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Abstract. Hindman’s Theorem says that every finite coloring of the positive natural num-
bers has a monochromatic set of finite sums. A Ramsey algebra is a structure that satisfies
an analogue of Hindman’s Theorem. It is known that Martin’s Axiom implies the existence
of strongly summable ultrafilters, that is nonprincipal ultrafilters generated by sets of finite
sums. Strongly reductible ultrafilters are analogues of strongly summable ultrafilters. As-
suming Martin’s Axiom, this paper shows the existence of nonprincipal strongly reductible
ultrafilters for a nondegenerate Ramsey algebra.
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1. Introduction

The set of natural numbers {0,1,2, . . .} is denoted by ω . Suppose ⟨xi⟩i∈ω is a sequence of
natural numbers. Let FS(⟨xi⟩i∈ω) denote the set {∑i∈F xi ∣ F ∈ P f (ω)/{∅}}, where P f (ω)

is the set of all finite subsets of ω . Hindman’s Theorem [6] says that for every finite partition
of the set of positive natural numbers N =X0⊍X1⊍⋯⊍XN , there exists a sequence ⟨xi⟩i∈ω of
positive natural numbers such that for some 0 ≤ j ≤N, we have FS(⟨xi⟩i∈ω) ⊆ X j. According
to Hindman [5], Galvin knew that Hindman’s Theorem would follow from the existence of
what Galvin called an almost translation invariant ultrafilter, that is, an ultrafilter U on N
such that {x ∈N ∣ X −x ∈U } ∈U whenever X ∈U , where X −x = {y ∈N ∣ x+y ∈ X }. In 1972
Hindman [5] showed that Hindman’s Theorem (then unproven) together with the continuum
hypothesis implies the existence of almost translation invariant ultrafilters.

In 1975, Galvin and Glazer (see [3] or [7]) showed the existence of almost translation
invariant ultrafilters without the continuum hypothesis. An almost translation invariant ul-
trafilter is exactly an idempotent element of the semigroup (βN,+), where + is the extension
of addition on N to βN, the Stone-Čech compactification of N. As (βN,+) is a compact
right topological semigroup, it has an idempotent element.

However, as accounted by Hindman in [8], van Douwen pointed out in 1985 that the
ultrafilter U produced in Hindman’s proof has the stronger property that it is generated by
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sets of finite sums, which means

for every X ∈U, there exists a⃗ ∈ ωN such that FS(a⃗) ⊆ X and FS(a⃗) ∈U,

and he asked whether such ultrafilters can be shown to exist in ZFC. Hindman [8] called
such ultrafilters strongly summable and showed that Martin’s Axiom implies their existence.
Later, Blass and Hindman [1] showed that their existence implies the existence of P-points.
It is a well known theorem of Shelah [12, VI, § 4] that the existence of P-points cannot be
proven in ZFC. Therefore, the existence of strongly summable ultrafilters is independent of
ZFC.

A Ramsey algebra [13, 14] is a structure which possesses the property analogous to that
possessed by the algebra (N,+) as in Hindman’s Theorem. Assuming Martin’s Axiom,
we will show the existence of the analogue of strongly summable ultrafilters for a Ramsey
algebra.

Ramsey algebras are also closely related to Ramsey spaces, structures that have proper-
ties analogous to those of Ellentuck’s space [4]. Every algebra can be associated to a certain
topological space of infinite sequences. It follows from the abstract version of Ellentuck’s
Theorem by Carlson [2] that such a space is Ramsey if and only if the associated underlying
algebra is Ramsey.

2. Preliminaries

To us an algebra is a pair (A,F), where A is a nonempty set and F is a collection of oper-
ations on A, none of which is nullary. Suppose B is a nonempty subset of A and suppose B
is closed under f in the usual sense for each f ∈ F . If f is n-ary, let f ↾ B denote the restric-
tion of f to Bn with codomain B. The algebra (B,{ f ↾ B ∣ f ∈ F }) is called a subalgebra
of (A,F). Note that f ↾ B and g ↾ B can be equal when f and g are distinct. Our notions
of “algebra” and “subalgebra” are different from but compatible with that in the theory of
universal algebra.

