
and M1∩A1∩A2 = m3R⊕ (M1∩A1∩A2∩A3) and M1 = m1R⊕m2R⊕m3R⊕ (M1∩A1∩
A2∩A3). By hypothesis this procedure stops at a finite number of steps, say t. At this stage
we may have M = mtR⊕At = m1R⊕m2R⊕m3R⊕ ·· · ⊕mtR⊕ (A1 ∩A2 ∩A3 ∩ ·· · ∩At)
and M1 = m1R⊕m2R⊕m3R⊕ ·· · ⊕mtR. Let M2 = A1 ∩A2 ∩A3 ∩ ·· · ∩At . Then M =
M1⊕M2 with Radδ (M) = Radδ (M2). Since M1⊕ Radδ (M) is essential in M, it follows
that Radδ (M2) is essential in M2. Since M has the ascending chain condition on direct sum-
mands, without loss of generality, we may assume that all cyclic submodules m1R, m2R,
m3R, ..., mtR to be simple. This completes the proof.

Theorem 3.5. Let M be a module with Radδ (M) = 0. Then the following conditions are
equivalent.

(1) M is principally ⊕-δ -supplemented.
(2) M is principally ⊕-supplemented
(3) M is principally semisimple.

Proof. We prove only (1)⇒ (3) since (2)⇔ (3) is proved in [14] and (3)⇒ (1) is clear. Let
M be a principally⊕-δ -supplemented module and m ∈M. There exists a direct summand A
of M such that M = mR+A and mR∩A is δ -small in A. Since mR∩A is also δ -small in M
and Radδ (M) = 0, mR is a direct summand of M. Therefore M is principally semisimple.

It is known that every von Neumann regular ring has zero Jacobson radical. But there
are von Neumann regular rings R with Jδ (R) 6= 0 as the following example shows.

Example 3.7. Let Q = ∏
∞
i=1 Fi, where each Fi = Z2. Let R be the subring of Q generated

by
⊕

∞
i=1 Fi and 1Q. Then R is von Neumann regular and

⊕
∞
i=1 Fi = Soc(R) = Jδ (R).

Corollary 3.6. Let R be a ring. If R a is von Neumann regular ring, then R is a principally
⊕-δ -supplemented R-module. The converse holds if Jδ (R) = 0.

Definition 3.1. Let M be a module. M is called a δ -hollow module (or a principally δ -
hollow module) if every proper submodule (or cyclic submodule) is δ -small in M.

Note that each hollow module is δ -hollow, and each δ -hollow module is principally δ -
hollow and so principally ⊕-δ -supplemented. Let M be a module. Clearly, if M = xR for
every x ∈M\Radδ (M), then M is principally δ -hollow.

Theorem 3.6. Let M be a projective module having Radδ (M) finite uniform dimension.
Consider the following statements.

(1) M is a direct sum of principally ⊕-δ -supplemented modules.
(2) M has a decomposition M = M1 ⊕M2 where M1 is a direct sum of principally

semisimple modules and M2 is a finite direct sum of principally δ -hollow modules.



On A Class of δ -Supplemented Modules 713

Then (2) ⇒ (1). (1) ⇒ (2) in case M satisfies ascending chain condition on direct sum-
mands.

Proof. (2)⇒ (1) Assume that M has a decomposition M = M1⊕M2 with submodules M1
and M2 satisfying stated conditions in (2). Both M1 and M2 are direct sums of principally
⊕-δ -supplemented modules as M1 is a direct sum of principally semisimple modules, and
M2 is a direct sum of principally δ -hollow modules and each principally δ -hollow module
is principally ⊕-δ -supplemented.

