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1. Introduction

Theory of semirings is given by Golan [10] and theory of ideals in the semiring of non-
negative integers is studied by Allen and Dale [1]. Fuzzy k-ideals in semirings is studied by
Hedayati, Zhan and Shum [12, 15]. Generalizing the notion of ternary ring introduced by
Lister [14], Dutta and Kar [4] introduced the notion of ternary semiring. A non-empty set
S together with a binary operation called addition (+) and a ternary operation called ternary
multiplication (·) is called ternary semiring if it satisfies the following conditions for all
a,b,c,d,e ∈ S:

1. (a+b)+ c = a+(b+ c);
2. a+b = b+a;
3. (a ·b · c) ·d · e = a · (b · c ·d) · e = a ·b · (c ·d · e);
4. there exists 0 ∈ S such that a+0 = a = 0+a, a ·b ·0 = a ·0 ·b = 0 ·a ·b = 0;
5. (a+b) · c ·d = a · c ·d +b · c ·d;
6. a · (b+ c) ·d = a ·b ·d +a · c ·d;
7. a ·b · (c+d) = a ·b · c+a ·b ·d.

Clearly, every semiring is a ternary semiring. Denote the sets of all non-positive, negative,
and positive integers respectively by Z−0 , Z−, and N. The set Z−0 is a ternary semiring under
usual addition and ternary multiplication of non-positive integers but it is not a semiring.

If there exists an element e in a ternary semiring S such that eex = exe = xee = x for all x∈
S, then e is called the identity element of S. A ternary semiring S is said to be commutative
if abc = acb = cab for all a,b,c ∈ S. The ternary semiring (Z−0 ,+, ·) is commutative with
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identity element −1. A non-empty subset I of a commutative ternary semiring S is called
an ideal of S if the following conditions are satisfied:

1. a,b ∈ I implies a+b ∈ I;
2. a ∈ I,r,s ∈ S implies rsa ∈ I.

An ideal I of a ternary semiring S is called a k-ideal (= subtractive ideal) if a, a+b∈ I, b∈ S,
then b ∈ I. If S is a commutative ternary semiring with identity element, then a proper ideal
I of S is called (i) prime if abc∈ I, a,b,c∈ S implies a∈ I or b∈ I or c∈ I; (ii) semiprime if
a3 ∈ I, a ∈ S implies a ∈ I. Clearly, every prime ideal is a semiprime ideal. The concept of
irreducible ideals in a ternary semirings can be defined on the similar lines as in semirings
and rings. If n ∈ (Z−0 ,+, ·) and n≤−2, then n can be written as

n = (−p1)r1(−p2)r2 · · ·(−pk)rk(−1)r1(−1)r2 · · ·(−1)rk(−1)

= (−p1)r1(−p2)r2 · · ·(−pk)rk(−1)(∑
k
i=1 ri)+1

where p1, p2, . . ., pk ∈ N are pairwise distinct primes and ri,k ∈ N. An ideal I of (Z−0 ,+, ·)
is said to be generated by a subset A = {a1,a2, . . . ,an} of Z−0 if for every x ∈ I, there exist
αi,βi ∈ Z−0 such that x = ∑

n
i=1 αiβiai. If A = {a}, then Z−0 Z−0 a is called a principal ideal

generated by a. For a1,a2, . . . ,ak ∈ Z−0 , we denote (i) 〈a1,a2, . . . ,ak〉 = the ideal generated
by a1,a2, . . . ,ak in the ternary semiring Z−0 ; (ii) (a1,a2, . . . ,ak) = g.c.d. of a1,a2, . . . ,ak.
Two elements a1,a2 ∈ Z−0 are said to be relatively prime if (a1,a2) = 1. For n ∈ Z−, we
denote In = {r ∈Z− : r≤ n}∪{0}. Clearly In is an ideal in the ternary semiring Z−0 . An ideal
I of Z−0 is called (i) a T -ideal if In ⊆ I for some n ∈ Z−; (ii) a principal T -ideal if I = 〈a〉
∪In for some a ∈ Z−0 and n ∈ Z−. Further (i) for n ∈ Z−, we denote n+1 as the immediate
successor of n in Z−0 ; (ii) for n ∈ Z−−{−1}, we denote n + 2 as the immediate successor
of n + 1 in Z−0 . For example, −5 = (−6)+ 1 is the immediate successor of −6 and −4 =
(−6)+2 is the immediate successor of (−6)+1 (=−5).

