DIFFERENTIAL SANDWICH THEOREMS FOR CERTAIN ANALYTIC FUNCTIONS

ROSIHAN M. ALI, V. RAVICHANDRAN, M. HUSSAIN KHAN

and

K. G. SUBRAMANIAN

(Received June 30, 2004)

Submitted by Ravi P. Agarwal

Abstract

Let \(q_1, q_2 \) be univalent in \(\Delta := \{ z : |z| < 1 \} \). We give some applications of first order differential superordinations to obtain sufficient conditions for normalized analytic functions \(f(z) \) to satisfy

\[q_1(z) < \frac{zf'(z)}{f(z)} < q_2(z). \]

1. Introduction

Let \(\mathcal{H} \) be the class of analytic functions in \(\Delta := \{ z : |z| < 1 \} \) and \(\mathcal{H}(a, n) \) be the subclass of \(\mathcal{H} \) consisting of functions of the form \(f(z) = a + a_nz^n + a_{n+1}z^{n+1} + \ldots \). Let \(\mathcal{A} \) be the class of all analytic functions \(f(z) = z + a_2z^2 + \ldots (z \in \Delta) \). Let \(p, h \in \mathcal{H} \) and let \(\phi(r, s, t; z) : \mathbb{C}^3 \times \Delta \rightarrow \mathbb{C} \). If \(p \) and \(\phi(p(z), zp'(z), z^2p''(z); z) \) are univalent and if \(p \) satisfies the second order superordination

2000 Mathematics Subject Classification: Primary 30C80; Secondary 30C45.

Key words and phrases: differential subordinations, differential superordinations, subordinant.

© 2004 Pushpa Publishing House
then p is a solution of the differential superordination (1.1). (If f is subordinate to F, then F is superordinate to f.) An analytic function q is called a subordinant if $q < p$ for all p satisfying (1.1). A univalent subordinant \tilde{q} that satisfies $q < \tilde{q}$ for all subordinants q of (1.1) is said to be best subordinant. Recently Miller and Mocanu [3] obtained conditions on h, q and ϕ for which the following implication holds:

$$h(z) < \phi(p(z), zp'(z), z^2p''(z); z) \Rightarrow q(z) < p(z).$$

Using the results of Miller and Mocanu [3], Bulboaca [2] have considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [1]. In the present paper, we give some applications of first order differential superordinations for functions in A.

In our present investigation, we shall need the following:

Definition 1.1 [3, Definition 2, p. 817]. Denote by Q, the set of all functions $f(z)$ that are analytic and injective on $\Delta - E(f)$, where

$$E(f) = \{\zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty\},$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta - E(f)$.

Lemma 1.2 [2]. Let $q(z)$ be univalent in the unit disk Δ and ϕ and ψ be analytic in a domain D containing $q(\Delta)$. Suppose that

1. $\Re[\phi'(q(z))/\psi(q(z))] \geq 0$ for $z \in \Delta$,

2. $zq'(z)\psi(q(z))$ is starlike univalent in Δ.

If $p(z) \in \mathcal{H}(q(0), 1) \cap Q$, with $p(\Delta) \subset D$, and $q(p(z)) + zp'(z)\psi(p(z))$ is univalent in Δ, then

$$q(q(z)) + zq'(z)\psi(q(z)) < q(p(z)) + zp'(z)\psi(p(z)) \quad (1.2)$$

implies $q(z) < p(z)$ and $q(z)$ is the best subordinant.
2. Sandwich Theorems

By making use of Lemma 1.2, we obtain the following results.

Lemma 2.1. Let \(q(z) \) be convex univalent in \(\Delta \) and \(\alpha, \beta, \gamma \in \mathbb{C} \). Further assume that

\[
\Re \left[\frac{\alpha}{\gamma} + \frac{2\beta}{\gamma} q(z) \right] \geq 0.
\]

If \(p(z) \in \mathcal{H}(q(0), 1) \cap Q \), \(\alpha p(z) + \beta p^2(z) + \gamma p'(z) \) is univalent in \(\Delta \), then

\[
\alpha q(z) + \beta q^2(z) + \gamma q'(z) < \alpha p(z) + \beta p^2(z) + \gamma p'(z)
\]

implies \(q(z) < p(z) \) and \(q(z) \) is the best subordinant.

Proof. Define the functions \(\beta \) and \(\varphi \) by

\[
\beta(w) := \alpha w + \beta w^2 \quad \text{and} \quad \varphi(w) := \gamma.
\]

Clearly, \(\beta(w) \) and \(\varphi(w) \) are analytic in \(\mathbb{C} \). Also

\[
\Re \left[\frac{\beta(q(z))}{\varphi(q(z))} \right] = \Re \left[\frac{\alpha}{\gamma} + \frac{2\beta}{\gamma} q(z) \right] \geq 0
\]

and the function \(\gamma q'(z) \) is starlike univalent in \(\Delta \). Lemma 2.1 now follows by an application of Lemma 1.2.

