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1. Introduction

In the recent past, inequalities about the Euler gamma function Γ(x) have attracted the at-
tention of many authors. In particular, several researchers established interesting properties
of the volume of the unit ball in Rn,

(1.1) Ωn =
πn/2

Γ(n/2+1)
,n = 1,2, . . . .

In the paper [5], it was proved that the sequence {Ωn}n>1 attains its maximum at n = 5.
In the paper [4], the sequence

{
(Ωn)1/n

}
n>1 is proved to be monotonically decreased to

zero. Other results have been established by Anderson and Qiu [3], and Klain and Rota
[9] who proved that the sequence

{
(Ωn)1/n lnn

}
n>1 decreases to e−1/2, and the sequence

{nΩn/Ωn−1}n>1 is increasing, respectively. Motivated by the following inequalities

(1.2) (Ωn+1)n/(n+1) < Ωn,n = 1,2, . . .

and

(1.3) 1 <
Ω2

n

Ωn−1Ωn+1
< 1+

1
n

stated in [4] and [9], Alzer proved in [1] that for all n > 1,

(1.4) a(Ωn+1)n/(n+1) 6 Ωn 6 b(Ωn+1)n/(n+1)
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with the best possible constants a = 2/
√

π = 1.1283 · · · and b =
√

e = 1.6487 · · · . An
improvement of the double inequality (1.4) was given in [11]: for n > 4,

(1.5)
k

2n
√

2π
6

Ωn

(Ωn+1)n/(n+1) 6

√
e

2n
√

2π

where k = (64 ·72011/12 ·21/22)/(10395π5/11) = 1.5714 · · · . Equality in the left-hand side
of (1.5) occurs if and only if n = 11.

The following class of inequalities

(1.6)

√
n+a
2π

6
Ωn−1

Ωn
6

√
n+b
2π

was studied by Alzer [1] and Qiu [14] where a,b are real parameters. Later, the inequal-
ity (1.6) was recovered in [6]. Furthermore, Mortici established the following new sharp
bounds

(1.7)

√
n+ 1

2
2π

6
Ωn−1

Ωn
6

√
n+ 1

2
2π

+
1

16nπ

which improves the previous results of Alzer et al. in [11]. Therefore, Alzer proved in [1]
that for n > 1,

(1.8)
(

1+
1
n

)α

<
Ω2

n

Ωn−1Ωn+1
<

(
1+

1
n

)β

in which the best possible constants α = 2− log2 π and β = 1/2. Later, in [11], Mortici
showed that for every n > 4,

(1.9)
(

1+
1
n

)1/2−1/4n

<
Ω2

n

Ωn−1Ωn+1
<

(
1+

1
n

)1/2

.

Related references see [7, 8, 13, 15].
The aim of this paper is to establish some new inequalities involving the volume of the

unit ball in Rn.

2. Lemmas

In order to prove the main results, following lemmas are useful.

Lemma 2.1. [10, p. 390] Let xi ∈ R+, i = 1,2, . . . ,n and ∑
n
i=1 xi = nx, then

(2.1)
n

∏
i=1

Γ(xi) > (Γ(x))n.

Lemma 2.2. [2, Legendre] For every z 6=−1,−2, . . ., then

(2.2) 22z−1
Γ(z)Γ(z+1/2) = π

1/2
Γ(2z).

Lemma 2.3. [4, p. 131] For every integer n > 1, the sequence
{
(Ωn)1/n

}
n>1 is monotoni-

cally decreasing to zero.

Lemma 2.4. [12, p. 612] For every x ∈ [1,∞), we have

(2.3)
√

π

(x
e

)x√
2x+α < Γ(x+1) <

√
π

(x
e

)x√
2x+β

where α = 1/3 and β = 3
√

391/30−2 = 0.3533 · · · .
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3. Main results

In what follows, we always suppose β = 3
√

391/30−2 = 0.3533 · · · .

Theorem 3.1. For all natural number n, we have

(3.1) Ωn 6 (Ω1Ω2 · · ·Ωn−1)1/(n−1).

If n is odd integer, then

(3.2) (Ω1Ω2 · · ·Ωn)1/n 6 Ω(n+1)/2.

