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Abstract. Let A be an Abelian group, n ≥ 3 be an integer, and ex(n,A) be the maximum
integer such that every n-vertex simple graph with at most ex(n,A) edges is not A-connected.
In this paper, we obtain a necessary condition for a graph being A-connected. Employing
the condition we present a lower bound for ex(n,Z3) which improves some known result
and prove that every cubic graph (not necessarily simple graph) with order at least 18 is not
Z3-connected.
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1. Introduction

In this paper,we consider undirected graphs without loops but multiple edges are allowed.
The vertex set and edge set of G are denoted by V (G) and E(G), and we follow Bondy and
Murty [1], for undefined notations and terminology. For an orientation D of G and a vertex
v ∈ V (G), the set of all edges incident with v being the tail (or the head, respectively) is
denoted by E+(v) (or E−(v), respectively).

Let D = D(G) be an orientation of an undirected graph G. If an edge e = uv ∈ E(G) is
directed from u to v, then let tail(e) = u and head(e) = v. For a vertex v ∈V (G), let

E+
D (v) = {e ∈ E(D) : v = head(e)} and E−D (v) = {e ∈ E(D) : v = tail(e)}.

Integer flow was originally introduced by Tutte [4,5] as a generalization of map coloring
problems. The following are some definitions about basic integer flow concepts.

Definition 1.1. An Zk-flow of a graph G is an ordered pair (D, f ) such that

∑
e∈E+

D (v)

f (e)≡ ∑
e∈E−D (v)

f (e) (mod k),

for every vertex v ∈V (G).

A Zk-flow is nowhere-zero Zk-flow if f (e) 6= 0 for each e ∈ E(G). The following is the
well-known 3-flow conjecture
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Conjecture 1.1. (3-flow conjecture, Tutte) Every 4-edge-connected graph admits a nowhere-
zero Z3-flow.

Let A be an (additive) Abelian graoup with identity 0. If f : E(G)→ A is a function, then
the boundary of f is a map ∂ f : V (G) 7→ A such that, for any vertex v ∈V (G),

∂ f (v) = ∑
e∈E+

D (v)

f (e)− ∑
e∈E−D (v)

f (e).

For an integer k ≥ 1, Zm denotes the set of integers modulo k, as well as the additive
cyclic group on k elements. For a graph G, a function b : V (G) 7→ Zk is a zero sum function
in Zk if ∑v∈V (G) ≡ 0 (mod k). The set of all zero sum function in Zk of G is denoted by
Z(G,Zk).

Graph connectivity was introduced in [2] as a generalization of integer flow, and an
inductive approach for flow problems. A graph G is Zk-connected if for any function b ∈
Z(G,Zk), G has a nowhere-zero Zk-flow f such that ∂ f (v) = b(v) for each vertex v ∈V (G).
Clearly, if G is Zk-connected, then it has a nowhere-zero Zk-flow. But the converse may not
be true.

Conjecture 1.2. (Jaeger, Linial, Payan and Tarsi [2]) Every 5-edge-connected graph is Z3-
connected.

Let A be an Abelian group, |A| ≥ 3. Denote ex(n,A) to be the maximum integer such that
every n-vertex simple graph with at most ex(n,A) edges is not A-connected. This concept
was introduced by Luo, Xu and Yu [3]. They obtained the upper bound and lower bound of
ex(n,Z3) and conjectured that ex(n,Z3) equals the upper bound.

Theorem 1.1. (Luo, Xu and Yu [3]) For an integer n≥ 6, 3n/2≤ ex(n,Z3)≤ 2n−3.

In this paper, we improve the lower bound of ex(n,Z3) and prove that every cubic graph
is not Z3-connected if it contains at least 18 vertices.

2. Mail results

The following lemma plays a key role in this paper.

Lemma 2.1. Let k be an integer, k ≥ 3, and let G be a graph with n vertices and m edges.
If G is Zk-connected, then we have

(k−1)m ≥ kn−1.

Proof. Suppose G is Zk-connected. Let F be the collection of all functions f : E(G)→ Zk
such that f (e) 6= 0, for ∀e ∈ E(G). Let b ∈ Z(G,Zk) be a zero-sum function. Denote

Fb = { f ∈F | ∂ f = b}.
Since G is Zk-connected, we have Fb 6= /0, for any function b ∈ Z(G,Zk).

Let b1,b2 ∈ Z(G,Zk) such that b1 6= b2. Then ∀ f1 ∈Fb1 and ∀ f2 ∈Fb2 , we have

∂ ( f1− f2) = ∂ f1−∂ f2 = b1−b2 6= 0.

So f1 6= f2 and then Fb1 ∩Fb2 = /0. Therefore {Fb | b ∈ Z(G,Zk)} is a partition of F .
Then

F =
⋃

b∈Z(G,Zk)

Fb
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and
|F |= ∑

b∈Z(G,Zk)
|Fb| ≥ ∑

b∈Z(G,Zk)
1 = |Z(G,Zk)|.

Since |F |= (k−1)m and |Z(G,Zk)|= kn−1, we have (k−1)m ≥ kn−1.

We derive a necessary condition for a graph being Zk-connected. The following theorem
is an immediate corollary of Lemma 2.1.

Theorem 2.1. If (k−1)m < kn−1, then G is not Zk-connected, where m = |E(G)| and n =
|V (G)|.

Corollary 2.1. A cycle length of t is not Zk-connected if t > k.

Proof. Let Ct be a cycle length of t. We have m = |E(Ct)|= t and n = |V (Ct)|= t. If t > k,
then (k−1)t < kt−1. By Theorem 2.1, Ct is not Zk-connected.

A graph G is k-regular if d(v) = k for all v ∈ V (G), a 3-regular graph is called cubic
graph.

Corollary 2.2. Let G be a cubic graph. If |V (G)| ≥ 18, then G is not Z3-connected.

Proof. Since G is cubic, we have m = |E(G)| = 3|V (G)|/2 = 3n/2. If n ≥ 18, then 2m <
3n−1. By Theorem 2.1, G is not Z3-connected.

Note that a cubic graph has a nowhere-zero Z3-flow if and only if it is a bipartite graph.
So there are infinite graphs having a nowhere-zero Z3-flow. However the condition that
a graph being Z3-connected is much stronger. Corollary 2.2 tells us Z3-connected cubic
graphs are very few and the number of them is finite.

Theorem 2.2. For an integer n≥ 20, 1.58(n−1)≤ ex(n,Z3)≤ 2n−3.

Proof. Let G be a graph with n = |V (G)| ≥ 6. If m = |E(G)|< 1.58(n−1), then 2m < 3n−1.
By Theorem 2.1, G is not Z3-connected. So ex(n,Z3) ≥ 1.58(n− 1). Combine the result
with that of Theorem 1.1, we have 1.58(n−1)≤ex(n,Z3)≤ 2n−3.

If n≥ 20, then 1.58(n−1) > 3n/2. So Theorem 2.2 is an improvement of Theorem 1.1.
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