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Abstract. Given a graph G and a function f : V (G)→ {0,1,2, . . .}, a subset D of V (G)
is called an f -dominating set of G if every vertex x outside D is adjacent to at least f (x)
vertices in D. In this article we study a few graphical invariants relating to this concept.
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1. Introduction

Let G = (V (G),E(G)) be a connected graph with order p(G) := |V (G)| and size q(G) :=
|E(G)|, and let f : V (G)→ Z0 := {0,1,2, . . .} be a function. A subset D of V (G) is called
an f -dominating set [19, 21] if |N(x)∩D| ≥ f (x) for every x ∈ V (G)−D, where N(x)
is the neighbourhood of x in G. If in addition the subgraph G[D] of G induced by D is
connected, then D is called a connected f -dominating set [22] of G. The f -domination
number [21] of G, denoted γ f (G), is the minimum cardinality of an f -dominating set of
G; and the connected f -domination number [22] γc, f (G) is defined similarly. Denote by
d(x) := |N(x)| the degree of x in G. A function f is proper [22] if 1≤ f (x)≤ d(x) for every
x ∈ V (G). For a proper f , a subset D of V (G) is called a total f -dominating set [22] of G
if |N(x)∩D| ≥ f (x) for every x ∈V (G); the minimum cardinality of such a set is called the
total f -domination number [22] of G and is denoted by γt, f (G). A subset X of V (G) is an
f -independent set [21] of G if |N(x)∩X |< f (x) for every x ∈ X ; the maximum cardinality
of such a set is called the f -independence number [21] of G and is denoted by β f (G). A
subset X of V (G) is an f -transversal [21] of G if it has non-empty intersection with every
non- f -dominating subset of V (G). The f -transversal number α f (G) [21] is the minimum
cardinality of an f -transversal of G.

The concepts above are natural generalizations of the corresponding notions involving k-
domination and k-independence [6]. In fact, in the special case when f = k (that is, f (x) = k
for all x ∈V (G)) for a fixed integer k ≥ 1, γ f (G), γc,k(G) := γc, f (G) and γt,k(G) := γt, f (G)
are precisely the k-domination number γk(G) [11, 12], the connected k-domination number
[20] and the total k-domination number [6, Section 4] of G, respectively. In particular, γ1(G)
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(= γ(G)), γc,1(G) (= γc(G)) and γt,1(G) (= γt(G)) are respectively the ordinary domination,
connected domination and total domination numbers [15,16] of G, and α1(G) (= α(G)) and
β1(G) (= β (G)) are respectively the vertex covering number and the independence number
of G in the usual sense.

The concept of f -domination was proposed in [14] for trees, and for general graphs it was
evolved from [19], where Stracke and Volkmann studied γ f for a specific function f . In [21]
the author proved among other things that, for any f : V (G)→ Z0, every f -independent set
X of G with ∑x∈X f (x)− q(G[X ]) as large as possible is an f -dominating set of G. As a
consequence we have [21] γ f (G) ≤ β f (G), which was conjectured in [11, 12] and proved
in [9] when f = k. In [22] the author established a few inequalities among γ f (G), γc, f (G),
γt, f (G) and i(G), where i(G) is the independence domination number [16] of G, that is, the
minimum cardinality of a subset of V (G) that is both dominating and independent. In [7] it
was proved that, if f (x) < n

n+1

(
d(x)+1+ 1

n

)
for every x ∈V (G) and a fixed integer n≥ 1,

then γ f (G)≤ n
n+1 · p(G). (This is a generalization of Ore’s inequality γ(G)≤ 1

2 p(G) [16] for
any G without isolated vertices.) In [23] several Gallai-type equalities involving γ f (G) and
γc, f (G) were proved. For example, γ f (G)+β f ∗(G) = p(G) for any proper f : V (G)→ Z0,
where f ∗ is defined by f ∗(x) = d(x)− f (x)+1 for x ∈V (G).

