INEQUALITIES FOR ANALYTIC FUNCTIONS DEFINED BY CERTAIN LINEAR OPERATORS

R. Aghalary, Rosihan M. Ali, S. B. Joshi and V. Ravichandran

Abstract

In the present investigation, we obtain inequalities for analytic functions in the open unit disk which are associated with the Dziok-Srivastava linear operator $H_p^{l,m}$ and the multiplier transform $I_p(n,\lambda)$.

1. Introduction

Let A_p denote the class of all analytic functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (z \in \Delta := \{ z \in C : |z| < 1 \})$$
 (1)

and let $A_1 := A$. For two functions f(z) given by (1) and $g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k$, the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) := z'' + \sum_{k=n+1}^{\infty} a_k b_k z^k =: (g * f)(z).$$
 (2)

For $\alpha_j \in C$ (j = 1, 2, ..., l) and $\beta_j \in C - \{0, -1, -2, ...\} (j = 1, 2, ...m)$, the generalized hypergeometric function $_l F_m(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m; z)$ is defined by the infinite series

$$_{I}F_{m}(\alpha_{1},...,\alpha_{l};\beta_{1},...,\beta_{m};z) := \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}...(\alpha_{l})_{n}}{(\beta_{1})_{n}...(\beta_{m})_{n}} \frac{z^{n}}{n!}$$

Paper received 25.10.04

2000 AMS Subject Classification: Primary 30C80; Secondary 30C45.

Key Words and Phrases: Hypergeometric functions, subordination, Dziok-Srivastava linear operator, multiplier transform, convolution.

$$(l \le m+1; l, m \in N_0 := \{0,1,2,...\})$$

where $(a)_n$ is the Pochhammer symbol defined by

$$(a)_n := \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & (n=0); \\ a(a+1)(a+2)...(a+n-1), & (n \in \mathbb{N} := \{1, 2, 3...\}). \end{cases}$$

Corresponding to the function $h_p(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m;z) := z_l^p F_m(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m;z)$, the Dziok-Srivastava operator [5] (see also [16]) $H_p^{(l,m)}(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m)$ is defined by the Hadamard product

$$H_p^{(l,m)}(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m)f(z) := h_p(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m;z) * f(z)$$

$$=z^{p}+\sum_{n=p+1}^{\infty}\frac{(\alpha_{1})_{n-p}...(\alpha_{l})_{n-p}}{(\beta_{1})_{n-p}...(\beta_{m})_{n-p}}\frac{a_{n}z^{n}}{(n-p)!}.$$
(3)

To make the notation simple, we write

$$H_p^{l,m}[\alpha_1]f(z) := H_p^{(l,m)}(\alpha_1,...,\alpha_l;\beta_1,...,\beta_m)f(z).$$

Special cases of the Dziok-Srivastava linear operator includes the Hohlov linear operator [6], the Carlson-Shaffer linear operator [2], the Ruscheweyh derivative operator [14], the generalized Bernardi-Libera-Livingston linear integral operator (cf. [1], [7], [10]) and the Srivastava-Owa fractional derivative operators (cf. [12], [13]).

Motivated by the multiplier transformation on A, we define the operator $I_p(n, \lambda)$ on A_p by the following infinite series

$$I_{p}(n,\lambda)f(z) := z^{p} + \sum_{k=p+1}^{\infty} \left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k} \quad (\lambda \ge 0).$$
 (4)

The operator $I_p(n,\lambda)$ is closely related to the Salagean derivative operators [15]. The operator $I_{\lambda}^n := I_1(n,\lambda)$ was studied recently by Cho and Srivastava [3] and Cho and Kim [4]. The operator $I_n := I_1(n,1)$ was studied by Uralegaddi and Somanatha [17].

In our present investigation, we extend Theorem 2.3h of Miller and Mocanu [11] for functions associated with the Dziok-Srivastava linear operator $H_p^{l,m}$ and

the multiplier transform $I_n(n,\lambda)$. Similar result for meromorphic functions defined through a linear operator is considered by Liu and Owa [8].

To prove our results, we need the following lemma due to Miller and Mocanu.

Lemma 1. [11] Let $w(z) = a + w_m z^m + \cdots$ be analytic in Δ with $w(z) \not\equiv a$ and $m \ge 1$. If $z_0 = r_0 e^{i\theta} (0 < r_0 < 1)$ and $|w(z_0)| = \max_{|z| \le r_0} |w(z)|$, then $z_0w'(z_0) = kw(z_0)$ and $\Re\left(1 + \frac{z_0w^*(z_0)}{w'(z_0)}\right) \ge k$, where k is real and $k \ge m$.