(1)⇒ (2) Assume that M =
⊕

i∈I Mi, where each Mi is a principally ⊕-δ -supplemented
module and Radδ (M) has finite uniform dimension. Since Radδ (M) =

⊕
i∈IRadδ (Mi), there

is a finite subset J of I with Radδ (Mi) = 0 for all i ∈ I \J. Therefore, by Theorem 3.5, Mi is
principally semisimple for all i ∈ I \ J. Hence M = M1⊕

(⊕
j∈J M j

)
, where M1 is a direct

sum of principally semisimple modules. Due to Theorem 3.4, without loss of generality,
we may assume that Radδ (M j) is essential in M j, where j ∈ J. Then for j ∈ J, M j has
finite uniform dimension by [3, Proposition 3.20]. Now we prove each M j is principally
δ -hollow or a finite direct sum of principally δ -hollow modules, for j ∈ J. Let j ∈ J. Since
M is projective, M j is also projective. Then Radδ (M j) 6= M j by [18, Lemma 1.9]. We
complete the proof by induction on the uniform dimension. Suppose that M j has uniform
dimension 1, and let x ∈M j\Radδ (M j). Since M j is principally ⊕-δ -supplemented, there
exists a direct summand K of M j such that M j = xR + K and xR∩K is δ -small in K. Let
M j = K⊕K1 for some submodule K1 of M j. Since M j has uniform dimension 1, we have
K = 0 or K1 = 0. If K1 = 0, then xR is a submodule of Radδ (M j). This is a contradiction.
Hence K = 0 and so M j = xR. It follows that M j is principally δ -hollow. Now suppose that
n > 1 be a positive integer and assume each M j having uniform dimension k(1 ≤ k < n) is
principally δ -hollow or a finite direct sum of principally δ -hollow submodules. Let j ∈ J
and assume M j has uniform dimension n. Suppose M j is not principally δ -hollow. Let
x ∈ M j\Radδ (M j) such that M j 6= xR. Since M j is principally ⊕-δ -supplemented, there
exist submodules K,K1 of M j with M j = xR + K = K⊕K1 and xR∩K δ -small in K. Note
that K1 6= 0 and K 6= 0. Since projective modules have D3 and then by Proposition 3.6, K
and K1 are principally ⊕-δ -supplemented modules by induction, K and K1 are principally
δ -hollow or a finite direct sum of principally δ -hollow submodules. So (1)⇒ (2) holds and
this completes the proof.

One may ask what happens to Theorem 3.5 in which the condition “Radδ (M) = 0”
changes to “Radδ (M) is δ -small in M”.

Theorem 3.7. Let M be a projective module with Radδ (M) δ -small in M and consider the
following conditions.

(1) M is principally ⊕-δ -supplemented.
(2) M/Radδ (M) is principally semisimple.

Then (1)⇒ (2). If M is a refinable module, then (2)⇒ (1).

Proof. (1)⇒ (2) Since M is a principally ⊕-δ -supplemented module, M/Radδ (M) is prin-
cipally semisimple by Lemma 3.5.

(2)⇒ (1) Let mR be any cyclic submodule of M. By (2), there exists a submodule U of M
such that M/Radδ (M) = [(mR+Radδ (M))/Radδ (M)]⊕ [U/Radδ (M)]. Then M = mR+U
and (mR+Radδ (M))∩U = (mR∩U)+ Radδ (M) = Radδ (M). Hence mR∩U ≤ Radδ (M)
and it is δ -small in M. Since M = mR +U and being M refinable, there exists a direct
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summand A of M such that A≤U and M = mR+A. Since mR∩A≤ mR∩U is δ -small in
M and A is a direct summand of M, by Lemma 2.1(3), mR∩A is δ -small in A. Hence A is a
principally ⊕-δ -supplement of mR in M. This completes the proof.

Recall that R is called a right V-ring if every simple right R-module is injective, equiva-
lently, by [9, Theorem 3.75], for any right R-module M, Rad(M) = 0. In this note we shall
call the ring R is a right δ -V-ring if for any right R-module M, Radδ (M) = 0. Since every
small submodule is δ -small, Rad(M)≤ Radδ (M) for any module M.

We adopt the definition of a small projective module in [15, 19.10(8)] and we say an
R-module M δ -small projective if Hom(M,−) is exact with respect to the exact sequences
of right R-modules 0→ K i→ L→ N→ 0 with i(K) a δ -small submodule of L. If R is a δ -
V-ring, then every module is δ -small projective. In a subsequent paper the present authors
study δ -small projective modules in detail. As is usual, to study δ -V-rings it is convenient
to deal with an injective notion. A module M is called δ -small injective if Hom(−,M) is
exact with respect to the exact sequences of right R-modules 0→ K i→ L→ N → 0 with
i(K) a δ -small submodule of L. Clearly for a R right δ -V-ring, every right R-module is both
δ -small projective and δ -small injective.