So far a number of results on γk,γc,k, γt,k and several other invariants involving k-domina-
tion and k-independence have been obtained by various researchers (see e.g. [5]), as shown
in a recent survey [6]. In contrast, our understanding to more general invariants involving
f -domination and f -independence is very limited. In this article we give a lower bound for
each of γc, f and γt, f (Theorem 2.1), answer a question about relations between γc, f and γt, f
(Theorem 2.2), and prove a few upper bounds on the f -bondage number of G (Section 3).

Throughout the paper G is a connected graph with p(G) ≥ 2 and f : V (G)→ Z0 is
a function. As usual, (.G) and ∆(G) denote the minimum and maximum degrees of G,
respectively. For X ⊆V (G), denote

M( f ) = max
x∈V (G)

f (x), f (X) = ∑
x∈X

f (x), d(X) = ∑
x∈X

d(x).

The reader is referred to [4] for undefined notation and terminology on graphs. For
some recent progresses on a few generalized domination concepts, the reader is referred
to [1, 2, 10, 18].

2. Connected and total f -domination numbers

We first prove the following results, where the known bound on γ f (G) is stated for the
purpose of comparison.

Theorem 2.1. The following inequalities hold:

(a) γ f (G)≥
⌈

f (V (G))−q(G)
M( f )

⌉
( [21, Proposition 3]);

(b) if M( f )≥ 2, then γc, f (G)≥max
{⌈

f (V (G))−q(G)−1
M( f )−1

⌉
,
⌈

f (V (G))−2
M( f )+∆(G)−2

⌉}
;

(c) if f is proper, then γt, f (G)≥max
{⌈

2( f (V (G))−q(G))
M( f )

⌉
,
⌈

f (V (G))
∆(G)

⌉}
.

Proof. We prove (b) first. Since M( f ) ≥ 2, we have M( f ) + ∆(G)− 2 ≥ 1. Let D be a
connected f -dominating set of G with |D| = γc, f (G). Then q(G[D]) ≥ |D| − 1 as G[D]
is connected. Since D is f -dominating, each x ∈ V (G)−D contributes at least f (x) edges
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with one end-vertex x and the other end-vertex in D. Thus, q(G)≥ f (V (G)−D)+ |D|−1≥
( f (V (G))−M( f )|D|)+ |D|−1, yielding

γc, f (G) = |D| ≥ ( f (V (G))−q(G)−1)/(M( f )−1).

Since G[D] is connected, summing up the degrees of the vertices in D we obtain f (V (G)−
D)+2(|D|−1)≤ d(D), which implies f (V (G))−M( f )|D|+2(|D|−1)≤ ∆(G)|D|. There-
fore,

γc, f (G)≥ ( f (V (G))−2)/(M( f )+∆(G)−2)

and the proof of (b) is complete.
Now we prove (c). Let D be a minimum total f -dominating set of G. Then |N(x)∩D| ≥

f (x) for x ∈ D, and hence q(G[D]) ≥ f (D)/2. Since D is f -dominating, we then have
q(G)≥ f (V (G)−D)+q(G[D])≥ f (V (G))− ( f (D)/2)≥ f (V (G))− (M( f )|D|/2). Hence

γt, f (G) = |D| ≥ 2( f (V (G))−q(G))
M( f )

.

Computing the sum of the degrees of the vertices in D, we obtain

∆(G)γt, f (G)≥ d(D)

= ∑
x∈D

(|N(x)∩D|+ |N(x)∩ (V (G)−D)|)

≥ f (D)+ ∑
x∈V (G)−D

|N(x)∩D|

≥ f (D)+ f (V (G)−D)

= f (V (G)).

Thus γt, f (G)≥ f (V (G))/∆(G) and (c) is proved.

Theorem 2.1 implies the following new lower bounds on γc,k and γt,k, where ρ(G) :=
q(G)− p(G)+1 is the cyclomatic number of G.

Corollary 2.1. The following inequalities hold:

(a) γk(G)≥ p(G)−
⌊

q(G)
k

⌋
( [11, Theorem 4]);

(b) if k ≥ 2, then γc,k(G)≥max
{⌈

p(G)− ρ(G)
k−1

⌉
,
⌈

kp(G)−2
∆(G)+k−2

⌉}
( [20]);

(c) if 1≤ k ≤ (.G), then γt,k(G)≥max
{⌈

2
(

p(G)− q(G)
k

)⌉
,
⌈

kp(G)
∆(G)

⌉}
.