Remark 1. When \(\alpha = 1 \) and \(\beta = 0 \), Lemma 2.1 reduces to [3, Theorem 8, p. 822]. When \(\alpha = \beta = 0 \) and \(\gamma = 1 \) Lemma 2.1 reduces to [3, Theorem 9, p. 823].

By making use of Lemma 2.1, we now prove the following:

Theorem 2.2. Let \(\alpha \in \mathbb{C} \). Let \(q(z) \) be convex univalent in \(\Delta \) and \(\Re q(z) \)

\[
\geq \Re \frac{\alpha - 1}{2\alpha}.
\]

If \(f \in \mathcal{A}, zf'(z)/f(z) \in \mathcal{H}(1, 1) \cap Q \), then \(z \frac{f'(z)}{f(z)} + \alpha \frac{z^2 f''(z)}{f(z)} \) is univalent in \(\Delta \), then

\[
(1 - \alpha) q(z) + \alpha q^2(z) + \alpha q'(z) < \frac{zf'(z)}{f(z)} + \alpha \frac{z^2 f''(z)}{f(z)}
\]
implies

\[q(z) < \frac{zf'(z)}{f(z)} \]

and \(q(z) \) is the best subordinant.

Proof. Define the function \(p(z) \) by

\[p(z) := \frac{zf'(z)}{f(z)}. \]

Then a computation shows that

\[\frac{zf'(z)}{f(z)} + \alpha \frac{z^2f''(z)}{f(z)} = (1 - \alpha)p(z) + \alpha p^2(z) + \alpha zp'(z). \]

By using Lemma 2.1, we have the result.

Together with the corresponding result for differential subordination (see Ravichandran [4]), we obtain the following "sandwich result":

Corollary 2.3. Let \(q_1(z) \) and \(q_2(z) \) be convex univalent in \(\Delta \). Let \(\alpha \in \mathbb{C} \). Assume that \(\Re q_i(z) \geq \Re \frac{\alpha - 1}{2\alpha} \) for \(i = 1, 2 \). If \(f \in A, zf'(z)/f(z) \in \mathcal{H}(1, 1) \cap Q, \frac{zf'(z)}{f(z)} + \alpha \frac{z^2f''(z)}{f(z)} \) is univalent in \(\Delta \), then

\[
(1 - \alpha)q_1(z) + \alpha q_1^2(z) + \alpha zq_1'(z) < \frac{zf'(z)}{f(z)} + \alpha \frac{z^2f''(z)}{f(z)} < (1 - \alpha)q_2(z) + \alpha q_2^2(z) + \alpha zq_2'(z)
\]

implies

\[q_1(z) < \frac{zf'(z)}{f(z)} < q_2(z) \]

and \(q_1(z) \) and \(q_2(z) \) are respectively the best subordinant and best dominant.

Lemma 2.4. Let \(q(z) \neq 0 \) be univalent in \(\Delta \) and \(\alpha, \beta \in \mathbb{C} \). Further assume that \(\Re [\alpha \beta q(z)] \geq 0 \) and \(zq'(z)/q(z) \) is starlike univalent in \(\Delta \). If \(p(z) \in \mathcal{H}(q(0), 1) \cap Q, p(z) \neq 0, \alpha p(z) + \beta zp'(z)/p(z) \) is univalent in \(\Delta \), then
\[a q(z) + \beta \frac{z q'(z)}{q(z)} < a p(z) + \beta \frac{z p'(z)}{p(z)} \]

implies \(q(z) < p(z) \) and \(q(z) \) is the best subordinant.

Proof. The Lemma 2.4 follows from Lemma 1.2 when the functions \(\varphi \) and \(\varphi \) are given by \(\varphi(w) := \alpha w \) and \(\varphi(w) := \beta/w \).

By making use of Lemma 2.4, we now prove the following:

Theorem 2.5. Let \(\alpha \in \mathbb{C} \). Let \(q(z) \neq 0 \) be univalent in \(\Delta \). Further assume that \(\Re[\alpha q(z)] \geq 0 \) and \(z q'(z)/q(z) \) is starlike univalent in \(\Delta \). If \(f \in A, \) \(0 \neq z f''(z)/f(z) \in H(1,1) \cap Q, \) \((1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \) is univalent in \(\Delta \), then

\[q(z) + \alpha \frac{z q'(z)}{q(z)} < (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \]

implies

\[q(z) < \frac{zf'(z)}{f(z)} \]

and \(q(z) \) is the best subordinant.

Proof. Theorem 2.5 follows from Lemma 2.4 by taking \(p(z) \) to be the function given by \(p(z) := zf'(z)/f(z) \).

