On Sufficient Conditions for Starlikeness

V Ravichandran

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

E-mail: vravi@cs.usm.my

S Sivaprasad Kumar

Department of Applied Mathematics, Delhi College of Engineering,

Delhi - 110 042, India E-mail: sivpk71@yahoo.com

AMS Mathematics Subject Classification (2000): 30C45

Abstract. In this paper, we give some sufficient conditions for analytic functions defined on |z|<1 to have positive real part and in general to satisfy the subordination $p(z)\prec$ q(z). Also some applications of these results are discussed.

Keywords: Starlikeness; Caratheodory function; Differential subordination.

1. Introduction

Let \mathcal{A}_0 be the class of all functions $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ which are analytic in $\Delta = \{z; |z| < 1\}$. Let \mathcal{A} be the class of all functions $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ which are analytic in Δ . The class \mathcal{P} of Caratheodory functions consists of functions $p(z) \in \mathcal{A}$ having positive real part. Recently Nunokawa et. al. [2] gave some sufficient conditions for analytic functions in \triangle to have positive real part. In this paper, we generalized the results by finding some conditions on $\alpha, \beta, \gamma, \delta$ and w(z) such that each of the following differential subordination implies $p(z) \in \mathcal{P}$:

- $\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta z p'(z) \prec w(z)$,
- $\alpha p(z)^2 + \delta z p(z) p'(z) \prec w(z)$,
- $\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta \frac{zp'(z)}{p(z)} \prec w(z),$

• $\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta \frac{zp'(z)}{p^2(z)} \prec w(z)$. Note that the conclusion $p(z) \in \mathcal{P}$ can be written as $p(z) \prec (1+z)/(1-z)$. In this paper, we find sufficient conditions for the subordination $p(z) \prec q(z)$ to hold.

Received March 17, 2003, Accepted November 4, 2004.

Our results include the results obtained by Nunokawa et. al.[2]. We also give some application of our results to obtain sufficient conditions for starlikeness. We need the following result of Miller and Mocanu[1] to prove our main result:

Theorem A. Let q(z) be univalent in the unit disk \triangle and θ and ϕ be analytic in a domain D containing $q(\triangle)$ with $\phi(w) \neq 0$ when $w \in q(\triangle)$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$. Suppose that

- (1) Q(z) is starlike univalent in \triangle , and
- (2) Re $\frac{zh'(z)}{Q(z)} > 0$ for $z \in \triangle$.

If q(z) is a analytic in \triangle with p(0) = q(0), $p(D) \in D$ and $\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z))$, then $p(z) \prec q(z)$ and q(z) is the best dominant.

2. Caratheodory Functions

We begin with the following:

Theorem 2.1. Let α, β, γ and δ be complex numbers, $\delta \neq 0$. Let $0 \neq q(z) \in \mathcal{A}$ be univalent in \triangle and satisfy the following conditions for $z \in \triangle$:

(1) zq'(z) is starlike,

(2) Re
$$\left\{\frac{\alpha}{\delta} + \frac{2\beta}{\delta}q(z) - \frac{\gamma}{\delta q(z)^2} + \left(1 + \frac{zq''(z)}{q'(z)}\right)\right\} > 0.$$

If
$$p(z) \in \mathcal{A}$$
 satisfies

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta z p'(z) \prec \alpha q(z) + \beta q(z)^2 + \frac{\gamma}{q(z)} + \delta z q'(z),$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Proof. Let $\theta(w) = \alpha w + \beta w^2 + \frac{\gamma}{w}$ and $\phi(w) = \delta$. Then $\phi(w) \neq 0$ and $\theta(w)$, $\phi(w)$ are analytic in $\mathbb{C} - \{0\}$. Let the function Q(z) and h(z) be defined by

$$Q(z) = zq'(z)\phi(q(z)) = \delta zq'(z),$$

$$h(z) = \theta(q(z)) + Q(z) = \alpha q(z) + \beta q(z)^2 + \frac{\gamma}{q(z)} + \delta z q'(z).$$

Clearly Q(z) is starlike and

$$\operatorname{Re}\frac{zh'(z)}{Q(z)} = \operatorname{Re}\left\{\frac{\alpha}{\delta} + \frac{2\beta}{\delta}q(z) - \frac{\gamma}{\delta q(z)^2} + \left(1 + \frac{zq''(z)}{q'(z)}\right)\right\} > 0.$$

The differential subordination

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta z p'(z) \prec \alpha q(z) + \beta q(z)^2 + \frac{\gamma}{q(z)} + \delta z q'(z)$$

becomes

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)).$$

The result follows by an application of Theorem A.

By taking α, β, γ and δ to be real, we have the following result:

Corollary 2.2. Let α, γ and δ be positive numbers. If $0 \neq p(z) \in \mathcal{A}$ and

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{q(z)} + \delta z p'(z) \prec \alpha \left(\frac{1+z}{1-z}\right) + \beta \left(\frac{1+z}{1-z}\right)^2 + \gamma \left(\frac{1-z}{1+z}\right) + \frac{2\delta z}{(1-z)^2},$$

then Re p(z) > 0.