The following example shows that the lower bounds in Theorem 2.1 and Corollary 2.1
are all attainable.

Example 2.1. Let K1,n be the star with n+1≥ 3 vertices. Let f (x) = n if x is the center of
K1,n and f (x) = 1 otherwise. Then f is proper and γ f (K1,n) = 1. The lower bound in (a) of
Theorem 2.1 for (K1,n, f ) is 1 and hence is sharp.

Let G be the graph in Figure 1(a), and let f (x) = 2 for every x∈V (G). Then the two filled
vertices form a minimum connected f -dominating set. Hence γc, f (G) = 2, which agrees with
the lower bound in (b) of Theorem 2.1. For the graph in Figure 1(b) with f (x) = 2 for all
x, both sides of the inequality (c) in Theorem 2.1 are equal to 3, and the three filled vertices
form a minimum total f -dominating set.
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Figure 1. (a) A graph with connected 2-domination number 2; (b) a graph with
total 2-domination number 3.

It is well-known [17] that, for any connected graph G with ∆(G) < p(G)−1,

(2.1) γ(G)≤ γt(G)≤ γc(G).

Clearly, we have γ f (G)≤ γc, f (G) and γ f (G)≤ γt, f (G) when f is proper. In view of (2.1), it
is natural to ask whether we always have γt, f (G) ≤ γc, f (G) for any proper function f . The
next result shows that this is not the case in general, and the two invariants are incomparable.
Moreover, even for trees one of these invariants can exceed the other by an arbitrary integer.

Theorem 2.2. For any non-negative integer n,
(a) there exist a tree T1 and a proper f : V (T1)→ Z0 such that γc, f (T1)− γt, f (T1) = n;
(b) there exist a tree T2 and a proper f : V (T2)→ Z0 such that γt, f (T2)− γc, f (T2) = n.

Proof. (a) Let P be the path P2n+6 on 2n + 6 vertices if n is even, and the path P2n+7 on
2n + 7 vertices if n is odd. Denote the vertices of P by x1,x2, . . . ,xm, where m = |V (P)|.
Define T1 to be the tree obtained from P by attaching three pendant edges to each of x1 and
xm (see Figure 2). Let x0 and xm+1 be two pendant vertices adjacent in T1 to x1 and xm,
respectively. Let f (x1) = f (xm) = 2, and f (x) = 1 for all other vertices x of T1. Then the
vertices on P form a minimum connected f -dominating set of T1. Hence

γc, f (T1) =

{
2n+6, if n is even

2n+7, if n is odd.

...
2� 2�

1� 1�

1� 1�1�

1� 1�

1�

x�1� x�2� x�m�x�0� x�m�+�1�

Figure 2. Proof of Theorem 2.2(a).

We claim that both x1 and xm must be in any total f -dominating set D of T . In fact, if
x1 6∈D, then x0 ∈D, but x0 has no neighbour in D, a contradiction. Hence x1 ∈D. Similarly,
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xm ∈ D. Based on this one can show that, if n is even, then

{xi,xi+1 : 1≤ i≤ 2n+6, i≡ 1 (mod 4)}∪{x0,xm+1}

is a minimum total f -dominating set of T1. Similarly, if n is odd, then

{xi,xi+1 : 1≤ i≤ 2n+6, i≡ 1 (mod 4)}∪{x0,xm−1,xm,xm+1}

is a minimum total f -dominating set of T1. Thus

γt, f (T1) =

{
n+6, if n is even

n+7, if n is odd.

It then follows that γc, f (T1)− γt, f (T1) = n regardless of the parity of n.

..
.
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Figure 3. Proof of Theorem 2.2(b).

