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INEQUALITIES FOR ANALYTIC FUNCTIONS
DEFINED BY CERTAIN LINEAR OPERATORS

R. Aghalary, Rosihan M. Ali, S. B. Joshi and V. Ravichandran

Abstract

In the present investigation, we obtain inequalities for analytic functions in
the open unit disk which are associated with the Dziok-Srivastava linear

operator H ;,’"' and the multiplier transform /,(n,4) .

1. Introduction
Let A, denote the class of all analytic functions of the form
f()=2"+ ) az* (zeA:={zeCz|<l}) )
k=p+]
and let 4, := 4. For two functions f(z) given by (1) and g(z)=z +Zk b

the Hadamard product (or convolution) of /* and g is defined by

(fre)2)=2"+ 3 abz =(g* N)z). @

k=p+l

Fora;eC (j=12,.,0) and B,eC-{0,~1,-2,.}(j=L2,..m), the

generalized hypergeometric function | F, (Q,,....Q;; B,,..., B,,;2) is defined by the
infinite series

. (@), (), '
IF:n(ala---val’ﬂl’ m’ )_Z(ﬂ: (ﬂ':) nl
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(<m+Ll,me N, :={0,1,2,..})

where (@), is the Pochhammer symbol defined by

(a), = 10axm) { L (n=0);

I'(a) a(a+1)a+2)..(a+n-1), (neN:={,2,3..}).
Corresponding to the function #,(@,,...a; B, B,32) = Z'F (.0 By B3 2)

the Dziok-Srivastava operator [5] (see also [16]) H™ (a,,....@;; B, ---» B, ) is defined
by the Hadamard product

HU" (@y5ees @3 Bsos B F(2) 1= By (s @3 By B3 D) * S (2)

2 (@) pep- )y a2
— I’+ 4 4 n .
’ "=zl’+| (ﬂl )n—p "'(ﬁm)n—p (n_ p)' (3)

To make the notation simple, we write

H,’J’"[a.]f(z) = H;,/"")(al,,_.,a,;ﬂl,...,ﬁ,,,)f(z)-

Special cases of the Dziok-Srivastava linear operator includes the Hohlov linear
operator [6], the Carlson-Shaffer linear operator [2]. the Ruscheweyh derivative
operator [14], the generalized Bernardi-Libera-Livingston linear integral operator
(c¢f [1], [7], [10)) and the Srivastava-Owa fractional derivative operators (cf [12],
[13D).

Motivated by the multiplier transformation on 4, we define the operator
1 (n, Aond, by the following infinite series

o (k+a)
A =z k >0).
1,(n, )f(2) +k=z,,+|[p+ﬂj az (120) (4)

The operator 1,(*1,4) is closely related to the Salagean derivative operators
[15]. The operator [} :=I,(n,A) was studied recently by Cho and Srivastava [3]
and Cho and Kim [4]. The operator /, = ,(n,1) was studied by Uralegaddi and

Somanatha [17].

In our present investigation, we extend Theorem 2.3h of Miller and Mocanu
[11] for functions associated with the Dziok-Srivastava linear operator H lp’"' and
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the multiplier transform 1] (n, ). Similar result for meromorphic functions defined
through a linear operator is considered by Liu and Owa [8].

To prove our results, we need the following lemma due to Miller and Mocanu.
Lemma 1. [11] Let w(z) =a+w,z" +--- be analytic in Awith w(z) # a and

m21. If z,=re’ (0<r,<1l) and |W(z)l=max,, |w(z)|, then

z2,W'(zy) = kw(z,) and R (1 + —‘;'—'((—)')—)) 2k, wherek isreal and k> m.

2. Inequalities Associated with Dziok-Srivastava linear operator

We begin with the following definition for a class of functions which we require in
our first result.

Definition 1. Let G, be the set of complex-valued functions g(r,s,t): C* - C
such that

1. g(r,s,t) is continuous in a domain P — (3,

2. (0,0,0)e D and| g(0,0,0)|<]1,

0 k+aj-p i@ L+(1+a,-p)Y2k+a,-p)e’ )‘ 21,

3. ’g(e Y g €, a)(a+1)

i0 k+ay-p (8 lL+(1+a)-p)2k+a,~p)c?

whenever (e v & € > (@D )GD with R(eL)> k(k -1) for

real @,a,€C andreal k> p.

