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Abstract. This paper considers a manufacturing system in which a single vendor procures
raw materials from a single supplier in single/multiple instalments, processes them and ships
the finished products to a single buyer in single/multiple shipments who stores them at a
warehouse before presenting them to the end customers in a display area in single/multiple
transfers. The demand is assumed to be deterministic and positively dependent on the level
of items displayed. In a just-in-time (JIT) system, the manufacturer must deliver the prod-
ucts in small quantities to minimize the buyer’s holding cost at the warehouse and accept
the supply of small quantities of raw materials to minimize its own holding cost. Similarly,
to minimize the display area holding cost, the buyer transfers the finished products in small
lot sizes. We develop a mathematical model for this problem and illustrate the effectiveness
of the model with numerical examples.
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1. Introduction

Much attention has been paid in recent years to the management of supply chains. Since
1980, there have been numerous studies discussing the implementation of a JIT system and
its effectiveness in US manufacturing (Kim and Ha, [22]). In a JIT integrated manufactur-
ing system, the raw material supplier, the manufacturer and the buyer work in a cooperative
manner to synchronize JIT purchasing and selling in small lot sizes as a means of minimiz-
ing the total supply chain cost. In a competitive environment, companies are forced to take
advantage of any policy to optimize their business processes.

Goyal [11] was probably one of the first to introduce the idea of joint optimization for
a two-level supply chain with single vendor and single buyer at an infinite replenishment
rate. Banerjee [2] developed a model where the vendor manufactures at a finite rate and
follows a lot-for-lot policy. Other related two-level vendor-buyer problems are investigated,
for example, in Goyal [12,13], Hill [17,18], Goyal and Nebebe [15], Valentini and Zavanella
[35], Zanoni and Grubbstrom [38] and Hill and Omar [19]. Sarker et al. [31] studied a raw
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material supplier-vendor problem and considered continuous supply at a constant rate. The
model was extended by Sarker and Khan [32, 33] and they considered a periodic delivery
policy. Omar and Smith [26] and Omar [27] extended supplier-vendor and vendor-buyer
problems by considering time-varying demand rates for a finite planning time horizon.

For a three-level supply chain, Banerjee and Kim [3] developed an integrated JIT in-
ventory model where the demand rate, production rate and delivery time are constant and
deterministic. Munson and Rosenblatt [25], Lee [24], Lee and Moon [23] and Jaber and
Goyal [21] also considered a similar problem consisting of a single raw material supplier,
a single vendor and a single buyer. Jaber et al. [20] extended the work of Munson and
Rosenblatt [25] by considering ordered quantity and price as decision variables.

A common assumption for all the papers above is that the demand is exogenous. How-
ever, it has been recognized in the marketing literature that demand for certain items, for
example in a supermarket, is influenced by the amount of stock displayed in the shelves.
Gupta and Vrat [16] were among the first to incorporate this observation into a single-level
inventory model where the demand rate is a function of the initial stock level. They were
followed by Baker and Urban [1]. Datta and Pal [4] extended Baker and Urban’s model by
considering shortages, Goh [10] considered non-linear holding cost and Dye and Ouyang [5]
considered lost sales. Recently, Sarker [30] considered the EOQ model for stock-dependent
demand with delay in payments and imperfect production.

For a two-level system, Wang and Gerchak [36] developed an integrated model with
demand rate dependent on the initial stock level. Zhou et al. [39] also considered a two-
level system by following the Stackelberg game structure. Goyal and Chang [14] considered
a similar inventory model and determined the shipment and transfer schedules based on the
buyer’s cost. Recently, Sajadieh et al. [29] proposed an integrated inventory model with
limited display area and demand rate dependent on the displayed stock level. They assumed
that the vendor delivers the finished products in multiple shipments of equal lot sizes to the
buyer. Glock [7] gave a comprehensive review of joint economic lot size problems.