(b) Let P6 = x0x1x2x3x4x5 be a path of six vertices. Let T2 be the tree obtained from P6
by attaching n pendant edges to x5 (see Figure 3). Let f (x) = 1 if x is a pendant vertex of T2,
and let f (x5) = n and f (xi) = 2 for 1≤ i≤ 4. Then {x1,x2, . . . ,x5} is a minimum connected
f -dominating set, and so γc, f (T2) = 5. For any total f -dominating set D of T2, since f (xi) =
d(xi) = 2 for 1 ≤ i ≤ 4, we have {x0,x1, . . . ,x4,x5} ⊆ D. Since f (x5) = d(x5)− 1 = n, at
most one of the pendant vertices adjacent to x5 is not in D. It follows that |D| ≥ n + 5. On
the other hand, for any pendant vertex x adjacent to x5, V (T2)−{x} is a total f -dominating
set of T2. Hence γt, f (T2) = n+5 and γt, f (T2)− γc, f (T2) = n.

3. Bounding the f -bondage number

In this section we investigate perturbation of γ f (G) under deletion of edges of G. This leads
to a new invariant, namely the f -bondage number of a graph. As usual, denote by G−E the
spanning subgraph obtained from G by deleting all edges in a given subset E ⊆ E(G); in
particular, we use G−e in place of G−{e} for e ∈ E(G). The notion of f -bondage number
is based on the following observation.

Lemma 3.1. For any e ∈ E(G), we have

γ f (G)≤ γ f (G− e)≤ γ f (G)+1.

Proof. Since any f -dominating set of G− e is an f -dominating set of G, we have γ f (G)≤
γ f (G− e) immediately. (Note that f may not be a proper function for G− e even if f is
proper for G.) Let D be a minimum f -dominating set of G, and x and y the end-vertices of
e. If both x and y are in D, or both of them are in V (G)−D, then D is also an f -dominating
set of G−e. In this case we have γ f (G−e)≤ γ f (G) and hence γ f (G) = γ f (G−e). Assume
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then that exactly one of x,y is in D, say, y ∈ D and x ∈ V (G)−D. Then D∪ {x} is an
f -dominating set of G− e and so γ f (G− e)≤ γ f (G)+1.

By Lemma 3.1 the deletion of any edge from G either keeps γ f or increases γ f by one.
We may ask at least how many edges one must delete from G so that the f -domination
number increases. For the ordinary domination number, this problem was studied by Bauer,
Harary, Nieminen and Suffel [3], who called the minimum number of edges required the
bondage number of G and denoted it by b(G). In general, we define the f -bondage number
of G, b f (G), to be the minimum cardinality of a subset E of E(G) such that γ f (G−E) >
γ f (G). By Lemma 3.1, for a minimum cardinality E with γ f (G−E) > γ f (G), we must have
γ f (G−E) = γ f (G)+1.

Theorem 3.1. Let f : V (G)→ Z0 be a proper function. Then

(3.1) b f (G)≤min{M( f )γ f (G)+q(G)− f (V (G))+1, q(G)}.

Proof. We may assume that M( f )γ f (G) + q(G)− f (V (G)) + 1 < q(G) for otherwise the
bound is trivial. Let E be a set of edges of G with |E|= M( f )γ f (G)+q(G)− f (V (G))+1.
By Theorem 2.1(a) we have

γ f (G−E)≥
⌈

f (V (G))−q(G−E)
M( f )

⌉
=
⌈

f (V (G))−q(G)+ |E|
M( f )

⌉
≥
⌈

γ f (G)+
1

M( f )

⌉
> γ f (G).

Thus b f (G)≤ |E| as required.
By (3.1), any upper bound on γ f (G) gives rise to an upper bound on b f (G). In particular,

Theorem 3.1 and two upper bounds in [21] on γ f (G) imply the following bounds.

Corollary 3.1. Let f : V (G)→ Z0 be a proper function. Then
(a) b f (G)≤min{M( f )α(G)+q(G)− f (V (G))+1, q(G)};
(b) b f (G)≤min{M( f )β f (G)+q(G)− f (V (G))+1, q(G)};
(c) if f (x)≤ d(x)+1

2 for all x ∈V (G), then

b f (G)≤min
{

M( f )p(G)
2

+q(G)− f (V (G))+1, q(G)
}

.

