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Abstract

Let gy, g3 be univalent in A = {z:|z]| < 1}. We give some applications
of first order differential superordinations to obtain sufficient conditions

for normalized analytic functions f(2) to satisfy

a1(2).< 2f"(2)/f(2) < az2(2).
1. Introduction

Let H be the class of analytic functions in A :={z:|z|<1} and

H(a, n) be the subclass of H consisting of functions of the form f(z) =
a+a,z" +a,,.12"" +.... Let A be the class of all analytic functions
f@)=z+agz® +...(z € A). Let p,heH and let ¢(r, s, t; 2): C3 x A
- C. If p and ¢(p(2), zp'(z), 2°p"(z); z) are univalent and if p satisfies

the second order superordination
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Mz) < 6(p(z), 2p'(2), 2°p"(z): 2), (1.1)

then p is a solution of the differential superordination (1.1). (If f is
subordinate to F, then F is superordinate to f.) An analytic function q is
called a subordinant if q < p for all p satisfying (1.1). A univalent

subordinant § that satisfies ¢ < ¢ for all subordinants q of (1.1) is said to

be best subordinant. Recently Miller and Mocanu [3] obtained conditions
on h, q and ¢ for which the following implication holds:

h(z) < &(p(2), 2p'(2), 2%p"(2); 2) = q(z) < pl2).

Using the results of Miller and Mocanu (3], Bulboaca [2] have considered
certain classes of first order differential superordinations as well as
superordination-preserving integral operators [1]. In the present paper,
we give some applications of first order differential superordinations for

functions in A.
In our present investigation, we shall need the following:

Definition 1.1 [3, Definition 2, p. 817]. Denote by @, the set of all

functions f(z) that are analytic and injective on A — E(f), where
E(f) = {¢ € oA : lim f(2) = o},
z2-C

and are such that f(¢) # 0 for ¢ € éA - E(f).

Lemma 1.2 [2]. Let q(z) be univalent in the unit disk A and 8 and ¢

be analytic in a domain D containing q(A). Suppose that

(1) R[9(q(=))/e(a(z))] = O for z € A,
() 2q'(2)p(q(2)) ts starlike univalent in A.

If p(z) e H(@(0), )N Q, with p(A)c D, and 9(p(2)) + 2p'(z)e(p(2)) is

untvalent in A, then
8(q(2)) + 29'(2)9(q(2)) < 9(p(2)) + 2p'(2)9(p(2)) (1.2)

implies q(z) < p(z) and q(z) is the best subordinant.
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2. Sandwich Theorems

By making use of Lemma 1.2, we obtain the following results.

Lemma 2.1. Let q(z) be convex univalent in A and a, B, y € C. Further

assume that

J‘t[% + % q(z)] > 0.

If p(z) € H(q(0),1)N @, ap(z) + sz(z) +vzp'(2) is univalent in A, then
aq(z) + Ba®(2) + v2q'(2) < ap(2) + Bp*(2) + yzp'(2)
implies q(z) < p(z) and q(z) is the best subordinant.
Proof. Define the functions 8 and ¢ by
9(w) := oaw + pw? and o) = y.

Clearly, 3(w) and ¢(w) are analytic in C. Also

g 3@(E) _ o 28 S
") S Baw) = 0

and the function yzq'(z) is starlike univalent in A. Lemma 2.1 now follows

by an application of Lemma 1.2.

Remark 1. When o = 1 and B = 0, Lemma 2.1 reduces to {3, Theorem
8, p. 822). When o =B = 0 and y = 1 Lemma 2.1 reduces to [3, Theorem
9, p. 823].

By making use of Lemma 2.1, we now prove the following:

Theorem 2.2. Let o € C. Let q(z) be convex univalent in A and Rq(z)

> ER—— If fe A 2f'(2)/f(z) e HQ,1)NQ, zlf((z)) a zsz(;()z) is untvalent

in A, then

2
1 - a)g(z) + ag*(@) + a2q'(2) < f((z)) o ff(z()Z)
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implies
2f'(z)
z) <

and q(z) is the best subordinant.

Proof. Define the function p(z) by

ple) = T8,

Then a computation shows that

' 2en
z;(iz)) +aZ ff(z()z) = (1~ a)p(z) + ap®(2) + azp'(2).

By using Lemma 2.1, we have the result.

Together with the corresponding result for differential subordination
(see Ravichandran [4]), we obtain the following “sandwich result™

Corollary 2.8. Let q,(z) and qs(z) be convex univalent in A. Let

a € C. Assume that Rq;(z) 2 R az—al for i =12 If f € A, 2f'(2)/f(2) €

ne yne 26 22"(2)

+ o is univalent in A, then

f(2) f(z)
' 2 cn
< (1 -a)gy(z)+ aq%(z) + azqh(2)
implies
0@ < TE < a2

and q(z) and qy(z) are respectively the best subordinant and best
dominant.
Lemma 2.4. Let q(z) # 0 be univalent in A and a, p € C. Further

assume that R[aBq(z)] = 0 and 2q'(z)/q(z) is starlike univalent in A. If

p(z) € H(g(0), )N Q, p(z) # 0, ap(z) + B ZIIZ&(ZZ)) is univalent in A, then
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aa(e) + p 24 < ape)  p )

implies q(z) < p(z) and q(2) is the best subordinant.