In this paper we extend a two-level system as in Sajadieh et al. [29] and propose a three-
level integrated joint economic lot-sizing model for raw material supplier, vendor and buyer.
The basic model considered here consists of a single raw material supplier and a single
vendor who manufactures the products in batches at a finite rate and sends them to the
buyer’s warehouse in multiple shipments before they are transferred to the display area. We
assume that the demand rate depends on the displayed stock level. We also assume that there
is a maximum number of on-display items due to limited shelf capacity. In order to find the
most effective coordination, we also extended Sajadieh et al. [29] policy by considering an
unequal shipment size policy. When production starts, the inventory at the manufacturer
is equal to zero. However, the inventory level at the buyer is just enough to satisfy their
demand at the display area until the next delivery arrives. In this system, we assumed the
stock value increases as a product moves down the distribution chain, and therefore the
associated holding cost also increases. Consequently, we want as little stock as possible
at the buyer’s warehouse and display area and so the optimal policy is to order when the
buyer is just about to run out of stock and to transfer when the stock at the display area is
also about to run out. The total cost for this system includes all costs from both buyer and
manufacturer. The buyer’s cost consists of shipment cost, holding cost at the warehouse,
transfer cost and holding cost at the display area. The manufacturer’s cost includes set up
and holding costs of finished products and instalment and holding costs of raw materials.
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In Section 2 we summarize the assumptions and notations required to state the problem.
In Section 3 we present a general mathematical formulation for the problem, while in Sec-
tion 4 we formulate geometric shipment policies. Section 5 presents numerical examples
and the conclusions are drawn in Section 6.

2. Assumptions and notations

To develop a JIT three-level integrated inventory model, the following assumptions are used:
(1) Demand is dependent on the amount of items displayed. The functional relationship

is given by
D(t) = α[I(t)]β ,

where D(t) is the demand rate at time t, α > 0 is the scale parameter, I(t) is the
inventory level at time t and β ∈ (0,1) is the shape parameter and is a measure of
responsiveness of the demand rate to changes in the inventory level.

(2) Shortages at the buyer’s warehouse and display area are not allowed.
(3) The time horizon is infinite.
(4) There is a limited capacity Cd in the display area, i.e. I ≤Cd . This limitation could

be interpreted as a given shelf space allocated for the product.
(5) The vendor has a finite production rate P which is greater than the maximum pos-

sible demand rate, i.e. P > αCβ

d .
(6) Only one type of raw material is required to produce one unit of a finished product.

The following notational scheme is adopted :
• Av Set up cost per production for the vendor.
• Ab Fixed shipment cost for the buyer.
• Ar Fixed instalment cost for raw material.
• S Fixed transferring cost from the warehouse to the display area.
• c The net unit purchasing price (charged by the vendor to the buyer).
• σ The net unit selling price (charged by the buyer to the consumer).
• hr The raw material holding cost per unit time.
• hv The inventory holding cost per unit time for the vendor.
• hw The inventory holding cost per unit time at the buyer’s warehouse where hw >

hv.
• hd The inventory holding cost per unit time at the buyer’s display area

where hd > hw.
• nr The raw material’s lot size factor, equivalent to the number of raw material

instalments.
• nv The number of shipments.
• nb The number of transfers.
• Qi The shipment lot size from the vendor to the buyer warehouse, where

i = 1,2, ...,nv.
• qi The transfer lot size from the warehouse to the display area where, i = 1,2, ...,nv.

3. Mathematical formulation

The inventory level time plot of the model for a geometric shipment size with nr = 3,nv = 2
and nb = 4 is depicted in Figure 1. The top part of the figure shows the inventory level of
raw materials delivered in nr equal lot instalments during production uptime. The bottom
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part of the figure shows the inventory level of the buyer at the display area with the products
transferred in nb equal lots of size qi where qi = Qi/nb. The inventory levels at the vendor
and warehouse with the shipment size Qi are shown in the middle part of the figure.

Figure 1. Inventory level at four stocking points of the supply chain.