Dutta and Kar [6, 7] have characterized respectively the prime k-ideals and semiprime
k-ideals of the ternary semiring of non-positive integers. Some works on ternary semirings
may be found in [2, 5, 8, 9]. Theory of ideals in the semiring of non-negative integers is
recently studied by Gupta and Chaudhari [11] and by Chaudhari and Ingale [3]. Theory of
ideals in the ternary semiring of non-positive integers is studied by Kar [13].

In this paper, we obtain characterizations of prime ideals, semiprime ideals, irreducible
k-ideals and irreducible principal T -ideals in the ternary semiring of non-positive integers.
In Section 2, we obtain characterizations of prime ideals, semiprime ideals and irreducible
k-ideals in the ternary semiring of non-positive integers. In Section 3, we obtain characteri-
zation of irreducible principal T -ideals in the ternary semiring of non-positive integers.

The following results will be used to prove our results.

Lemma 1.1. [13, Lemma 3.12] Let I = 〈a1,a2, . . . ,an〉 ⊆ Z−0 . If (a1,a2, . . . ,an) = d, then
there exists a largest t ∈ Z−0 such that (−1)(−d)r ∈ I for all r ≤ t.

Lemma 1.2. [13, Lemma 3.3] If a,b ∈ Z−0 are relatively prime, then there exist p,q ∈ Z−0
such that (−1)qa = (−1)pb+(−1) or (−1)pb = (−1)qa+(−1).

Theorem 1.1. [13] Every ideal of Z−0 is finitely generated.

Theorem 1.2. [6, Theorem 5.5] An ideal I of Z−0 is a k-ideal if and only if I is a principal
ideal.
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Theorem 1.3. [2, Theorem 3.8] An ideal I of Z−0 is semiprime if and only if an ∈ I where n
is an odd natural number implies a ∈ I.

2. Prime ideals, semiprime ideals and irreducible k-ideals in Z−0
In this section, we characterize prime ideals, semiprime ideals and irreducible k-ideals in
the ternary semiring Z−0 . We give a short and elementary proof of [13, Lemma 3.4]. This
lemma will be used in the proof of subsequent theorem.

Lemma 2.1. Let a,b ∈ Z−0 , b < a < −1 and let a,b be relatively prime. Then there exists
m ∈ Z−0 such that t ∈ 〈a,b〉 for all t ≤ m.

Proof. By Lemma 1.2, there exist p,q∈Z−0 such that (−1)qa =(−1)pb+(−1) or (−1)pb =
(−1)qa+(−1). Without loss of generality assume that (−1)qa = (−1)pb+(−1). Clearly
p,q 6= 0. Let us write m = (−1)paqa ∈ 〈a,b〉. Let t = m + r where r ≤ 0. If r = 0, then
t = m ∈ 〈a,b〉. If a < r < 0, then

t = m+ r = (−1)paqa+ r = pa(−1)qa+ r = pa((−1)pb+(−1))+ r

=−(pa+ r)pb+(−1)pa+ rpb+ r =−(pa+ r)pb+(−1)pa+ rqa ∈ 〈a,b〉.

If r≤ a, then by the division algorithm r = (−1)au+v where u,v∈Z−0 and a < v≤ 0. Then
t = m+ v+(−1)au ∈ 〈a,b〉.

Now the following theorem gives a characterization of non-zero prime ideals in the
ternary semiring Z−0 :

Theorem 2.1. A non-zero ideal I of the ternary semiring Z−0 is prime if and only if I = 〈−p〉
for some prime number p ∈ N or I = 〈−2,−3〉.