2. Inequalities Associated with Dziok-Srivastava linear operator

We begin with the following definition for a class of functions which we require in our first result.

Definition 1. Let G_1 be the set of complex-valued functions $g(r,s,t):C^3\to C$ such that

- 1. g(r,s,t) is continuous in a domain $D \subset C^3$,
- 2. $(0,0,0) \in D$ and |g(0,0,0)| < 1,

3.
$$\left|g\left(e^{i\theta},\frac{k+\alpha_1-p}{\alpha_1}e^{i\theta},\frac{l+(1+\alpha_1-p)(2k+\alpha_1-p)e^{i\theta}}{\alpha_1(\alpha_1+1)}\right)\right| \geq 1,$$

whenever $\left(e^{i\theta}, \frac{k+\alpha_1-p}{\alpha_1}e^{i\theta}, \frac{l+(1+\alpha_1-p)(2k+\alpha_1-p)e^{i\theta}}{\alpha_1(\alpha_1+1)}\right) \in D$ with $\Re(e^{-i\theta}L) \ge k(k-1)$ for real $\theta, \alpha_1 \in C$ and real $k \ge p$.

Making use of the Lemma 1, we first prove

Theorem 1. Let $g(r, s, t) \in G_1$. If $f(z) \in A_p$ satisfies

$$(H_p^{l,m}[\alpha_1]f(z), H_p^{l,m}[\alpha_1+1]f(z), H_p^{l,m}[\alpha_1+2]f(z)) \in D \subset C^3$$

and

$$\left| g \left(H_p^{l,m}[\alpha_1] f(z), H_p^{l,m}[\alpha_1 + 1] f(z), H_p^{l,m}[\alpha_1 + 2] f(z) \right) \right| < 1, \quad (z \in \Delta),$$

then we have

$$\left|H_p^{\prime,m}[\alpha_1]f(z)\right| < 1, \qquad (z \in \Delta).$$

Proof. Define w(z) by

$$w(z) := H_p^{l,m}[\alpha_1] f(z).$$

Then we have $w(z) \in A_p$ and $w(z) \neq 0$ at least for one $z \in \Delta$. By making use of

$$\alpha_1 H_p^{l,m}[\alpha_1 + 1] f(z) = z [H_p^{l,m}[\alpha_1] f(z)]' + (\alpha_1 - p) H_p^{l,m}[\alpha_1] f(z), \quad (5)$$

we get

$$\alpha_1 H_p^{l,m}[\alpha_1 + 1] f(z) = zw'(z) + (\alpha_1 - p)w(z)$$

and

$$\alpha_1(\alpha_1+1)H_p^{1,m}[\alpha_1+2]f(z)=z^2w''(z)+2(1+\alpha_1-p)zw'(z)+(\alpha_1-p)(\alpha_1+1-p)w(z).$$

If $|H_p^{l,m} f(z)| < 1$ is false, then there exists z_0 with $|z_0| = r_0 < 1$ such that

$$|w(z_0)| = \max_{|z| \le |z_0|} |w(z)| = 1.$$

Letting $w(z_0) = e^{i\theta}$ and using Lemma 1, we see that

$$\begin{split} H_p^{l,m}[\alpha_1]f(z_0) &= e^{i\theta}, \\ H_p^{l,m}[\alpha_1 + 1]f(z_0) &= \frac{k + \alpha_1 - p}{\alpha_1}e^{i\theta}, \text{ and} \\ H_p^{l,m}[\alpha_1 + 2]f(z_0) &= \frac{L + (1 + \alpha_1 - p)(2k + \alpha_1 - p)e^{i\theta}}{\alpha_1(\alpha_1 + 1)}, \end{split}$$

where $L=z_0^2w''(z_0)$ and $k\geq p$. Further, by an application of Lemma 1, we have

$$\Re\left\{\frac{z_0w''(z_0)}{w'(z_0)}\right\} = \Re\left\{\frac{z_0^2w''(z_0)}{ke^{i\theta}}\right\} \ge k-1,$$

or $\Re\{e^{-i\theta}L\} \ge k(k-1)$.