3.1. The total cost at the buyer

The buyer’s cost consists of shipment cost, holding cost at the warehouse, transfer cost and
holding cost at the display area. Let Ii(t) be the display area inventory level at time t. Then
we have

(3.1)
dIi(t)

dt
=−α[Ii(t)]β , 0≤ t ≤ Tdi, i = 1,2, ...,nv,

where Tdi is the period time defined in Figure 1 with Ii(0) = qi and Ii(Tdi) = 0. Solving
differential equation (3.1), we get

Ii(t) =
[
−α(1−β )t +q1−β

i

] 1
1−β

.

It follows that Tdi = 1
α(1−β )

(Qi
nb

)1−β .
The total holding cost at the display area is given by

(3.2) HCbd =
hdnb

Tv

[∫ Td1

0
I1(t)dt +

∫ Td2

0
I2(t)dt + ...+

∫ Tdnv

0
Inv(t)dt

]
,
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where Tv is the total cycle time. From Figure 1, we have

Tv = nb

nv

∑
i=1

Tdi =
nb

α(1−β )

nv

∑
i=1

(Qi

nb

)1−β
.

Solving equation (3.2), we get, after simplification,

(3.3) HCbd =
hd(1−β )∑

nv
i=1

(Qi
nb

)2−β

(2−β )∑
nv
i=1

(Qi
nb

)1−β
.

The total holding cost at the buyer’s warehouse is

HCbw =
hw

2Tv

[
nb(nb−1)q1Td1 +nb(nb−1)q2Td2 + ...+nb(nb−1)qnv Tdnv

]
=

hwnb(nb−1)
2Tv

(q1Td1 +q2Td2 + ...+qnv Tdnv).(3.4)

which simplifies to

(3.5) HCbw =
hw(nb−1)∑

nv
i=1

(Qi
nb

)2−β

2∑
nv
i=1

(Qi
nb

)1−β
.

Finally, the total cost at the buyer is

(3.6) T RCb =
1
Tv

(nvAb +nvnbS)+HCbw +HCbd .

3.2. The total cost at the manufacturer

The manufacturer’s cost includes the set up and holding costs of the finished products and
the instalment and holding costs of raw materials.

Let ψ be the total production quantity. Then from Figure 1, the maximum inventory of
raw materials for each instalment is ψ/nr, lasting for ψ/(nrP) units of time. It follows that
the holding cost of raw materials is

(3.7) HCr =
hr

Tv
(ψ/nr)(ψ/2nrP)nr =

hr

2nrPTv
(ψ)2.

where ψ = ∑
nv
i=1 Qi, which simplifies to

(3.8) HCr =
hrα(1−β )∑

nv
i=1

(
Qi
)2

2nrPnb ∑
nv
i=1

(Qi
nb

)1−β
.

Following the same method as in Hill and Omar [19], the average finished product at the
vendor is ψ

2 −
ψ2

2TvP + ψQ1
TvP −

nb
2Tv

∑
nv
i=1 QiTdi, where the first three terms represent the average

system stock and the final term represents the average stock with shipment sizes Qi for
i = 1,2, ...,nv. For equal shipment sizes, say Q, then this equation reduces to equation (6)
in Sajadieh et al. [29]. It follows that the total holding cost at the vendor is

(3.9) HCv = hv

(
ψ

2
− ψ2

2TvP
+

ψQ1

TvP
− nb

2Tv

nv

∑
i=1

QiTdi

)
.
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By performing the relevant substitutions, we obtain
(3.10)

HCv = hv

[
∑

nv
i=1 Qi

2
−

α(1−β )(∑nv
i=1 Qi)2

2Pnb ∑
nv
i=1(

Qi
nb

)1−β
+

α(1−β )Q1 ∑
nv
i=1 Qi

Pnb ∑
nv
i=1(

Qi
nb

)1−β
−

∑
nv
i=1 Qi(Qi

nb
)1−β

2∑
nv
i=1(

Qi
nb

)1−β

]
.

Finally, the total cost at the vendor is

(3.11) T RCv =
1
Tv

(nrAr +Av)+HCr +HCv.

3.3. Vendor-buyer sales revenue

The vendor produces ∑
nv
i=1 Qi products and sells to the buyer at price c per unit product.