Proof. Let I be a prime ideal. By Theorem 1.1, I is a finitely generated ideal. If I is a
principal ideal say I = 〈m〉, m <−1, then let

m = (−1)(∑
k
i=1 ri)+1(−p1)r1(−p2)r2 · · ·(−pk)rk

where p1, p2, . . ., pk ∈N are pairwise distinct primes and ri,k ∈N. If k≥ 2, then (−1)ab =
m ∈ I where a = (−1)r1+1(−p1)r1 , b = (−1)(∑

k
i=2 ri)+1(−p2)r2 · · · (−pk)rk . Since I is a

prime ideal, we have −1 ∈ I or a ∈ I or b ∈ I, a contradiction. So k = 1 and hence m =
(−1)r1+1(−p1)r1 . Again if r1 ≥ 2, then (−1)r1+1(−p1)r1 ∈ I. Since I is a prime ideal, we
have −1 ∈ I or −p1 ∈ I, a contradiction. So r1 = 1 and hence I = 〈−p〉.

Now assume that I is not a principal ideal. Take I = 〈a1,a2, . . . ,an〉 where an < an−1 <
· · · < a1 < −1, ai does not divide a j for all i < j, j = 2, 3, . . ., n, n ≥ 2. By using the
procedure as in the above part, we have a1 =−p for some prime number p∈N. Then a1,a2
are relatively prime. By Lemma 2.1, there exists m ∈ Z−0 such that

(2.1) t ∈ 〈a1,a2〉 ⊆ I for all t ≤ m.

If a1 <−2, then by (2.1), choose a smallest j such that (−1) j+1(−2) j ∈ I, j > 1. Since I is
a prime ideal, −1 ∈ I or −2 ∈ I, a contradiction. Hence a1 = −2. If a2 <−3, then by (2.1),
choose a smallest s such that (−1)s+1(−3)s ∈ I, s > 1. Since I is a prime ideal, −1 ∈ I or
−3 ∈ I, a contradiction. Hence a2 = −3. So I= 〈−2,−3〉. The converse is trivial.

From Theorem 1.2 and Theorem 2.1, we have the following corollary in which charac-
terization of non-zero prime k-ideals in the ternary semiring Z−0 is obtained. This corollary
shows that the [6, Lemma 5.9] is not true for the ideal {0} where {0} is a prime k-ideal.
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Corollary 2.1. A non-zero k-ideal I of the ternary semiring Z−0 is prime if and only if I =
〈−p〉 for some prime number p ∈ N.

Now the following theorem gives a characterization of non-zero semiprime ideals in the
ternary semiring Z−0 :

Theorem 2.2. A non-zero ideal I of the ternary semiring Z−0 is semiprime if and only if I
= 〈m〉 where m = (−1)k+1(−p1)(−p2) · · ·(−pk), p1, p2, . . ., pk ∈ N are pairwise distinct
primes or I = 〈−2,−3〉.

Proof. Let I be a semiprime ideal. By Theorem 1.1, I is a finitely generated ideal. If I is a
principal ideal say I = 〈m〉, m <−1, then let

m = (−1)(∑
k
i=1 ri)+1(−p1)r1(−p2)r2 · · ·(−pk)rk

where p1, p2, . . ., pk ∈N are pairwise distinct primes and ri,k ∈N. If ri ≥ 2 for some i, then
(m/((−1)(−pi)))3 ∈ I but m/((−1)(−pi)) /∈ I, a contradiction. Hence each ri = 1. Now
assume that I is not a principal ideal. Take I = 〈a1,a2, . . . ,an〉 where an < an−1 < · · ·< a1 <
−1, ai does not divide a j for all i < j, j = 2, 3, . . ., n and n≥ 2. Let d = (a1,a2, . . . ,an). If
−d <−1, then let

−d = (−1)(∑
k
i=1 ri)+1(−p1)r1(−p2)r2 · · ·(−pk)rk

where p1, p2, . . . , pk ∈ N are pairwise distinct primes and ri ≥ 1 for all i. If a1 < −d, then
by Lemma 1.1, choose a smallest odd t ∈ N such that (−d)t ∈ I. By Theorem 1.3, −d ∈ I,
a contradiction as a1 < −d. If −d = a1, then a1 | a2, a contradiction. Hence −d = −1.
If a1 < −2, then by Lemma 1.1, choose a smallest odd j such that (−2) j ∈ I, j > 1. By
Theorem 1.3, −2 ∈ I, a contradiction as a1 < −2. Hence a1 = −2. If a2 < −3, then by
Lemma 1.1, choose a smallest s such that (−3)s ∈ I, s > 1. By Theorem 1.3, −3 ∈ I, a
contradiction as a2 <−3. Hence a2 = −3. Now 〈−2,−3〉 ⊆ I implies I = 〈−2,−3〉.