The set of infinite and finite sequences in A are denoted by ωA and <ωA respectively.
Suppose a⃗ = ⟨a0,a1,a2, . . .⟩. For n ≥ 1, let a⃗ ↾ n denote the initial segment of a⃗ of length
n, namely ⟨a0,a1, . . . ,an−1⟩. For n ∈ ω , let a⃗−n denote the sequence ⟨an,an+1,an+2, . . .⟩. If
s⃗ = ⟨s0,s1, . . . ,sn⟩ and t⃗ = ⟨t0,t1,t2, . . .⟩, then ∣s⃗∣ is the length of s⃗ and the concatenation s⃗∗ t⃗
of s⃗ and t⃗ is ⟨s0,s1, . . . ,sn,t0,t1,t2, . . .⟩.

A pre-partial ordering on a set A is a binary relation on A which is reflexive and transitive.
Fix an algebra (A,F) for the rest of this section.

Definition 2.1. An operation f on A is an orderly composition ofF iff there exist g,h1, . . . ,hn
∈F such that f (x̄1, . . . , x̄n) = g(h1(x̄1), . . . ,hn(x̄n)). (For notational convenience, we will use
a symbol with a bar over it to indicate a list.) We say that F is closed under orderly com-
position iff f ∈ F whenever f is an orderly composition of F . The collection of orderly
terms over F is the smallest collection of operations on A that contains F and the identity
function on A and that is closed under orderly composition.

Definition 2.2. Suppose a⃗, b⃗ are infinite sequences in A. We say that a⃗ is a reduction of b⃗
with respect to F , and write a⃗ ≤F b⃗ iff there are finite sequences b⃗n and orderly terms fn
over F for n ∈ ω such that b⃗0 ∗ b⃗1 ∗ b⃗2 ∗⋯ is a subsequence of b⃗ and a⃗(n) = fn(b⃗n) for all
n ∈ω .
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Definition 2.3. Suppose a⃗, b⃗ are finite sequences in A. We say that a⃗ is a reduction of b⃗, and
write a⃗ ⊴F b⃗ iff there are finite sequences b⃗n and orderly terms fn over F for n < ∣a⃗∣ such
that b⃗0 ∗ b⃗1 ∗⋯∗ b⃗∣a⃗∣−1 is a subsequence of b⃗ and a⃗ = ⟨ f0(b⃗0), f1(b⃗1), . . . , f∣a⃗∣−1(b⃗∣a⃗∣−1)⟩.

It is easy to check that ≤F is a pre-partial ordering on ωA and that ⊴F is a pre-partial
ordering on <ωA. Our definitions of ≤F and ⊴F are equivalent to a special case of the ones
given in [2], where the collection of operations contains all projections.

Lemma 2.1. Suppose a⃗, b⃗ are infinite sequences in A. Then a⃗ ≤F b⃗ if and only if every initial
segment of a⃗ is a reduction of some initial segment of b⃗.

Proof. The only if direction is immediate from the definition of ≤F . The if direction is
proved in Lemma 4.3 of [2].

Definition 2.4. Suppose b⃗ is an infinite sequence in A. An element a of A is a finite reduction
of b⃗ with respect to F iff a is equal to f (b⃗0) for some orderly term f over F and some finite
subsequence b⃗0 of b⃗. Define FRF(b⃗) to be the set of all finite reductions of b⃗ with respect to
F .

Note that if a⃗ ≤F b, then FRF(a⃗) ⊆ FRF(b⃗).

Definition 2.5. We say that (A,F) is Ramsey iff for every a⃗ ∈ ωA and every X ⊆ A, there
exists b⃗ ≤F a⃗ such that FRF(b⃗) is either contained in or disjoint from X.

It is a consequence of Hindman’s Theorem that every semigroup is a Ramsey algebra
(Corollary 5.15 in [10]). There are examples of Ramsey algebras which are not semigroups
(see [14]).

Every subalgebra of a Ramsey algebra is Ramsey. In fact, it is easy to see that assuming
F is countable, (A,F) is a Ramsey algebra if and only if every countable subalgebra is
Ramsey.

Definition 2.6. Suppose U is an ultrafilter on A. We say that U is strongly reductible for
F iff for every X ∈U, there exists a⃗ ∈ ωA such that FRF(a⃗) ⊆ X and FRF(a⃗−n) ∈U for all
n ∈ω .