Lemma 3.6. Let R be a ring and consider the following conditions.

(1) R is a right δ -V-ring.
(2) Every right R-module is δ -small projective.
(3) Every right R-module is δ -small injective.

Then (1)⇒ (2)⇔ (3).

Proof. (1)⇒ (2) Clear. (2)⇒ (3) Let M be a right R-module and an exact sequence of right
R-modules with i(K) a δ -small submodule of L

(3.1) 0→ K i→ L
f→ N→ 0

Applying Hom(N,−) to that sequence, by (2) we have an exact sequence

0→ Hom(N,K) i∗→ Hom(N,L)
f ∗→ Hom(N,N)→ 0

For the identity map 1 ∈ Hom(N,N) we have a map g ∈ Hom(N,L) such that 1 = f ∗g.
Hence the sequence (3.1) splits and so any map from K to M extends from L to M. (3)⇒
(2) Dual to (2)⇒ (3).

Theorem 3.8. Let R be a right V-ring. If every right R-module is δ -small projective, then
every principally⊕-δ -supplemented module is a direct sum of a projective semisimple mod-
ule and a principally semisimple module.

Proof. Let R be a right V-ring and M any right R-module. We have Rad(M) = 0. By [2,
Proposition 3.1] or [9, Theorem 3.75] every submodule of M is contained in a maximal
submodule, and [18, Lemma 1.5(4)] implies Radδ (M) is δ -small in M. Since every right R-
module is δ -small projective, we apply the functor Hom(M/Radδ (M),−) to the sequence
0→ Radδ (M)→M→M/Radδ (M)→ 0 we have M = Radδ (M)⊕K for some submodule
K of M. By Lemma 2.1(1), there exists a projective semisimple submodule Y of Radδ (M)
such that M = Y ⊕K. Hence Y = Radδ (M). Due to Proposition 3.9, K is principally
semisimple and this completes the proof.
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A ring R is called δ -semiregular if every cyclically presented R-module has a projective
δ -cover. By combining Lemma 3.5, Theorem 3.5 and Theorem 3.8 we obtain the next
result.

Theorem 3.9. Let R be a right δ -V-ring and consider the following conditions.

(1) Every right R-module is principally ⊕-δ -supplemented.
(2) Every right R-module is principally ⊕-supplemented.
(3) Every right R-module is principally semisimple.
(4) R is von Neumann regular.
(5) Every projective R-module is principally ⊕-δ -supplemented.
(6) R is δ -semiregular.

Then (1)⇔ (2)⇔ (3) and (3)⇒ (4)⇔ (5)⇔ (6).

Proof. (4) ⇒ (5) Let M be a projective right R-module. By [13, Proposition 1.25], M is
principally semisimple. This implies that M is principally ⊕-δ -supplemented.

(5)⇒ (4) Since R is projective as a right R-module, R is principally ⊕-δ -supplemented.
Being Jδ (R) = 0, R is principally semisimple by Theorem 3.5. Hence R is von Neumann
regular.

(4)⇔ (6) Clear by [18, Theorem 3.5] since Jδ (R) = 0.

Theorem 3.10. Let R be a ring with Jδ (R) = 0. Then the following are equivalent.

(1) Every projective R-module is principally ⊕-δ -supplemented.
(2) Every free R-module is principally ⊕-δ -supplemented.
(3) Every projective R-module is principally semisimple.
(4) Every free R-module is principally semisimple.

Proof. (2)⇒ (1) Let every free R-module be principally⊕-δ -supplemented and P a projec-
tive module. Then there exists a free module F such that P is a direct summand of F . By (2),
F is principally ⊕-δ -supplemented with Radδ (F) = 0 since Jδ (R) = 0. Lemma 3.5 implies
F is principally semisimple and then P is principally semisimple, therefore P is principally
⊕-δ -supplemented. The rest is clear.

At the moment we have the following conjecture.

Conjecture 3.1. Every right V-ring is right δ -V-ring.