Conversely, If I = 〈m〉 where m = (−1)k+1(−p1)(−p2) · · ·(−pk), p1, p2, · · · , pk ∈N are
pairwise distinct primes and a3 ∈ I, then clearly m|a3 implies m|a. Hence a ∈ 〈m〉 = I. If I
= 〈−2,−3〉, then by Theorem 2.1, I is a prime ideal and hence I is a semiprime ideal.

From Theorem 1.2 and Theorem 2.2, we have the following corollary in which char-
acterization of non-zero semiprime k-ideals in the ternary semiring Z−0 is obtained. This
corollary shows that [7, Theorem 5.5] is not true for the ideal {0} where {0} is a semiprime
k-ideal.

Corollary 2.2. A non-zero k-ideal I of the ternary semiring Z−0 is semiprime if and only if
I = 〈(−1)k+1(−p1)(−p2) · · ·(−pk)〉 where p1, p2, . . ., pk ∈N are pairwise distinct primes.

Now the following theorem gives a characterization of non-zero irreducible k-ideals in
the ternary semiring Z−0 :

Theorem 2.3. A non-zero proper ideal I in the semiring Z−0 is an irreducible k-ideal if and
only if I = 〈(−1)n+1(−p)n〉 for some prime number p ∈ N and for some n ∈ N.

Proof. Let I be an irreducible k-ideal of Z−0 . By Theorem 1.2, I = 〈m〉 for some m < −1.
Since I is an irreducible ideal, I = 〈(−1)n+1(−p)n〉 for some prime number p ∈ N and for
some n ∈ N. Conversely suppose that I = 〈(−1)n+1(−p)n〉 for some prime number p ∈ N
and for some n ∈ N. By Theorem 1.2, I is a k-ideal. If I is not an irreducible ideal, then
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there exist ideals A, B of Z−0 such that I = A∩B and I 6= A, I 6= B. Let a ∈ A, b ∈ B be
such that a,b /∈ I. If a = −1 or b = −1, then A = Z−0 or B = Z−0 and hence I = B or I = A, a
contradiction. Suppose that a <−1, b <−1. Let

a = (−1)(∑
k
i=1 αi)+α+1(−p1)α1(−p2)α2 · · ·(−pk)αk(−p)α ,

b = (−1)(∑
k
i=1 βi)+β+1(−p1)β1(−p2)β2 · · ·(−pk)βk(−p)β

where p1, p2, . . . , pk, p are pairwise distinct primes and αi,α,βi,β ≥ 0. Now a,b /∈ I im-
plies α , β < n. Denote l = (−1)(∑

k
i=1 λi)+λ+1 (−p1)λ1(−p2)λ2 · · ·(−pk)λk(−p)λ where λi =

max{αi,βi}, λ = max{α,β}. Then a ∈ A, b ∈ B implies l ∈ A∩B = I = 〈(−1)n+1(−p)n〉.
So (−1)n+1(−p)n|l. Hence n≤ λ , a contradiction. So I is an irreducible ideal.

Corollary 2.3. Let I be a non-zero proper ideal in the ternary semiring Z−0 . Then the
following statements are equivalent:

1) I is a prime k-ideal;
2) I = 〈−p〉 for some prime p ∈ N;
3) I is an irreducible and semiprime k-ideal.

Proof. (1)⇒ (2) Follows from Corollary 2.1.
(2)⇒ (3) By Corollary 2.1, I is a prime k-ideal and hence I is a semiprime ideal. Clearly

every prime ideal is an irreducible ideal and hence I is an irreducible ideal.
(3)⇒ (1) Follows from Theorem 2.3, Corollary 2.2 and Corollary 2.1.