Proof. (a) For a maximum independence set X of G, we have N(x) ⊆ V (G)−X for every
x ∈ X . Since f (x)≤ d(x) for all x ∈V (G), it follows that V (G)−X is an f -dominating set
of G. Hence γ f (G)≤ p(G)−|X |= p(G)−β (G) = α(G) and the result follows from (3.1).

(b) This follows from (3.1) and γ f (G)≤ β f (G) [21].
(c) Since f (x)≤ (d(x)+1)/2, x ∈V (G), we have γ f (G)≤ p(G)/2 by [21, Corollary 4].

From this and (3.1) the bound in (c) follows.
It is well-known that α(G)+ β (G) = p(G) [13] for any graph G. In general, we have

α f (G)+β f (G) = p(G) [21, Theorem 3]. Using these two equalities and Corollary 3.1, we
obtain the following upper bounds on the k-bondage number of a graph.
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Corollary 3.2. Let k be an integer with 1≤ k ≤ (.G). Then

(3.2) bk(G)≤min{q(G)− kβ (G)+1,q(G)− kαk(G)+1}.
In particular,

(3.3) b(G)≤ ρ(G)+min{α(G),β (G)}.

Note that q(G)− kαk(G) + 1 ≥ 1, for otherwise we would have b f (G) ≤ 0, which is
impossible. Thus, as a by-product of Corollary 3.2, we obtain the following upper bound
on the k-transversal number αk(G).

Corollary 3.3. Let k be an integer with 1≤ k ≤ (.G). Then

αk(G)≤
⌊

q(G)
k

⌋
.

All upper bounds above for b f ,bk and b are attainable. For example, if G = K2,4 and
f (x) = 2 for each vertex x, then γ f (G) = 2, b f (G) = 1, and the right-hand sides of (3.1),
(3.2) and Corollary 3.1(a) are all equal to 1. Thus these three bounds are all attainable. If
G =C4 (cycle of length 4) and f (x) = 1 for each vertex x, then γ f (G) = 2, b f (G) = b(G) = 3,
and the right-hand sides of (3.3) and (b)-(c) in Corollary 3.1 are all equal to 3. Hence these
three bounds are attainable as well.

The bounds on b f above are valid for any connected graph G with p(G) ≥ 2 and any
proper function f : V (G)→ Z0, and the bounds on bk are valid for all positive integers k
up to (.G). Due to this generality it is unrealistic to expect that these bounds are tight in all
occasions, though they can be sharp in some cases as seen above. In fact, all the bounds
above might be poor for some pairs (G, f ) and (G,k). It seems challenging to obtain good
estimates of b f (G) for general (G, f ). However, for trees we have the following result,
which is a generalization of [3, Proposition 13] asserting that b(T )≤ 2 for any tree T .

Theorem 3.2. Let T be a tree with p(T )≥ 2. Then, for any proper f : V (T )→ Z0, we have

1≤ b f (T )≤ 2.

Proof. Since f is proper, we have 1 ≤ f (x) ≤ d(x) for each x ∈ V (T ). In particular, if x is
a pendant vertex of T , then f (x) = 1. Since the result is trivial when p(T )≤ 3, we assume
p(T )≥ 4 in the following.

Case 1: T contains a vertex y which is adjacent to at least two pendant vertices of T , say,
x1,x2. In this case y must be in every minimum f -dominating set of T . Setting e = x1y, we
claim that γ f (T − e) = γ f (T )+1. Suppose otherwise, that is, γ f (T − e) = γ f (T ), and let D
be a minimum f -dominating set of T − e. Then x1 ∈ D, and either x2 or y is in D. If x2 ∈ D
but y 6∈D, then (D−{x2})∪{y} is also an f -dominating set of T −e. Thus, without loss of
generality we may suppose y ∈ D and x2 6∈ D. But then D−{x1} is an f -dominating set of
T with γ f (T )−1 vertices, a contradiction. Thus γ f (T − e) = γ f (T )+1 and b f (T ) = 1.