Remark 2.1. By Lemma 2.2 in [8], U is a strongly summable ultrafilter if and only if for
every X ∈U , there exists a⃗ ∈ ωN such that FS(a⃗) ⊆ X and FS(a⃗−n) ∈U for all n ∈ω . Hence,
strongly reductible ultrafilters are indeed generalizations of strongly summable ultrafilters.

Suppose (A,F) is an algebra such that for every a⃗ ∈ ωA, there exists b⃗ ≤F a⃗ such that
∣FRF(b⃗)∣ = 1. Then (A,F) is trivially Ramsey, and we say that it is a degenerate Ramsey
algebra.

Lemma 2.2. Suppose (A,F) is a nondegenerate Ramsey algebra. Then there exists a⃗ ∈ ωA
such that FRF(b⃗) is infinite whenever b⃗ ≤F a⃗.

Proof. First, we will show the following: if FRF(a⃗) is finite, then there exists b⃗ ≤F a⃗ such
that ∣FRF(b⃗)∣ = 1. Choose b⃗ ≤F a⃗ such that ∣FRF(b⃗)∣ ≤ ∣FRF(c⃗)∣ for all c⃗ ≤F a⃗. We claim
that ∣FRF(b⃗)∣ = 1. Suppose not. Let X be a nonempty proper subset of FRF(b⃗). Since
(A,F) is a Ramsey algebra, choose c⃗ ≤F b⃗ such that FRF(c⃗) is either contained in or
disjoint from X . In either case, FRF(c⃗) is a proper subset of FRF(b⃗), contradicting the
minimality of b⃗, as c⃗ is also a reduction of a⃗.
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To prove the lemma, we argue by contradiction. Fix a⃗ ∈ ωA. Then there exists b⃗ ≤F a⃗
such that FRF(b⃗) is finite. By the previous claim, there exists a reduction c⃗ of b⃗ (and thus
of a⃗) such that ∣FRF(c⃗)∣ = 1. Since a⃗ is arbitrary, (A,F) is degenerate, contradicting the
hypothesis.

To say that a ∈A is an idempotent element for an algebra (A,F)means that f (a, . . . ,a) = a
for every f ∈ F . Note that if FRF(a⃗) = {c}, then c is an idempotent element for (A,F).
Suppose (A,F) is a degenerate Ramsey algebra. Then clearly every principal ultrafilter on
A generated by an idempotent element of (A,F) is strongly reductible for F . The following
example shows that a nonprincipal ultrafilter strongly reductible for F need not exist.

Example 2.1. Suppose f is a constant binary operation on ω , say f (x,y) = c for all x,y ∈ω .
Trivially, (ω,{ f}) is a degenerate Ramsey algebra. Nevertheless, there is no nonprincipal
ultrafilter on ω strongly reductible for { f}. To see this, simply consider the cofinite set
ω/{c}.

3. The main results

Suppose (A,F) is an algebra. We will restrict our attention to the case where the underlying
set A is countable. We will address the general case at the end of this section. Without loss
of generality, we may assume A is equal to ω .

From now on, fix F to be a collection of operations on ω until we say otherwise. Hence,
we will say “a strongly reductible ultrafilter” to mean an ultrafilter on ω strongly reductible
for F . We will show under special set theoretic axioms that if (ω,F) is a nontrivial Ramsey
algebra, then there exists a strongly reductible ultrafilter. We will follow Hindman’s foot-
steps by first proving this result under the Continuum Hypothesis and then under Martin’s
Axiom. In doing so, we can highlight how Martin’s axiom is used to prove a main lemma
when the Continuum Hypothesis is absent.

Definition 3.1. Suppose a⃗, b⃗ ∈ ω
ω . We say that a⃗ is eventually a reduction of b⃗, and write

a⃗ ≤∗F b⃗ iff a⃗−n ≤F b⃗ for some n ∈ω .

Since F is fixed, to improve readability, we will simply write ≤∗, ≤ and FR(a⃗) for ≤∗F ,
≤F and FRF(a⃗) respectively.

Note that ≤∗ is a pre-partial ordering on ω
ω . Transitivity of ≤∗ follows easily from the

transitivity of ≤.
For convenience, when we say that a finite sequence a⃗ is a reduction of an infinite se-

quence b⃗, it is understood that a⃗ is a reduction of some initial segment of b⃗.