3. Irreducible principal T -ideals in Z−0
In this section, we characterize irreducible principal T -ideals in the ternary semiring Z−0 . In
general, the union of two ideals in a commutative ternary semiring S may not be an ideal of
S. But for any ideal In in the ternary semiring Z−0 , we have the following lemma:

Lemma 3.1. If A is an ideal of the ternary semiring Z−0 , then A∪ In is an ideal of Z−0 .

Theorem 3.1. In is an irreducible ideal if and only if n≥−3.

Proof. Let In be an irreducible ideal. Suppose that n≤−4. Denote A = 〈n+1〉∪ In and B =
〈n+2〉∪ In. By Lemma 3.1, A, B are ideals of Z−0 such that In 6= A and In 6= B. Clearly, In =
A∩B. Hence In is a reducible ideal, a contradiction. So n ≥ −3. Conversely suppose that
n ≥ −3. Clearly I−1 = Z−0 and I−2 = 〈−2,−3〉 are irreducible ideals. Now if I−3 = A∩B
and I−3 ⊂ A, then A = Z−0 or A = I−2 and hence B = I−3.

Corollary 3.1. A principal T-ideal I = 〈m〉 ∪ In is irreducible in Z−0 for n ≥ −3 and for
every m ∈ Z−0 .

Proof. Clearly 〈m〉 ⊆ In for all m≤ n. So I = I−1 or I−2 or I−3 for n≥−3 and every m∈Z−0 .
By Theorem 3.1, I is an irreducible ideal.

Theorem 3.2. Every ideal I ⊇ 〈−2〉 of Z−0 is irreducible.

Proof. Let A 6= I 6= B be ideals of Z−0 such that I = A∩B. Then there are a ∈ A and b ∈ B
such that a,b /∈ I ⊇ 〈−2〉. Hence a and b are odd negative integers. We may assume that
a≥ b and therefore b = a+(−1)(−2)r for some r ∈Z−0 . Since (−1)(−2)r ∈ 〈−2〉 ⊆ I ⊆ A,
we get b ∈ A and therefore b ∈ A∩B = I, a contradiction. Hence either I = A or I = B.
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Now we prove the following lemmas which will be used in the subsequent theorems.

Lemma 3.2. If a,b ∈ Z−0 and n ∈ Z− are such that a+b≤ n, then A = 〈a〉∪ 〈b〉∪ In is an
ideal of Z−0 .

Proof. Let x,y∈A. If x and y satisfy at least one of the following: (i) x = 0 or y = 0; (ii) x≤ n
or y≤ n; (iii) x,y ∈ 〈a〉 or x,y ∈ 〈b〉, then clearly x+ y ∈ A. Now without loss of generality
assume that n < x < 0, n < y < 0 and x ∈ 〈a〉, y ∈ 〈b〉. Then x + y = (−1)ra +(−1)tb ≤
a+b≤ n for some r, t ∈Z−. Hence x+y∈ A. If α,β ∈Z−0 and x∈ A, then clearly αβx∈ A.
Hence A is an ideal of Z−0 .

Lemma 3.3. Let I be an ideal in the ternary semiring Z−0 such that I ⊇ In where n ∈
Z−. If b,c ∈ Z−0 are such that (−1)(−2)b ≤ n, b ≤ c and c does not divide b, then I =
(〈b〉∪ I)∩ (〈c〉∪ I).

Proof. Clearly (−1)(−2)b≤ n implies

(3.1) (−1)rb ∈ In ⊆ I for all r ≤−2.

Let x ∈ (〈b〉 ∪ I)∩ (〈c〉 ∪ I). If x /∈ I, then clearly x = (−1)rb = (−1)tc for some r, t ∈
Z−. By (3.1), r = −1 and hence b = (−1)tc i.e. c | b, a contradiction. Hence x ∈ I. So
(〈b〉∪ I)∩ (〈c〉∪ I) ⊆ I. Clearly I ⊆ (〈b〉∪ I)∩ (〈c〉∪ I). Hence I = (〈b〉∪ I)∩ (〈c〉∪ I).