Thus, the vendor’s sales revenue per unit time is c∑
nv
i=1 Qi
Tv

. For each order with a quantity of
Qi, the buyer is charged cQi by the vendor, and receives the amount γQi from the customers.

Therefore the buyer’s total sales revenue per unit time is (γ−c)∑
nv
i=1 Qi

Tv
. Once the vendor and

buyer have established a long-term strategic partnership and contracted to commit to the
relationship, they will jointly determine the best policy for the whole supply chain system.
Therefore, the total joint sales revenue for vendor and buyer is

(3.12) T R =
c∑

nv
i=1 Qi

Tv
+

(γ− c)∑
nv
i=1 Qi

Tv
=

γα(1−β )∑
nv
i=1 Qi

nb ∑
nv
i=1(

Qi
nb

)1−β
.

Finally the total joint profit per unit time for the integrated model is

(3.13) T P = T R−T RCb−T RCv.

4. Geometric shipment policies

The general shipment lot size for such a policy is Qi = λ i−1Q1, i = 2,3, ...,nv. It follows
that qi = λ i−1q1, where qi = Qi/nb. For equal shipment sizes, we have λ = 1.

Substituting into equations (3.3), (3.5) and (3.6), we have

(4.1) HCbd = hd
q1(1−β )(λ β −λ )(λ 2nv −λ nvβ )
(2−β )(λ β −λ 2)(λ nv −λ nvβ )

,

(4.2) HCbw = hw
q1(nb−1)(λ β −λ )(λ 2nv −λ nvβ )

2(λ β −λ 2)(λ nv −λ nvβ )

and

T RCb =
1
Tv

(nvAb +nvnbS)+hd
q1(1−β )(λ β −λ )(λ 2nv −λ nvβ )
(2−β )(λ β −λ 2)(λ nv −λ nvβ )

+hw
q1(nb−1)(λ β −λ )(λ 2nv −λ nvβ )

2(λ β −λ 2)(λ nv −λ nvβ )
.(4.3)

Similarly, from equations (3.8), (3.10) and (3.11), we have

(4.4) HCr = hr
nb(−1+λ nv)2q1+β

1 α(1−β )λ β (nv−1)(λ β −λ )
2nrP(−1+λ )2(λ nvβ −λ nv)

,
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HCv = hv
nbq1

2

[
− (λ β −λ )(λ 2nv −λ nvβ )

(−λ 2 +λ β )(λ nv −λ nvβ )

+
−1+λ nv

−1+λ

(
1−

qβ

1 α(1−β )λ β (nv−1)(−λ +λ β )
P(λ nv −λ nvβ )

(
−1+λ nv

−1+λ
−2)

)]
(4.5)

and

T RCv =
1
Tv

(nrAr +Av)+hr
nb(−1+λ nv)2q1+β

1 α(1−β )λ β (nv−1)(λ β −λ )
2nrP(−1+λ )2(λ nvβ −λ nv)

+hv
nbq1

2

[
− (λ β −λ )(λ 2nv −λ nvβ )

(−λ 2 +λ β )(λ nv −λ nvβ )

+
−1+λ nv

−1+λ

(
1−

qβ

1 α(1−β )λ β (nv−1)(−λ +λ β )
P(λ nv −λ nvβ )

(
−1+λ nv

−1+λ
−2)

)]
.(4.6)

For this policy, we have Tv = nbq1λ β q−β

1 (1−λ nv(1−β ))
α(λ β−λ )(1−β )

.
Hence from equations (3.12) and (3.13), we have

T R = γ
qβ

1 α(1−β )λ β (nv−1)(1−λ nv)(λ β −λ )
nb(λ −1)(λ nv −λ nvβ )

(4.7)

and

T P = γ
qβ

1 α(1−β )λ β (nv−1)(1−λ nv)(λ β −λ )
nb(λ −1)(λ nv −λ nvβ )

−
nvq−1+β

1 α(β −1)λ β (nv−1)(λ β −λ )
λ nv −λ nvβ

[Av +nrAr

nbnv
+

Ab

nb
+S
]