Proof. Using Lemma 2.3, we easily prove inequality (3.1). Next, we only prove inequality
(3.2). By virtue of Lemma 2.1, we get

(Ω1Ω2 · · ·Ωn)1/n =

(
π1/2

Γ(1/2+1)
π2/2

Γ(2/2+1)
· · · πn/2

Γ(n/2+1)

)1/n

=
π(n+1)/4

(Γ(1/2+1)Γ(2/2+1) · · ·Γ(n/2+1))1/n

6
π(n+1)/4

Γ((n+1)/4+1)
= Ω(n+1)/2.

Theorem 3.2. For every integer n > 1, we have

(3.3)
(n+1)

(
n+ 1

6

)
(n+β )2 <

Ω2
n

Ωn−1Ωn+1
<

(n+1)
(

n+ β

2

)
(
n+ 1

3

)2 .

Proof. Easy computation and simplification yield

(3.4)
Ω2

n

Ωn−1Ωn+1
=

Γ((n+1)/2)Γ((n+3)/2)

(Γ((n+2)/2))2 .

Setting z = (n+1)/2 and z = (n+3)/2 in (2.2) of Lemma 2.2, we obtain

(3.5) 2n
Γ((n+1)/2)Γ((n+2)/2) = π

1/2n!

and

(3.6) 2n+2
Γ((n+3)/2)Γ((n+4)/2) = π

1/2
Γ(n+3) = π

1/2(n+2)!.

Combining (3.4), (3.5) and (3.6) leads to

(3.7)
Ω2

n

Ωn−1Ωn+1
=

√
π(n+2)!

√
πn!

2n2n+2Γ((n+4)/2)(Γ((n+2)/2))3 =
π(n+1)!n!

22n+1 (Γ(n/2+1))4

where we apply Γ((n+4)/2) = (n+2)/2Γ((n+2)/2).
Using Lemma 2.4, we have

(3.8)
√

π

( n
2e

)n/2
√

n+
1
3

< Γ(n/2+1) <
√

π

( n
2e

)n/2√
n+β

and

(3.9)
√

π

(n
e

)n
√

2n+
1
3

< n! <
√

π

(n
e

)n√
2n+β .
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Applying (3.8) and (3.9), we have

(3.10)
Ω2

n

Ωn−1Ωn+1
>

π

(√
π
( n

e

)n
√

2n+ 1
3

)2

(n+1)

22n+1
(√

π
( n

2e

)n/2√n+β

)4 =
(n+1)

(
n+ 1

6

)
(n+β )2

and

(3.11)
Ω2

n

Ωn−1Ωn+1
<

π

(√
π
( n

e

)n√2n+β

)2
(n+1)

22n+1

(√
π
( n

2e

)n/2
√

n+ 1
3

)4 =
(n+1)

(
n+ β

2

)
(
n+ 1

3

)2 .

The proof of Theorem 3.2 is complete.
Noting simple inequalities

(n+1)
(
n+ 1

6

)
(n+β )2 >

n+ 1
6

n+β

and
(n+1)

(
n+ β

2

)
(
n+ 1

3

)2 <
n+1
n+ 1

3

,

we get the Corollary 3.1.

Corollary 3.1. For every integer n > 1, it holds

(3.12)
n+ 1

6
n+β

<
Ω2

n

Ωn−1Ωn+1
<

n+1
n+ 1

3

.

Theorem 3.3. For every integer n > 1, it holds

√
e

2n+2
√

2π

(√
n+ 4

3

)(2n+1)/(n+1)

√
(n+1)

(
n+1+ β

2

) <
Ωn

(Ωn+1)n/(n+1)

<

√
e

2n+2
√

2π

(√
n+1+β

)(2n+1)/(n+1)

√
(n+1)

(
n+ 7

6

) .

(3.13)

Proof. Setting z = (n+2)/2 in (2.2) of Lemma 2.2, we get

(3.14) 2n+1
Γ((n+2)/2)Γ((n+3)/2) = π

1/2
Γ(n+2) = π

1/2(n+1)!.

Easy computation and simplification yield

Ωn

(Ωn)n/(n+1) =
πn/2

Γ(n/2+1)
(Γ((n+1)/2+1))n/(n+1)(

π(n+1)/2
)n/(n+1)

=
2n+1 (Γ((n+1)/2+1))n/(n+1)

√
π (n+1)!

.