The following two theorems are essential to obtain the characterization of the irreducible
principal T -ideals in the ternary semiring Z−0 .

Theorem 3.3. Let I = 〈−3〉∪ In be a principal T-ideal in Z−0 . Then I is an irreducible ideal
if and only if n >−6.

Proof. Let I be an irreducible ideal of Z−0 . Let if possible n≤−6. Choose smallest k ∈ Z−
such that n < (−1)(−3)k. Then −3≤ n− (−1)(−3)k ≤−1.

If n− (−1)(−3)k = −1, then denote A = 〈(−1)(−3)k + 1〉 ∪ I and B = 〈(−1)(−3)k +
2〉∪ I. Now (−3)+((−1)(−3)k+1)≤ (−3)+((−1)(−3)k+2) = (−1)+(−1)(−3)k = n.
Hence by Lemma 3.2, A and B are ideals of Z−0 . Since n < (−1)(−3)k, A 6= I and B 6= I.
Now (−1)(−3)k+1 = n+2, n≤−6 implies (−1)(−2)((−1)(−3)k+1) = (−1)(−2)(n+
2) = n +(n + 4) ≤ n. If ((−1)(−3)k + 2) | ((−1)(−3)k + 1), then (−1)(−3)k + 2 = −1.
Hence k = −1 and so n = −4, a contradiction. Now ((−1)(−3)k + 2) does not divide
((−1)(−3)k+1). Hence by Lemma 3.3, I = (〈(−1)(−3)k+1〉∪ I)∩(〈(−1)(−3)k+2〉∪ I)
= A∩B.

If n− (−1)(−3)k = −2, then denote A = 〈(−1)(−3)k− 1〉 ∪ I and B = 〈(−1)(−3)k +
1〉∪ I. Now (−3)+ ((−1)(−3)k−1) ≤ (−3)+ ((−1)(−3)k + 1) = (−2)+ (−1)(−3)k =
n. Hence by Lemma 3.2, A and B are ideals of Z−0 . Now A 6= I, B 6= I as n < n + 1 =
(−1)(−3)k−1 < (−1)(−3)k +1. Now n− (−1)(−3)k =−2 and n≤−6 implies k ≤−2.
Hence ((−1)(−3)k+1) does not divide ((−1)(−3)k−1). Clearly (−1)(−2)((−1)(−3)k−
1)≤ n. Hence by Lemma 3.3, I = (〈(−1)(−3)k−1〉∪ I)∩ (〈(−1)(−3)k +1〉∪ I) = A∩B.

If n−(−1)(−3)k =−3, then denote A = 〈(−1)(−3)k−2〉∪I and B = 〈(−1)(−3)k−1〉∪
I. Now (−3)+((−1)(−3)k−2)≤ (−3)+((−1)(−3)k−1) = ((−3)+(−1)(−3)k)−1 =
n− 1 ≤ n. Hence by Lemma 3.2, A and B are ideals of Z−0 . Now A 6= I and B 6= I
as (−1)(−3)k− 1 > (−1)(−3)k− 2 = n + 1 > n. Clearly (−1)(−2)((−1)(−3)k− 2) ≤
n and ((−1)(−3)k− 1) does not divide ((−1)(−3)k− 2). Hence by Lemma 3.3, I =
(〈(−1)(−3)k− 2〉 ∪ I)∩ (〈(−1)(−3)k− 1〉 ∪ I) = A∩ B. Thus in any case, I is not an
irreducible ideal of Z−0 , a contradiction. Hence n >−6.
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Conversely, suppose that n > −6. If n ≥ −4, then I = I−1 or I−2 or I−3 which are
irreducible ideals. Suppose that n = −5. If I is not an irreducible ideal, then there exist
ideals A, B of Z−0 such that I = A∩B and I 6= A, I 6= B. Choose a∈ A, b∈ B such that a,b /∈ I.
Without loss of generality assume that a ≥ b. Clearly a = −1 or −2 or −4 and b = −1 or
−2 or −4 and hence b = (−1)at for some t ∈ Z−0 . Now b ∈ A∩B = I, a contradiction. So I
is an irreducible ideal.