−hr
nb(−1+λ nv)2q1+β

1 α(1−β )λ β (nv−1)(λ β −λ )
2nrP(−1+λ )2(λ nvβ −λ nv)

−hd
q1(1−β )(λ β −λ )(λ 2nv −λ nvβ )
(2−β )(λ β −λ 2)(λ nv −λ nvβ )

−hw
q1(nb−1)(λ β −λ )(λ 2nv −λ nvβ )

2(λ β −λ 2)(λ nv −λ nvβ )

−hv
nbq1

2

[
− (λ β −λ )(λ 2nv −λ nvβ )

(−λ 2 +λ β )(λ nv −λ nvβ )

+
−1+λ nv

−1+λ

(
1−

qβ

1 α(1−β )λ β (nv−1)(−λ +λ β )
P(λ nv −λ nvβ )

(
−1+λ nv

−1+λ
−2)

)]
,(4.8)

where (1/Tv)(nvAb +nvnbS +nrAr +Av) = nvq−1+β

1 α(β−1)λ β (nv−1)(λ β−λ )
λ nv−λ nvβ

[
Av+nrAr

nbnv
+ Ab

nb
+S
]
.

We note that T P is a function of nr,nv,nb,q1 and λ . In this paper, we consider two
cases, namely, where the value of λ is fixed and equal to P/α , and where λ is variable with
1 < λ ≤ P/α . The special case where λ = 1 gives us an equal shipment size policy.

5. Numerical examples and sensitivity analysis

To demonstrate the effectiveness of this model, this section presents a numerical example
and sensitivity analysis. By putting the value of λ close to one (to avoid division by zero)
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and hr = Ar = 0 in equation (4.8), we will obtain numerical results similar to those in
Sajadieh et al. [29]. We explore our numerical results by using Matematica 7.0. We use
some optimization module such as NMaximize[{ f ,cons},{x,y, ...}] where f is the objective
function (T P) subject to constraints cons used in this model such as q1,nv,nb,nr and λ .

Assumed to be continuous, by taking the second partial derivative of equation (4.8), we
can shown easily that T P is concave in nb and nr. However, we are unable to prove concav-
ity analytically for other decision variables. Figures 2, 3 and 4 give the concavity behaviour
of the total joint profit against λ ,q1 and nv. For Figure 2, we fixed the values of nv,nb,nr
and q1, and evaluated numerically T P while varying λ . Assuming concavity, we compute
numerically until the first maximum for each variable is found.

Figure 2. Total joint profit when nv = 3,nb = 1,nr = 2, and q = 77.1 against λ
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Figure 3. Total joint profit when nv = 3,nb = 2,nr = 2, and λ = 2.2064 against q1

Figure 4. Total joint profit when nb = 3,nr = 2,q1 = 35.6 and λ = 1.8657 against nv
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Table 1. Optimal solution.

λ = P
α

Variable λ λ = 1
β nv;nb;nr q1 T P nv;nb;nr q1 λ T P nv;nb;nr q1 T P
0 2;2;1 66.8 47830.5 3;2;2 37.9 2.21613 47864.4 3;2;2 98.3 47590.9

0.01 3;1;2 63.5 50046.1 3;1;2 77.1 2.20642 50051.4 3;1;2 201.0 49761.5
0.02 3;1;2 71.6 52617.3 3;1;2 71.6 2.5 52617.3 2;1;2 282.7 52190.4
0.03 2;1;2 190.2 55402.0 2;1;2 190.2 2.5 55402.0 2;1;2 315.2 54884.5
0.04 2;1;2 215.3 58459.8 2;1;2 215.3 2.54 58459.8 2;1;2 352.8 57792.1
0.05 3;1;3 114.8 61834.4 3;1;3 114.8 2.5 61834.4 2;1;2 396.2 60936.5

Table 2. Optimal solution for varying Ab.

Ab nv nb nr q1 λ T P
100 3 1 2 74.8 2.5 51018.1
150 2 1 2 187.4 2.5 50684.8
200 2 1 2 196.1 2.5 50403.0
250 2 1 2 204.5 2.5 50133.2

Table 3. Optimal solution for varying Av.