Making use of the Lemma 1, we first prove
Theorem 1. Let g(r,s,t) € G,. If f(z) € A, satisfies
(H,"(@ )/ (2), H, (o, +11f(2), H} @, + 21 (2)) e D C°
and
| (H, "1/ (2), Hy e +111(2), Hy [y + 2/ ()| <1, (ze€ ),

then we have

|H" @)/ ()<l (zed).
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Proof. Define w(z) by
w(z):= H)"[e,]f(2).
Then we have w(z) € 4, andw(z) # 0 at least for one z € A . By making use of

alH;;"'[al +1]/(2) = z[H:;'"[a, 1)) +(a, _p)H:,’m[al 172, ()

we get
a,H}"a, +11f(2) = 2w'(2) + (@, = p)W(2)
and

a(a+ 1)H,’;’" (@, +21f(2) = 22W'(2)+2(1+ @, - p)zw'(2) + (&, — p)a, + 1- p)w(z).

If|H ;;”'f (2)|<1 is false, then there exists z, with| z, |=r, <1 such that

- =1.
[ w(zy)| max | w(z)|

Lettingw(z,) = ¢ and using Lemma 1, we see that

H:;m[al]f(zo)=ei0,
" k+a,—-p |
H; [a,+1]f(z(,)=—~—'—1—’e”, and
1
L+(+a, - p)2k+a, - p)e’

H'"[a, +2]f(z,) = Y ,
] 1

where L = zgw"(zo) and k > p . Further, by an application of Lemma 1, we have

R zgW'(20) | _ R z;w'(z,) > k-1
w'(z,) ke | 7
or R{e Ly = k(k-1).
Since g(r,s,t) € G,, we have
g (HL" T 1 o), Bl +111 20), Hy e + 21 20)|

_lg o k+a,—pe,9 (1+a|—p)(2k+a|—p)e’0+L
’ Q ’ a,(a, +1)

21

b
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which contradicts the hypothesis of Theorem 1. Therefore we conclude that
[w(z)|= lH,';'"[a, ]f(z), <l (zeA).
This completes the proof of Theorem 1.

Corollary 3. If f(2) € A, satisfies
| H," [y +11(2) <1 (R, 2(p-k)/2:k 2 p),

I)
then

| H,"[a]f (2)[<1.

3. Inequalities Associated with Multiplier Transform

In this section, we prove a result similar to Theorem 1 for functions defined by
multiplier transform. We need the following:

Definition 2. Let G, be the set of complex-valued functions glr.s,1):CP > C
such that

1. g(r,s,r) is continuous in a domain p = (3,
2. (0,0,0)e D and | g(0,0,0) <1,

10 ke i0 L+{(1+22)k+4% )

— 2>
3. )g(e A € T ey )-1,

h ei0 ke d e:e L+[(142 )k +A% )
wnenever s el 5 (p+A)

)€ D, with R(eL)> k(k~1) for real

0,420 andreal k> p.

Theorem 2. Let g(r,s,t) €G,. If f(z) € 4, satisfies
(Ip(n,l)f(z),]p(n+l,ﬂ)f(z),lp(n-!-Z,l)f(z)) eDcC?

and
€U, () f(2),1,(n+1,4) f(2), L(n+2,2)f(2))|<1, (zea),
then we have
[1,(nA)f(2)|<], (ze ).
Proof. Define w(z) by w(z):=1,(n,4)f(z) . Then we have w(z) € A, and

w(z) # 0 at least for one z € A. By making use of
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(p+ M), (n+1L,A)f(2) = 21,0, A) f(2)] + AL, (n, ) f(2) (1)

we obtain

(p+ M, (n+L,A) f(2)= 2w (2)+ Aw(z)
and (A+ p)’1,(n+2,2) f(2) = 2w (2) + (1+24)z2w'(2) + A*w(z).

if|1,(n,4) f(2)|<1 is false, then there exists z, with| z, |=7, <1 such that

| w(z,) = max | w(z) |=1.

Jzi<lzy

Letting w(z,) = ¢ and using Lemma I, we see that

1,(n,2)f(z)=e",

I (nt1,A)f(z) =22 e,
p+A
2116
w1 (1220 (o) < (QAHDES I 4 L
! (p+4)

where L =z2w"(z,) and k 2 p . Further, an application of Lemma 1, we obtain

that
- 2W'(Z) | _ zow'(2) > k-1
w'(z,) ke'® ’

or R{e™L} > k(k —1). Since g(r,s,t) €G, , we have

|, (1, A)f (2,1, (41, D) f (2,1, (4 2,01 (@)

(e"’ k+4 o [(2ﬂ.+1)k+/12]e"9+L}
A+p (p+A) )

21,

which contradicts the hypothesis of Theorem 2. Therefore we conclude that
|w(z) |=|1,(n,A) f(2) <1, for all z€ A . This completes the proof of assertion

of Theorem 2.
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Corollary 1. If f(z) € A, satisfies

| 1,(n,A+1) f(2) <],
then

|1.(nA)f(2)|<1.
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