Together with the corresponding result for differential subordination (see Ravichandran and Darus [6]), we obtain the following:

Corollary 2.6. Let \(\alpha \in \mathbb{C} \). Let \(q_i(z) \neq 0 \) \((i = 1, 2) \) be univalent in \(\Delta \). Further assume that \(\Re[\alpha q_i(z)] \geq 0 \) for \(i = 1, 2 \) and \(z q_i'(z)/q_i(z) \) \((i = 1, 2) \) is starlike univalent in \(\Delta \). If \(f \in A, \) \(0 \neq z f''(z)/f(z) \in H(1,1) \cap Q, \) \((1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \)

\[+ \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \] is univalent in \(\Delta \), then

\[q_1(z) + \alpha \frac{z q_1'(z)}{q_1(z)} < (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) < q_2(z) + \alpha \frac{z q_2'(z)}{q_2(z)} \]
implies

\[q_1(z) < \frac{zf'(z)}{f(z)} < q_2(z) \]

and \(q_1(z) \) and \(q_2(z) \) are respectively the best subordinant and the best dominant.

By making use of Lemma 2.4, we obtain the following:

Theorem 2.7. Let \(q(z) \neq 0 \) be univalent in \(\Delta \) and \(zq'(z)/q(z) \) be starlike univalent in \(\Delta \). If \(f \in \mathcal{A}, 0 < z^2f'(z)/f(z) \in \mathcal{H}(1,1) \cap Q, \frac{(zf')''(z)}{f'(z)} - 2 \frac{zf'(z)}{f(z)} \) is univalent in \(\Delta \), then

\[\frac{zq'(z)}{q(z)} < \frac{(zf')'(z)}{f'(z)} - 2 \frac{zf'(z)}{f(z)} \]

implies

\[q(z) < \frac{z^2f'(z)}{f^2(z)} \]

and \(q(z) \) is the best subordinant.

Together with the corresponding result for differential subordination (see Ravichandran [4]), we obtain the following:

Corollary 2.8. Let \(q_i(z) \neq 0 \) be univalent in \(\Delta \) and \(zq_i'(z)/q_i(z) \) be starlike univalent in \(\Delta \) for \(i = 1, 2 \). If \(f \in \mathcal{A}, 0 < z^2f'(z)/f^2(z) \in \mathcal{H}(1,1) \cap Q, \frac{(zf')''(z)}{f'(z)} - 2 \frac{zf'(z)}{f(z)} \) is univalent in \(\Delta \), then

\[\frac{zq_1(z)}{q_1(z)} < \frac{(zf')'(z)}{f'(z)} - 2 \frac{zf'(z)}{f(z)} < \frac{zq_2(z)}{q_2(z)} \]

implies

\[q_1(z) < \frac{z^2f'(z)}{f^2(z)} < q_2(z) \]
and \(q_1(z) \) and \(q_2(z) \) are respectively the best subordinant and best dominant.

Lemma 2.9. Let \(q(z) \neq 0 \) be univalent in \(\Delta \) and \(zq'(z)/q^2(z) \) be starlike univalent in \(\Delta \). If \(p(z) \in \mathcal{H}(0,1) \cap Q, p(z) \neq 0, \) \(zp'(z)/p^2(z) \) is univalent in \(\Delta \), then

\[
\frac{zq'(z)}{q^2(z)} < \frac{zp'(z)}{p^2(z)}
\]

implies \(q(z) < p(z) \) and \(q(z) \) is the best subordinant.

Proof. Lemma 2.9 follows from Lemma 1.2 when \(g(w) := 0 \) and \(\varphi(w) := 1/w^2 \).

Theorem 2.10. Let \(q(z) \neq 0 \) be univalent in \(\Delta \) and \(zq'(z)/q^2(z) \) be starlike univalent in \(\Delta \). If \(f \in \mathcal{A}, 0 \neq zf''(z)/f'(z) \in \mathcal{H}(1,1) \cap Q, \) \(1 + zf''(z)/f'(z) \) is univalent in \(\Delta \), then

\[
1 + \frac{zq'(z)}{q^2(z)} < \frac{1 + zf''(z)/f'(z)}{zf''(z)/f'(z)}
\]

implies \(q(z) < zf''(z)/f'(z) \) and \(q(z) \) is the best subordinant.

Proof. The result follows from Lemma 2.9 by taking \(p(z) = zf'(z)/f(z) \).

Together with the corresponding result for differential subordination (see Ravichandran and Darus [5]), we obtain the following:

Theorem 2.11. Let \(q_i(z) \neq 0 \) be univalent in \(\Delta \) and \(zq^i(z)/q^2(z) \) be starlike univalent in \(\Delta \) for \(i = 1, 2 \). If \(f \in \mathcal{A}, 0 \neq zf''(z)/f'(z) \in \mathcal{H}(1,1) \cap Q, \) \(1 + zf''(z)/f'(z) \) is univalent in \(\Delta \), then

\[
1 + \frac{zq_1(z)}{q_1^2(z)} < \frac{1 + zf''(z)/f'(z)}{zf''(z)/f'(z)} < 1 + \frac{zq_2(z)}{q_2^2(z)}
\]

implies \(q_1(z) < zf''(z)/f'(z) < q_2(z) \) and \(q_1(z) \) and \(q_2(z) \) are respectively the best subordinant and the best dominant.
Acknowledgement

Research of R. M. Ali and V. Ravichandran are respectively supported by a Universiti Sains Malaysia Fundamental Research Grant and a post-doctoral fellowship.

References