Lemma 3.1. Suppose ⟨a⃗n⟩n∈ω is a sequence in ω
ω such that a⃗n+1 ≤

∗ a⃗n for all n ∈ ω . Then
there exists b⃗ ∈ ω

ω such that b⃗−n ≤ a⃗n for all n ∈ω .

Proof. Suppose ⟨a⃗n⟩n∈ω is as stated. We will define a sequence ⟨Mn⟩n∈ω of natural numbers
inductively as follows. Let M0 = 0. Suppose Mn has been chosen. Since a⃗n+1 ≤

∗ a⃗n, we
can choose Mn+1 > Mn such that a⃗n+1 −Mn+1 ≤ a⃗n −(Mn + 1). Take b⃗ to be the sequence
⟨a⃗n(Mn)⟩n∈ω . We will show that b⃗− n is in fact a reduction of a⃗n −Mn for all n ∈ ω . By
Lemma 2.1, it suffices to show that every initial segment of b⃗−n is a reduction of a⃗n −Mn.
This follows from the following claim.

Claim. Suppose m ∈ω . For each 0 ≤ n ≤m, the sequence ⟨ a⃗n(Mn), . . . , a⃗m(Mm)⟩ is a reduc-
tion of a⃗n−Mn.
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Fix m ∈ ω . Proceed by inverse induction on n. For the base step n = m, it is clear that
⟨ a⃗m(Mm)⟩ is a reduction of a⃗m−Mm. For the inductive step, suppose ⟨ a⃗n(Mn), . . . , a⃗m(Mm)⟩

is a reduction of a⃗n−Mn. Since a⃗n−Mn ≤ a⃗n−1−(Mn−1+1) by our construction, ⟨ a⃗n(Mn), . . . ,
a⃗m(Mm)⟩ is a reduction of a⃗n−1 −(Mn−1 +1). It follows that ⟨ a⃗n−1(Mn−1), . . . , a⃗m(Mm)⟩ is
a reduction of a⃗n−1−Mn−1. The claim is proved.

Lemma 3.2. Assume λ is a limit ordinal such that cof (λ) = ω . Suppose ⟨a⃗α⟩α∈λ is a
transfinite sequence in ω

ω such that a⃗α ≤∗ a⃗β whenever β < α . Then there exists b⃗ ∈ ω
ω

such that b⃗ ≤∗ a⃗α for all α < λ .

Proof. Suppose ⟨a⃗α⟩α∈λ is as stated. Choose a strictly increasing sequence of ordinals
γ0,γ1, . . . cofinal in λ . Clearly a⃗γn+1 ≤

∗ a⃗γn whenever n ∈ ω . By Lemma 3.1, we can find a
sequence b⃗ such that b⃗−n is a reduction of a⃗γn for all n ∈ω . We claim that this b⃗ works. Fix
any α < λ . Choose n such that γn > α . By the hypothesis, a⃗γn is eventually a reduction of
a⃗α . Since b⃗−n is a reduction of a⃗γn , it follows that b⃗−n is eventually a reduction of a⃗α by
transitivity.

Theorem 3.1. Assume the continuum hypothesis. Suppose (ω,F) is a nondegenerate Ram-
sey algebra. Then there exists a nonprincipal strongly reductible ultrafilter.

Proof. By Lemma 2.2, we can choose a sequence a⃗ such that FR(b⃗) is infinite whenever
b⃗ ≤ a⃗. Suppose Xα (α < ω1) enumerates all subsets of ω . By transfinite recursion, for each
α <ω1 we will construct a⃗α ∈ ω

ω such that
● FR(a⃗α) is infinite;
● either FR(a⃗α) ⊆ Xα or FR(a⃗α) ⊆ω/Xα ;
● a⃗α ≤∗ a⃗β whenever β < α .