Case 2: Each vertex of T is adjacent to at most one pendant vertex. In this case T must
contain a pendant vertex x which is adjacent to a vertex y of degree two. Let z be the vertex
other than x which is adjacent to y, and let e = yz. If γ f (T − e) > γ f (T ), then b f (G) ≤ 1.
Otherwise, we have γ f (T −{e,e′}) > γ f (T ) where e′ = xy, and hence b f (G)≤ 2.

We have the following immediate consequence of Theorem 3.2.

Corollary 3.4. b(G)≤ ρ(G)+2.
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Theorem 3.2 suggests that graphs with small cyclomatic number may have small f -
bondage number. This is supported by Corollary 3.4 for the ordinary bondage number b.
The following result confirms this for unicyclic graphs, namely graphs having a unique
cycle.

Theorem 3.3. Let G be a connected unicyclic graph. Then for any proper function f :
V (G)→ Z0 we have

1≤ b f (G)≤ 3.

Proof. Let C denote the unique cycle of G. If G contains a vertex which is adjacent to at
least two pendant vertices, or if G contains a pendant vertex which is adjacent to a degree-
two vertex, then by a similar argument as in the proof of Theorem 3.2 we can prove that
b f (G) ≤ 2. In the remaining case, C must be a dominating cycle, that is, each vertex of G
outside C is adjacent to at least one vertex on C. Moreover, every vertex on C is adjacent to
at most one vertex outside C.

Case 1: G = C. In this case, if f (x) = 1 for all x ∈V (G), then it is not difficult to verify
that b f (G) ≤ 3. Suppose then f (x) ≥ 2 for some vertex x, and let x,y,z,w be consecutive
vertices on C. Let H be the graph obtained from G by deleting the edges xy,yz and zw. Let D
be a smallest f -dominating set of H. Since x is pendant and y,z are isolated in H, and since
f (x) = 2, f (y) ≥ 1 and f (z) ≥ 1, we must have x,y,z ∈ D. So D−{y} is an f -dominating
set of G. Hence γ f (G) < γ f (H) and consequently b f (G)≤ 3.

Case 2: G 6= C. In this case, since C is the unique cycle of G, any two non-consecutive
vertices on C are not adjacent. Hence there is a pendant vertex x which is adjacent to a
vertex y in C. Let z and w be the two neighbours of y on C. Let H be the graph obtained
from G by deleting the edges xy,yz and zw. Then γ f (G) < γ f (H) and hence b f (G)≤ 3.

4. Remarks

In view of [6] a number of problems concerning f -domination and f -independence may
be studied. In [21, Theorem 4] it was proved that, for any f : V (G)→ Z0, there exists a
subset of V (G) that is both f -dominating and f -independent. Thus we may define i f (G)
to be the minimum cardinality of such a subset and call it the independence f -domination
number of G. A subset of V (G) that is both f -dominating and f -independent must be a
maximal f -independent set (with respect to the set-theoretic inclusion), but the converse
is not true [22]. Thus i f (G) may not be the same as the minimum cardinality i′f (G) of a
maximal f -dominating set of G. This is different from the case of ordinary domination and
independence for which i′1(G) = i1(G) = i(G). It is natural to ask under what conditions we
have i′f (G) = i f (G).

By [21, Theorem 4],
γ f (G)≤ i′f (G)≤ i f (G)≤ β f (G).

This is the analogy of part of the following well-known domination chain [16]:

(4.1) ir(G)≤ γ(G)≤ i(G)≤ β (G)≤ Γ(G)≤ Ir(G).

In [21] the upper f -domination number Γ f (G) was defined to be the maximum cardinality
of a minimal f -dominating set of G. In the case where f = 1, this is exactly the upper
domination number Γ(G) of G in the usual sense [16]. The inequality β (G)≤ Γ(G) in (4.1)
is based on the fact [16] that any maximal independent set is a minimal dominating set.
Since similar statement is not true for f -domination and f -independence, we do not know
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whether β f (G) ≤ Γ f (G) holds in general. In fact, as far as we know, there is no any result
in the literature about Γ f (G), i f (G) and i′f (G) for general (G, f ). Finally, one may study
invariants involving f -domination and f -independence for various special functions f .
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