Theorem 3.4. If a <−3, n <−3 and I = 〈a〉∪ In a principal T-ideal in Z−0 , then I is not an
irreducible ideal.

Proof. If a ≤ n, then I = In and so by Theorem 3.1, I is not an irreducible ideal. Suppose
that a > n. Choose smallest k ∈ Z− such that

(3.2) (−1)ak > n.

Then n− (−1)ak ≤ −1. If n− (−1)ak = −1, then denote A = 〈(−1)ak + 1〉 ∪ I and B =
〈(−1)ak+2〉∪I. If a+((−1)ak+2)> n, then a+2 > n−(−1)ak =−1 which is impossible
as a < −3. Hence a +((−1)ak + 2) ≤ n and so a +((−1)ak + 1) ≤ n. By Lemma 3.5, A
and B are ideals of Z−0 . Since n < (−1)ak, (−1)ak + 1 /∈ In and (−1)ak + 2 /∈ In. Hence
(−1)ak + 1 /∈ I and (−1)ak + 2 /∈ I. So A 6= I and B 6= I. If (−1)(−2)((−1)ak + 1) > n,
then (−2)ak + 2 > n. Hence (−1)ak + 2 > n− (−1)ak = −1. So (−1)ak = −2 which is
impossible as a <−3 and k ∈ Z−. Hence (−1)(−2)((−1)ak +1)≤ n. Now ((−1)ak +2)
does not divide ((−1)ak + 1) as a < −3, k ∈ Z−. Hence by Lemma 3.6, I = (〈(−1)ak +
1〉∪ I)∩ (〈(−1)ak +2〉∪ I) = A∩B.

If n− (−1)ak = −2, then denote A = 〈(−1)ak− 1〉 ∪ I and B = 〈(−1)ak + 1〉 ∪ I. If
a +((−1)ak + 1) > n, then a + 1 > n− (−1)ak = −2, a contradiction as a < −3. Hence
a +((−1)ak + 1) ≤ n and so a +((−1)ak− 1) ≤ n. By Lemma 3.2, A and B are ideals of
Z−0 . Since n− (−1)ak =−2, (−1)ak−1 /∈ In and (−1)ak +1 /∈ In. Hence (−1)ak−1 /∈ I
and (−1)ak + 1 /∈ I. So A 6= I and B 6= I. By using (3.2), (−1)(−2)((−1)ak + 1) ≤ n.
Now ((−1)ak + 1) does not divide ((−1)ak− 1) as a < −3. Hence by Lemma 3.3, I =
(〈(−1)ak−1〉∪ I)∩ (〈(−1)ak +1〉∪ I) = A∩B.

If n− (−1)ak ≤ −3, then denote A = 〈(−1)ak− 2〉 ∪ I and B = 〈(−1)ak− 1〉 ∪ I. By
using (3.2), a+((−1)ak−2)≤ a+((−1)ak−1)≤ n. By Lemma 3.2, A and B are ideals of
Z−0 . Since n− (−1)ak ≤−3, (−1)ak−2 /∈ In and (−1)ak−1 /∈ In. Hence (−1)ak−2 /∈ I
and (−1)ak−1 /∈ I. So A 6= I and B 6= I. By using (3.2), (−1)(−2)((−1)ak−1)≤ n. Also
((−1)ak−1) does not divide ((−1)ak−2). Hence by Lemma 3.3, I = (〈(−1)ak−2〉∪ I)∩
(〈(−1)ak−1〉∪ I) = A∩B. Thus, I is not an irreducible ideal of Z−0 .

The following theorem gives the characterization of irreducible principal T -ideals in the
ternary semiring Z−0 .

Theorem 3.5. A principal T-ideal I = 〈a〉∪ In is irreducible in Z−0 if and only if any one of
the following conditions holds:

1) a = 0, n≥−3;
2) a = −1, for any n;
3) a = −2, for any n;
4) a = −3, n >−6;
5) a≤−4, n≥−3.

Proof. Follows from Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4 and Corollary
3.1.
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