Since $g(r, s, t) \in G_1$, we have

$$\left| g \left(H_{p}^{\prime,m} [\alpha_{1}] f(z_{0}), H_{p}^{\prime,m} [\alpha_{1}+1] f(z_{0}), H_{p}^{\prime,m} [\alpha_{1}+2] f(z_{0}) \right) \right| \\
= \left| g \left(e^{i\theta}, \frac{k + \alpha_{1} - p}{\alpha_{1}} e^{i\theta}, \frac{(1 + \alpha_{1} - p)(2k + \alpha_{1} - p)e^{i\theta} + L}{\alpha_{1}(\alpha_{1}+1)} \right) \right| \ge 1,$$

which contradicts the hypothesis of Theorem 1. Therefore we conclude that

$$|w(z)| = |H_p^{\prime,m}[\alpha_1]f(z)| < 1 \quad (z \in \Delta).$$

This completes the proof of Theorem 1.

Corollary 3. If $f(z) \in A_n$ satisfies

$$|H_p^{l,m}[\alpha_1+1]f(z)|<1 \quad (\Re \alpha_1 \ge (p-k)/2; k \ge p),$$

then

$$|H_p^{l,m}[\alpha_1]f(z)| < 1.$$

3. Inequalities Associated with Multiplier Transform

In this section, we prove a result similar to Theorem 1 for functions defined by multiplier transform. We need the following:

Definition 2. Let G_2 be the set of complex-valued functions $g(r,s,t):C^3\to C$ such that

- 1. g(r,s,t) is continuous in a domain $D \subset C^3$,
- 2. $(0,0,0) \in D$ and |g(0,0,0)| < 1,

3.
$$\left|g\left(e^{i\theta}, \frac{k+\lambda}{p+\lambda}e^{i\theta}, \frac{L+\left[(1+2\lambda)k+\lambda^2\right]e^{i\theta}}{(p+\lambda)^2}\right)\right| \ge 1$$
,

whenever $\left(e^{i\theta}, \frac{k+\lambda}{p+\lambda}e^{i\theta}, \frac{l+\left[\left(1+2\lambda\right)k+\lambda^{2}\right]e^{i\theta}}{(p+\lambda)^{2}}\right) \in D$, with $\Re(e^{-i\theta}L) \ge k(k-1)$ for real $\theta, \lambda \ge 0$ and real $k \ge p$.

Theorem 2. Let $g(r,s,t) \in G_2$. If $f(z) \in A_p$ satisfies

$$(I_p(n,\lambda)f(z),I_p(n+1,\lambda)f(z),I_p(n+2,\lambda)f(z)) \in D \subset C^3$$

and

$$\left|g(I_p(n,\lambda)f(z),I_p(n+1,\lambda)f(z),I_p(n+2,\lambda)f(z))\right| < 1, \quad (z \in \Delta),$$

then we have

$$|I_p(n,\lambda)f(z)|<1, (z \in \Delta).$$

Proof. Define w(z) by $w(z) := I_p(n,\lambda) f(z)$. Then we have $w(z) \in A_p$ and $w(z) \neq 0$ at least for one $z \in \Delta$. By making use of

$$(p+\lambda)I_p(n+1,\lambda)f(z) = z[I_p(n,\lambda)f(z)]' + \lambda I_p(n,\lambda)f(z)$$
 (1)

we obtain

$$(p+\lambda)I_p(n+1,\lambda)f(z) = zw'(z) + \lambda w(z)$$
 and
$$(\lambda+p)^2I_p(n+2,\lambda)f(z) = z^2w'(z) + (1+2\lambda)zw'(z) + \lambda^2w(z).$$

If $|I_p(n,\lambda)f(z)| < 1$ is false, then there exists z_0 with $|z_0| = r_0 < 1$ such that

$$|w(z_0)| = \max_{|z| \le |z_0|} |w(z)| = 1.$$

Letting $w(z_0) = e^{i\theta}$ and using Lemma 1, we see that

$$\begin{split} I_p(n,\lambda)f(z_0) &= e^{i\theta}, \\ I_p(n+1,\lambda)f(z_0) &= \frac{k+\lambda}{p+\lambda}e^{i\theta}, \\ \text{and } I_p(n+2,\lambda)f(z_0) &= \frac{[(2\lambda+1)k+\lambda^2]e^{i\theta}+L}{(p+\lambda)^2}, \end{split}$$