We will use the Ramsey property of (ω,F) repeatedly in the construction. Firstly, choose
a⃗0 to be a reduction of a⃗ such that either FR(a⃗0) ⊆ X0 or FR(a⃗0) ⊆ ω/X0. Suppose λ < ω1
and a⃗α for each α < λ have been constructed. There are two cases. If λ = β +1 for some β ,
then we can choose a⃗λ to be any reduction of a⃗β such that FR(a⃗λ ) ⊆ Xλ or FR(a⃗λ ) ⊆ω/Xλ .
Now suppose λ is a limit ordinal. Since λ < ω1, we have cof (λ) = ω . Therefore, by
Lemma 3.2 we can choose a sequence b⃗ such that b⃗ ≤∗ a⃗α for every α < λ . Choose a⃗λ to
be any reduction of b⃗ such that FR(a⃗λ ) ⊆ Xλ or FR(a⃗λ ) ⊆ ω/Xλ . By transitivity, a⃗λ ≤∗ a⃗α

for every α < λ . By the transitivity of ≤∗ and the choice of a⃗0, we have a⃗λ −N ≤ a⃗ for some
N ∈ω . By the hypothesis, FR(a⃗λ −N) is infinite, and so is FR(a⃗λ ).

Now, for each α <ω1 let Fα be the filter generated by the sets FR(a⃗α −n), meaning

Fα = {X ⊆ω ∣ FR(a⃗α −n) ⊆ X for some n ∈ω }.

Suppose β < α < ω1. By our construction, a⃗α −N ≤ a⃗β for some N ∈ ω . This implies that
a⃗α −(N +n) ≤ a⃗β −n and hence FR(a⃗α −(N +n)) ⊆ FR(a⃗β −n) for each n ∈ ω . It follows
easily that Fβ ⊆ Fα .

Take U to be ⋃α<ω1 Fα . It is a standard routine argument to show that U is an ultrafilter.
Suppose X ∈U , say X = Xα for some α <ω1. Then it must be the case that FR(a⃗α) ⊆ X . By
our construction, FR(a⃗α) is infinite, and so is X . Furthermore, FR(a⃗α −n) ∈ Fα ⊆U for all
n ∈ω . Therefore, U is nonprincipal and strongly reductible.

Without the continuum hypothesis, cof (λ) need not be ω for every limit ordinal λ < c.
Hence, we need Lemma 3.2 to hold without the assumption that cof (λ) = ω . Martin’s
axiom is sufficient for this.
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Before we prove the main lemma, let us remind the reader of the version of Martin’s
Axiom that we shall use. Suppose (Q,≼) is a pre-partially ordered set. A subset D of Q is
said to be an antichain iff for every distinct a,b ∈D, there does not exist c ∈Q such that c ≼ a
and c ≼ b. We say that (Q,≼) satisfies the countable chain condition iff every antichain in Q
is countable. A subset D of Q is said to be dense in Q iff for every a ∈ Q, there exists d ∈ D
such that d ≼ a. A non-empty subset G of Q is called a filter iff

(1) for every a ∈G and b ∈Q, if a ≼ b then b ∈G;
(2) for every a,b ∈G, there exists c ∈G such that c ≼ a and c ≼ b.

Suppose κ is an infinite cardinal. MA(κ) asserts that if Q is a pre-partially ordered set
satisfying the countable chain condition and F is a family of dense subsets of Q for which
∣F∣ < κ , then there exists a filter in Q which intersects every set in F . Martin’s Axiom states
that MA(κ) holds for all infinite cardinals κ < c. Since MA(ω) is true, Martin’s Axiom is a
consequence of the continuum hypothesis.

Lemma 3.3. Suppose λ < c is a limit ordinal and assume MA(∣λ ∣). If ⟨a⃗α⟩α∈λ is a transfi-
nite sequence in ω

ω such that a⃗α ≤∗ a⃗β whenever β < α , then there exists b⃗ ∈ ω
ω such that

b⃗ ≤∗ a⃗α for all α < λ .

Proof. In this proof, a⃗=∗ b⃗ means there exist m,n ∈ω such that a⃗−m= b⃗−n. (The motivation
for this is that the filter generated by the sets FR(a⃗−n) is the same as the filter generated by
the sets FR(b⃗−n) whenever a⃗ =∗ b⃗.)