- Proof. The Lemma 2.4 follows from Lemma 1.2 when the functions 9
and ¢ are given by 3(w) := aw and o(w) = B/w.
By making use of Lemma 2.4, we now prove the following:

Theorem 2.5. Let o € C. Let g(z) # 0 be univalent in A. Further
assume that R[aq(z)] = 0 and 2q'(2)/q(z) is starlike univalent in A. If

feA 0=z (2)/f(z2) eH1,1)NQ, Q1-a) 2/ (2) + oc(l + zf"(z)) is univalent

f(z) f'(z)
in A, then
g 20) S, (), HE)
@) o g5 < -0 5 o1+ )
tmplies
f'(2)
9(2) < 55

and q(z) is the best subordinant.
Proof. Theorem 2.5 follows from Lemma 2.4 by taking p(z) to be the
function given by p(z) := zf' (2)/f(2).

Together with the corresponding result for differential subordination
(see Ravichandran and Darus [6]), we obtain the following:

Corollary 2.6. Let o € C. Let q;(z) # 0 (i =1, 2) be univalent in A.
Further assume that R[ag;(z)] = 0 for i =1, 2 and 2q} (2)/q;(z) ( =1, 2)

is starlike univalent in A. If f e A, 0= 2f'(2)/f(z) e HI,1)NQ, 1 -« z;((z))

+ a(l + (2 )) 1s univalent in A, then

f'(z)

24i(2) £() () 2a(2)
@()+a T < (=) rol1+ 3 RCGRE ()
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implies

q;(2) < —Z/]:(—(ZZ)2 < qa(2)

and q,(z) and q9(z) are respectively the best subordinant and the best
dominant.

By making use of Lemma 2.4, we obtain the following:

Theorem 2.7. Let q(z) =0 be univalent in A and zq'(z)/q(z) be starlike

univalent in A. If f € A, 0 # 22" (2)/f%(z) e H(1, 1) N Q, (2;)(2()2) _9 2;&(22))

is untvalent in A, then

4@ | )G, )
@ e @

implies

221
“d<ng

and q(z) is the best subordinant.

Together with the corresponding result for differential subordination
(see Ravichandran [4]), we obtain the following:

Corollary 2.8. Let q;(z) # 0 be univalent in A and zq{(z)/q;(z) be

starlike univalent in Afor i =1, 2. If fe A,0# z?‘f’(z)/fz(z)e HA,1)NQ,

(=) (2) _42'()
ey " 1@

is univalent in A, then

@) | @) ) zayE)
a® C e P ee

implies

2 rre
q1(2) < sz(‘zz)) < q2(2)
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and q(z) and qo(z) are respectively the best subordinant and best

dominant.

Lemma 2.9. Let g(2) # 0 be univalent in A and zq' (2)/q%(2) be starlike

univalent in A. If p(z) € H(q(0), 1) N @, p(z) # 0, zp’ (2)/p?(2) is univalent
in A, then
z2q'(z) _ zp'(z)
2 2
q°(z)  p(2)
implies q(z) < p(z) and q(z) is the best subordinant.

Proof. Lemma 2.9 follows from Lemma 1.2 when 8(w):=0 and
o) = Yw?.
Theorem 2.10. Let q(z) # 0 be untvalent in A and zq' (2)/q%(z) be

starlike univalent in"A. If f € A,0 = zf'(2)/f(2) e HQ,1)N @, liz%[%z/)f/égz—)

is univalent in A, then
zq'(z) , 1+2"f(2)/f'(z)
TR OV®)

implies q(z) < 2f' (2)/f(2) and q(z) is the best subordinant.
Proof. The result follows from Lemma 2.9 by taking p(z)=zf"(2)/f(2).

Together with the corresponding result for differential subordination
(see Ravichandran and Darus [5]), we obtain the following:

Theorem 2.11. Let q;(z) # 0 be univalent in A and z2q; (z)/qlz(z) be
starlike univalentin Afori =1, 2. If f € A, 0 = 2f'(2)/f(z) e HQ, DN Q,

1+2f"(2)/f'(2)
2f'(2)/[(2)

is univalent in A, then

wi(z) 1+ o" @G . 25
T O IR TS

implies q1(2) < 2f'(2)/f(2) < q2(2) and q;(z) and ga(2) are respectively

the best subordinant and the best dominant.
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