(3.15)
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Similarly to proof of Theorem 3.2, we have

Ωn

(Ωn+1)n/(n+1) >

2n+1
(√

π
( n+1

2e

)(n+1)/2
√

n+1+ 1
3

)(2n+1)/(n+1)

√
π
( n+1

e

)n+1√
2n+2+β

=
√

e
2n+2
√

2π

(√
n+ 4

3

)(2n+1)/(n+1)

√
(n+1)

(
n+1+ β

2

)
and

Ωn

(Ωn+1)n/(n+1) <
2n+1

(√
π
( n+1

2e

)(n+1)/2√
n+1+β

)(2n+1)/(n+1)

√
π
( n+1

e

)n+1
√

2n+2+ 1
3

=
√

e
2n+2
√

2π

(√
n+1+β

)(2n+1)/(n+1)

√
(n+1)

(
n+ 7

6

) .

The proof of Theorem 3.3 is complete.
Noting simple inequalities(√

n+1+β

)(2n+1)/(n+1)

√
(n+1)

(
n+ 7

6

) 6
(n+1+β )(2n+2)/(2n+2)√

(n+1)(n+1)
=

n+1+β

n+1

and (√
n+ 4

3

)(2n+1)/(n+1)

√
(n+1)

(
n+1+ β

2

) >

(√
n+1+ β

2

)(2n+1)/(n+1)

n+1+ β

2

>
1

2n+2
√

n+1+ β

2

,

we easily get the Corollary 3.2.

Corollary 3.2. For every integer n > 1, we have

(3.16)
√

e
2n+2
√

2π

1
2n+2
√

n+1+ β

2

<
Ωn

(Ωn+1)n/(n+1) <

√
e

2n+2
√

2π

n+1+β

n+1
.

Finally, we give a monotone result related to the volume of the unit ball in Rn.

Theorem 3.4. For every integer n > 3, the sequence
{
(Ωn)1/Hn

}
n>3 is monotonically

decreasing to zero, where Hn denotes the n-th harmonic number. Further, the sequence{
(Ωn)1/Hn

}
n>1 attains its maximum at n = 3.

Proof. By taking the logarithm, we only prove that

(3.17)
lnΩn

Hn
>

lnΩn+1

Hn+1
.
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For n > 5, using (1.7), we have

lnΩn

Hn
− lnΩn+1

Hn+1
>

ln
√

n+ 3
2

2π

Hn+1
> 0.

Direct computation can yield
lnΩ1

H1
<

lnΩ2

H2
<

lnΩ3

H3
>

lnΩ4

H4
>

lnΩ5

H5
.

Furthermore, by Stolz’s theorem, we get

lim
n→∞

(Ωn)
1

Hn = exp
{

lim
n→∞

lnΩn

Hn

}
= exp

{
lim
n→∞

lnΩn− lnΩn−1

Hn−Hn−1

}
= exp

{
lim
n→∞

n ln
Ωn

Ωn−1

}
= 0.

The proof of Theorem 3.4 is complete.

Remark 3.1. The sequence (Ωn)1/Hn can be rearranged as
{
[(Ωn)1/n]n/Hn

}
. Since (Ωn)1/n

is decreasing to 0 and n/Hn can be easily proved to be increasing to ∞, so limn→∞(Ωn)1/Hn =
0 can be proved easily.

Remark 3.2. By the well-known software MATHEMATICA Version 7.0.0, we can show
that

(1) the double inequality (3.3) is better than (1.9),
(2) the double inequality (3.13) and (1.5) are not included each other.
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[10] D. S. Mitrinović, Analytic Inequalities, Springer, New York, 1970.



Several Inequalities for the Volume of the Unit Ball in Rn 1183

[11] C. Mortici, Monotonicity properties of the volume of the unit ball in Rn, Optim. Lett. 4 (2010), no. 3, 457–
464.

[12] C. Mortici, On Gospers formula for the gamma function, J. Math. Inequal. 5 (2011), no. 4, 611–613.
[13] F. Qi, C.-F. Wei and B.-N. Guo, Complete monotonicity of a function involving the ratio of gamma functions

and applications, Banach J. Math. Anal. 6 (2012), no. 1, 35–44.
[14] S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp.

74 (2005), no. 250, 723–742.
[15] J.-L. Zhao, B.-N. Guo and F. Qi, A refinement of a double inequality for the gamma function, Publ. Math.

Debrecen 80 (2012), no. 3-4, 333–342.