Suppose ⟨a⃗α⟩α∈λ is given as stated. Let S = { a⃗ ∈ ω
ω ∣ a⃗ =∗ a⃗α for some α < λ }. We will

need the observation that a⃗ ≤∗ b⃗ or b⃗ ≤∗ a⃗ whenever a⃗, b⃗ ∈ S. Let

Q = {(n, a⃗) ∣ n ∈ω, a⃗ ∈ S}

and define for every (m, a⃗),(n, b⃗) ∈Q,

(m, a⃗) ≼ (n, b⃗) if and only if m ≥ n, a⃗ ↾ n = b⃗ ↾ n and a⃗ ≤ b⃗.

Claim. (Q,≼) is a pre-partial ordering with the countable chain condition.
It is easy to check that ≼ is reflexive and transitive. Suppose (n, a⃗) and (n, b⃗) are elements

of an antichain such that a⃗ ↾ n = b⃗ ↾ n. We will show that (n, a⃗) = (n, b⃗). The countable chain
condition will then follow as this induces a one-to-one map from the antichain into the set
of finite sequences in ω . We may assume that a⃗ ≤∗ b⃗. Then we can choose N ≥ n such
that a⃗−N ≤ b⃗−n. Let c⃗ = a⃗ ↾ n∗(a⃗−N). It is clear that (n, c⃗) ∈ Q and (n, c⃗) ≼ (n, a⃗). Since
a⃗ ↾ n = b⃗ ↾ n, we have a⃗ ↾ n∗(a⃗−N) ≤ b⃗ ↾ n∗(b⃗−n) implying that c⃗ ≤ b⃗. Hence, (n, c⃗) ≼ (n, b⃗)
as well. Since (n, a⃗) and (n, b⃗) belong to an antichain, (n, a⃗) and (n, b⃗) cannot be distinct.
The claim is proved.

Now, consider the following subsets of Q.

D(α) = {(n, a⃗) ∈Q ∣ a⃗−n ≤ a⃗α }, α < λ

E(m) = {(n, a⃗) ∈Q ∣ n ≥m}, m ∈ω

Claim. D(α) and E(m) are dense subsets of Q.
Suppose (n, a⃗) ∈ Q. Then (max{m,n}, a⃗) ≼ (n, a⃗) and (max{m,n}, a⃗) ∈ E(m). Hence,

E(m) is dense in Q.
Fix α < λ . To see that D(α) is dense in Q, suppose (n, a⃗) ∈ Q. Since a⃗α , a⃗ ∈ S, either

a⃗α ≤∗ a⃗ or a⃗ ≤∗ a⃗α . Assume a⃗α ≤∗ a⃗. Then we can choose N ≥ n such that a⃗α −N ≤ a⃗−n.
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Let c⃗ = a⃗ ↾ n∗(a⃗α −N). Otherwise, assume a⃗ ≤∗ a⃗α . Then we can choose N ≥ n such that
a⃗−N ≤ a⃗α . Let c⃗ = a⃗ ↾ n∗(a⃗−N). In either case, we can easily verify that (n, c⃗) ≼ (n, a⃗) and
(n, c⃗) ∈D(α). The claim is proved.

Therefore, {D(α) ∣ α < λ }∪{E(m) ∣ m ∈ ω } is a family of dense subsets of Q of size
∣λ ∣. By MA(∣λ ∣), choose a filter G on Q that intersects all these subsets. Let

b⃗ =⋃{ a⃗ ↾ n ∣ (n, a⃗) ∈G}.

We claim that b⃗ is a function on ω . Suppose (n, a⃗),(n′, a⃗′) ∈ G. Since G is a filter, choose
(n′′, a⃗′′) ∈G such that (n′′, a⃗′′) ≼ (n, a⃗) and (n′′, a⃗′′) ≼ (n′, a⃗′). This means that a⃗′′ ↾ n = a⃗ ↾ n
and a⃗′′ ↾ n′ = a⃗′ ↾ n′, implying that a⃗ ↾ n and a⃗′ ↾ n′ are compatible. It follows that b⃗ is a
function. To see that the domain of b⃗ is ω , suppose m ∈ ω . Since G∩E(m+1) ≠ ∅, choose
(n, a⃗) ∈G such that n ≥m+1. Then a⃗ ↾ n is an initial segment of b⃗, so that m is in the domain
of b⃗.