where $L=z_0^2w''(z_0)$ and $k\geq p$. Further, an application of Lemma 1, we obtain that

$$\Re\left\{\frac{z_0w''(z_0)}{w'(z_0)}\right\} = \Re\left\{\frac{z_0^2w''(z_0)}{ke^{i\theta}}\right\} \ge k-1,$$

or $\Re\{e^{-i\theta}L\} \ge k(k-1)$. Since $g(r,s,t) \in G_2$, we have

$$\left| g(I_{p}(n,\lambda)f(z_{0}),I_{p}(n+1,\lambda)f(z_{0}),I_{p}(n+2,\lambda)f(z_{0})) \right|$$

$$= \left| g\left(e^{i\theta},\frac{k+\lambda}{\lambda+p}e^{i\theta},\frac{[(2\lambda+1)k+\lambda^{2}]e^{i\theta}+L}{(p+\lambda)^{2}}\right) \right| \geq 1,$$

which contradicts the hypothesis of Theorem 2. Therefore we conclude that $|w(z)|=|I_p(n,\lambda)f(z)|<1$, for all $z\in\Delta$. This completes the proof of assertion of Theorem 2.

Corollary 1. If $f(z) \in A_p$ satisfies

$$|I_p(n,\lambda+1)f(z)|<1,$$

then

$$|I_p(n,\lambda)f(z)|<1.$$

Acknowledgement. The research of R. M. Ali and V. Ravichandran respectively were supported by an IRPA grant 09-02-05-00020 EAR

REFERENCES

- [1] S. D. Bernardi, Convex and starlike univalent functions, *Trans. Amer. Math. Soc.*, (1969), 429-446.
- [2] B. C. Carlson and S. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., (1984), 737-745.
- [3] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, *Math. Comput. Modelling*, (2003) 39-49.
- [4] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, *Bull. Korean Math. Soc.*, (2003), 399-410.
- [5] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, *Integral Transforms Spec. Funct.*, 14 (2003) 7-18.
- [6] Yu. E. Hohlov, Operators and operations in the class of univalent functions, *Izv. Vyss. Ucebn. Zaved. Mat.*, (1978), 83-89.
- [7] R. J. Libera, Some classes of regular univalent functions, *Proc. Amer. Math. Soc.*, (1965), 755-758.
- [8] J. L. Liu and S. Owa, On certain meromorphic p-valent functions, *Taiwanese J. Math.*, (1) (1998), 107-110.
- [9] J. L. Liu and S. Owa, On a class of multivalent functions involving certain linear operators, *Indian J. Pure Appl. Math.*, (11)(2002), 1713-1722.
- [10] A. E. Livingston, On the radius of univalence of certain analytic functions, *Proc. Amer. Math. Soc.*, (1966), 352-357.
- [11] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications. *Pure and Applied Mathematics No. 225*, Marcel Dekker, New York, (2000).
- [12] S. Owa, On the distortion theorems I, Kyungpook Math. J., (1978), 53-58.
- [13]S. Owa and H. M. Srivastava, Univalent and starlike generalized bypergeometric functions, *Canad. J. Math.*, (1987), 1057-1077.

- [14] St. Ruscheweyh, New criteria for univalent functions, *Proc. Amer. Math. Soc.*, (1975), 109-115.
- [15]G. St. Salagean, Subclasses of univalent functions, in *Complex Analysis: Fifth Romanian-Finnish Seminar*, Part I (Bucharest, 1981), Lecture Notes in Mathematics, Springer-Verlag, Berlin and New York, 1983, 362-372.
- [16] H. M. Srivastava, Some families of fractional derivative and other linear operators associated with analytic, univalent and multivalent functions, in: *Proc. International Conf. Analysis and its Applications*, K. S. Lakshmi, et. al (ed.), Allied Publishers Ltd, New Delhi (2001), 209-243.
- [17] B.A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, in *Current Topics in Analytic Function Theory*, H.M. Srivastava and S. Owa (ed.), World Scientific, Singapore, (1992), 371-374.

R. Aghalary

Department of Mathematics, University of Urmia, Urmia, Iran raghalary@yahoo.com

Rosihan M. Ali

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, . Penang, Malaysia, rosihan@cs.usm.my

S. B. Joshi

Department of Mathematics, Walchand College of Engineering, Sangli, India, joshisb@hotmail.com

V. Ravichandran

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, vravi@cs.usm.my