By [18], a projective module P is called a projective δ -cover of a module M if there
exists an epimorphism f : P−→M with Ker f δ -small in P, and a ring R is called δ -perfect
(δ -semiperfect) if every R-module (simple R-module) has a projective δ -cover. Clearly,
every δ -perfect ring is δ -semiperfect. A module M is said to be principally δ -semiperfect
if every factor module of M by a cyclic submodule has a projective δ -cover. A ring R is
called principally δ -semiperfect in case the right R-module R is principally δ -semiperfect.
Every δ -semiperfect module is principally δ -semiperfect. Next we characterize projective
principally ⊕-δ -supplemented modules.

Theorem 3.11. Let M be a projective module. Then the following are equivalent.

(1) M is principally δ -semiperfect.
(2) M is principally ⊕-δ -supplemented.
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Proof. (1)⇒ (2) Let m ∈M and P
f→M/mR be a projective δ -cover and M π→M/mR the

natural epimorphism.

M

P M/mR 0

pppppppppp	
g

?

π

-f -

Then there exists a map M
g→ P such that f g = π . Hence P = g(M)+Ker f . Since Ker f is

δ -small, by Lemma 2.1(1), there exists a projective semisimple submodule Y of Ker f such
that P = g(M)⊕Y . So g(M) is projective. Thus M = K⊕ Kerg for some submodule K
of M. Let x ∈ Kerg. Then f g = π implies π(x) = 0. Hence Kerg ≤ mR. Next we show
g(K)∩ Ker f = g(K∩mR). Let x ∈ K∩mR. Then 0 = π(x) = f g(x). So x ∈ g−1(Ker f ) and
K∩mR≤ g−1(Ker f ) and K∩mR≤ g−1(Ker f )∩K. Then g(K∩mR)≤ g(g−1(Ker f )∩K) =
Ker f ∩ g(K). Let x ∈ Ker f ∩ g(K). There is y ∈ K such that g(y) = x and f (x) = 0. Then
π(y) = f (g(y)) = f (x) = 0. So y ∈ mR and x = g(y) ∈ g(K ∩mR). Hence g(K)∩ Ker f =
g(K∩mR) and it is δ -small in P and therefore in g(K). Since g is an isomorphism between K
and g(K), g−1(g(K)∩Ker f ) is δ -small in K. Because K∩mR≤ g−1(g(K)∩Ker f ), K∩mR
is δ -small in K by Lemma 2.1(4).

(2)⇒ (1) Assume that M is a principally ⊕-δ -supplemented module. Let m ∈M. There
exists a direct summand A of M such that M = mR+A with mR∩A δ -small in A. Consider
the maps A π→ A/(mR∩A) h→M/mR where π is the natural epimorphism and h is the iso-
morphism A/(mR∩A) ∼= M/mR. Since Ker(hπ) = Kerπ = mR∩A is δ -small in A, A is a
projective δ -cover of M/mR. So M is principally δ -semiperfect.

Now we can give a characterization of principally δ -semiperfect rings by using the notion
of principally ⊕-δ -supplemented.

Corollary 3.7. Let R be a ring. Then the following are equivalent.

(1) R is principally δ -semiperfect.
(2) R is principally ⊕-δ -supplemented.

Proof. Clear by Theorem 3.11.
It is known that a ring R is semisimple if and only if every R-module is projective. As a

consequence of Theorem 3.11, we have the next result.

Corollary 3.8. Let R be a semisimple ring. Then every R-module is principally ⊕-δ -
supplemented if and only if every R-module is principally δ -semiperfect.

We conclude this paper by giving the aforementioned example which shows that every
principally ⊕-δ -supplemented module need not be principally ⊕-supplemented.

Example 3.8. Let F be a field, I =
[

F F
0 F

]
, and consider the ring

R = {(x1, . . . ,xn,x,x, . . .) : n ∈ N,xi ∈M2(F),x ∈ I}

with componentwise operations. By [11, Example 2.15], J(R) = 0 and R is not a von
Neumann regular ring. Then R is not principally ⊕-supplemented as an R-module due
to [14, Theorem 3.30]. On the other hand, it is known that, from [18, Example 4.3],
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Jδ (R) = {(x1, . . . ,xn,x,x, . . .) : n ∈ N,xi ∈ M2(F),x ∈ K}, where K =
[

0 F
0 0

]
and R is δ -

perfect. Hence R is principally δ -semiperfect. By Corollary 3.7, R is principally ⊕-δ -
supplemented.
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