It remains to prove that b⃗ ≤∗ a⃗α for all α < λ . Fix α < λ . Suppose (n, a⃗) ∈G∩D(α). We
claim that b⃗−n ≤ a⃗α . By Lemma 2.1, it suffices to show that every initial segment of b⃗−n
is a reduction of a⃗α . Fix m > n. Since G∩E(m) ≠ ∅, choose (m′, c⃗) ∈ G with m′ ≥ m. By
the definition of b⃗, it suffices to show that ⟨c⃗(n), . . . , c⃗(m′−1)⟩ is a reduction of a⃗α . Choose
(m′′, d⃗) ∈ G such that (m′′, d⃗) ≼ (n, a⃗) and (m′′, d⃗) ≼ (m′, c⃗). Since d⃗ ↾ m′ = c⃗ ↾ m′, the
sequence ⟨c⃗(n), . . . , c⃗(m′ −1)⟩ is equal to ⟨d⃗(n), . . . , d⃗(m′ −1)⟩. Meanwhile, d⃗ ≤ a⃗ implies
that d⃗ −n is a reduction of a⃗−n, which in turn is a reduction of a⃗α because (n, a⃗) ∈ D(α).
Therefore, ⟨d⃗(n), . . . , d⃗(m′ −1)⟩ is a reduction of a⃗α , and so is ⟨c⃗(n), . . . , c⃗(m′ −1)⟩. This
completes the proof of the theorem.

Theorem 3.2. Assume Martin’s Axiom. Suppose (ω,F) is a nondegenerate Ramsey alge-
bra. Then there exists a nonprincipal strongly reductible ultrafilter.

Proof. This is similar to the proof of Theorem 3.1. At the limit stage, to get a sequence b⃗
such that b⃗ ≤∗ a⃗α for all α < λ , use Lemma 3.3 instead of Lemma 3.2.

Now, we will address the case where the underlying set is not assumed to be countable.

Theorem 3.3. Assume Martin’s axiom. Suppose (A,F) is a nondegenerate Ramsey alge-
bra and that F is countable. Then there exists a nonprincipal ultrafilter U on A strongly
reductible for F .

Proof. Let (B,G) be the smallest subalgebra of (A,F) generated by { a⃗(i) ∣ i ∈ ω}, where
G = { f ↾ B ∣ f ∈ F }. Since F is countable, (B,G) is a countable Ramsey algebra. Apply-
ing Theorem 3.2 with B identified as ω , choose a nonprincipal ultrafilter U on B strongly
reductible for G. Let V be {X ⊆ A ∣ X ∩B ∈U }. Then V is a nonprincipal ultrafilter on A.
Furthermore, strongly reductibility of U for G easily implies strongly reductibility of V for
F .

4. Concluding remarks and open problems

Suppose (A,F) is an algebra and suppose U is an ultrafilter on A. Consider the property

for each X ∈U, there exists a⃗ ∈ ωA such that FRF(a⃗) ⊆ X and FRF(a⃗) ∈U.(∗)

Property ∗ is weaker than strongly reductible. It seems natural to have defined U with the
property ∗ to be strongly reductible. In fact, various results for strongly summable ultra-
filters have been generalized in [9] and [11] to infinite abelian groups, where the analogue
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of a strongly summable ultrafilter is defined to be the one having property ∗. We do not
know whether the two possible definitions are equivalent in general and for abelian groups
in particular. Our choice of definition is partially motivated by the following observation:
an ultrafilter strongly reductible for F is immediately an ultrafilter idempotent for F , anal-
ogous to the fact that a strongly summable ultrafilter is an idempotent ultrafilter. Because
a general Ramsey algebra lacks a certain algebraic property, like that enjoyed by abelian
groups, our choice of definition is plausible.

Meanwhile, the analogue of the independence result for strongly summable ultrafilters
does not hold in general for Ramsey algebras. It follows from [9] that the existence of
nonprincipal strongly reductible ultrafilters for an infinite abelian group cannot be proven
in ZFC. On the other hand, suppose P(x,y) = x for all x,y ∈ ω . Then (ω,{P}) is trivially
a Ramsey algebra and every nonprincipal ultrafilter on ω is strongly reductible for {P}.
Therefore, it is natural to ask for a subclass of Ramsey algebras properly containing the class
of infinite abelian groups such that the existence of the corresponding strongly reductible
ultrafilters is independent of ZFC.
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