Av nv nb nr q1 λ T P
350 3 1 2 73.1 2.5 51149.0
400 3 1 2 74.8 2.5 51018.1
450 3 1 2 76.5 2.5 50890.2
500 3 1 2 78.2 2.5 50765.1

Table 4. Optimal solution for varying Ar .

Ar nv nb nr q1 λ T P
100 3 1 2 74.8 2.5 51018.1
200 2 1 1 165.1 2.5 50539.8
300 2 1 1 173.7 2.5 50221.2
400 3 1 1 74.5 2.5 49965.5

Table 1 gives an optimal solution for the extended example from Sajadieh et al. (2010)
where P = 4500,S = 25,Ab = 100,Av = 400,hd = 17,hv = 9,hw = 11,σ = 30,c = 20,Cd =
500,α = 1800,hr = 7 and Ar = 100. In order to analyse the effect of stock-dependent
demand, we used β ∈ [0.00,0.01, ...,0.05] . The geometric model with varying λ is always
superior. For example, when β = 0.01, the optimal lot size transfer items, q1 is equal to 63.5
for the geometric policy with λ = P/α . The maximum T P for this policy is 50046.1. On
the other hand, the geometric model with λ as a variable gives q1 = 77.1 with the maximum
T P equal to 50051.6. Following Sajadieh et al. [29] policy, q1 = 201.0 with the maximum
T P is 49761.5.

We perform a sensitivity analysis by solving many sample problems in order to determine
how the maximum total joint profit responds to parameter changes.
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Table 5. Optimal solution for varying hd .

hd nv nb nr q1 λ T P
14 3 1 2 68.5 2.5 50512.3
17 3 1 2 63.5 2.5 50046.1

(3) (1) (2) (77.1) (2.2064) (50051.4)
20 3 2 2 33.9 2.5 49680.5
23 2 2 2 77.1 2.5 49421.0

(3) (2) (2) (40.8) (2.1678) (49452.3)

Table 6. Optimal solution for varying S when hd = 23.

S nv nb nr q1 λ T P
25 2 2 2 77.1 2.5 49421.0

(3) (2) (2) (40.8) (2.1678) (49452.3)
30 2 2 2 77.9 2.5 49352.0

(3) (2) (2) (41.5) (2.1601) (49365.4)
35 2 2 2 78.7 2.5 49283.6
40 2 2 2 79.4 2.5 49215.8

Tables 2 to 6 show that the maximum T P decreases with an increase of Ab,Av,Ar,hd and
S. In most cases, the maximum T P is the same irrespective of whether λ is fixed or varying
except when hd = 17,23 and S = 25,30. For these cases, the result when λ varies is given
in parentheses. In all our examples, the policy with varying λ is always superior to that with
fixed λ .

6. Conclusion

Adopting the best policy is obviously an important decision affecting the economics of
the integrated production-inventory systems. This paper considered an integrated supplier-
production-inventory economic lot-sizing model for maximizing the total joint profit of the
supplier, vendor and buyer. The present model assumed unequal shipments or transfer lot
sizes. We developed a mathematical formulation for this problem and carried out some
numerical comparative studies to highlight the managerial insight and the sensitivity of the
solutions to changes in various parameter values. For example, when the fixed shipment
cost for the buyer (Ab) increases, the system favours a smaller number of shipments (nv).
Similarly, when Ar increases, the number of raw material instalments also decreases. It
will help the manager to make correct decisions regarding the system policy in different
situations.

There are several possible directions our model could take for future research. One
immediate extension would be to investigate the effect when the inventory at the displayed
area deteriorates with time. It might be interesting to consider an inventory system with
stock-dependent selling rate demand. We also might consider unit cash discount and delay
payment (see, for example Teng et al., [34]) or supply chain involving reverse logistic (see,
for example Omar and Yeo [28]). Finally, we may extend the proposed model to account
for multiple vendors and buyers (see Zahir and Sarker [37]; Glock [6, 8, 9]).
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