Proof. This result follows from Theorem 2.1 by taking $q(z) = \frac{1+z}{1-z}$. Then the function $Q(z) = 2\delta z/(1-z)^2$ is clearly starlike. Since

$$\frac{\alpha}{\delta} + \frac{2\beta}{\delta}q(z) - \frac{\gamma}{\delta q(z)^2} + \frac{zQ'(z)}{Q(z)} = \frac{\alpha}{\delta} + \frac{2\beta}{\delta}\left(\frac{1+z}{1-z}\right) - \frac{\gamma}{\delta}\left(\frac{1-z}{1+z}\right)^2 + \frac{1+z}{1-z}$$

we have, with $z = e^{i\theta}$

$$\operatorname{Re}\left\{\frac{\alpha}{\delta} + \frac{2\beta}{\delta}q(z) - \frac{\gamma}{\delta q(z)^2} + \frac{zQ'(z)}{Q(z)}\right\} = \frac{\alpha}{\delta} + \frac{\gamma}{\delta}\tan^2\frac{\theta}{2} \ge 0.$$

Let $\gamma = 0$ and q(z) be the function defined by

$$q(z) = \frac{1 + Az}{1 + Bz},$$
 $-1 < B < A \le 1.$

Then we have

$$zq'(z) = \frac{(A-B)z}{(1+Bz)^2}$$

Let g(z) = zq'(z). Then

$$\frac{zg'(z)}{g(z)} = \frac{1 - Bz}{1 + Bz}.$$

If $z = re^{i\theta}$, we have

$$\operatorname{Re} \frac{zg'(z)}{g(z)} = \frac{1 - B^2 r^2}{1 + B^2 r^2 + 2Br \cos \theta} \ge 0.$$

Hence zq'(z) is starlike in \triangle . Also it follows that

$$\frac{\alpha}{\delta} + \frac{2\beta}{\delta} q(z) + \left(1 + \frac{zq''(z)}{q'(z)}\right) = \frac{\left[1 + (\alpha + 2\beta)/\delta\right] + \left[2\beta A/\delta - (1 - \alpha/\delta)B\right]z}{1 + Bz}$$
$$= \frac{u + vz}{1 + Bz},$$

where $u = 1 + (\alpha + 2\beta)/\delta$ and $v = 2\beta A/\delta - (1 - \alpha/\delta)B$. The function $w(z) = \frac{u + vz}{1 + Bz}$ maps \triangle into the disk

$$\left| w - \frac{\overline{u} - B\overline{v}}{1 - B^2} \right| \le \frac{|v - B\overline{u}|}{1 - B^2}.$$

Therefore

$$\operatorname{Re}\left\{\frac{\alpha}{\delta} + \frac{2\beta}{\delta}q(z) + \left(1 + \frac{zq''(z)}{q'(z)}\right)\right\} = \frac{\operatorname{Re}(\overline{u} - B\overline{v}) - |v - B\overline{u}|}{1 - B^2} \ge 0$$

provided

$$\operatorname{Re}(\overline{u} - B\overline{v}) \ge |v - B\overline{u}|$$

or

$$\operatorname{Re}(u - Bv) \ge |v - B\overline{u}|.$$

Hence we have the following result:

Corollary 2.3. Let $-1 < B < A \le 1$. Let α, β and δ satisfy $Re(u-Bv) \ge |v-B\overline{u}|$ where $u = 1 + (\alpha + 2\beta)/\delta$ and $v = 2\beta A/\delta - (1 - \alpha/\delta)B$. If $p(z) \in \mathcal{A}$ and

$$\alpha p(z) + \beta p(z)^2 + \delta z p'(z) \prec \alpha \left(\frac{1+Az}{1+Bz}\right) + \beta \left(\frac{1+Az}{1+Bz}\right)^2 + \delta \frac{(A-B)z}{(1+Bz)^2},$$

then $p(z) \prec \frac{1+Az}{1+Bz}$.

By taking $\alpha = 0, A = 1, B = -1$ and β and δ to be real, then we have the following result of Nunokawa *et. al.*[2]:

Corollary 2.4. Let $1 + 2\beta/\delta > 0$. If $p(z) \in \mathcal{A}$ and

$$\beta p(z)^2 + \delta z p'(z) \prec \beta \left(\frac{1+z}{1-z}\right)^2 + \frac{2\delta z}{(1-z)^2},$$

then Re p(z) > 0.

If q(z) is a convex function that maps \triangle onto a region in the right half plane, then the conditions of Theorem 2.1 are satisfied by q(z) whenever $\alpha\delta > 0$, $\beta\delta > 0$, and $\gamma = 0$. By taking

$$q(z) = \left(\frac{1+z}{1-z}\right)^{\lambda}, \quad 0 < \lambda \le 1,$$

we have the following:

Corollary 2.5. Let $\alpha \delta$, $\beta \delta > 0$. If $p(z) \in \mathcal{A}$ and

$$\alpha p(z) + \beta p(z)^2 + \delta z p'(z) \prec \alpha \left(\frac{1+z}{1-z}\right)^{\lambda} + \beta \left(\frac{1+z}{1-z}\right)^{2\lambda} + \frac{2\delta \lambda z}{1-z^2} \left(\frac{1+z}{1-z}\right)^{\lambda},$$

then $|\text{Arg } p(z)| \leq \lambda \pi/2$.

Theorem 2.6. Let α and δ be complex numbers, $\delta \neq 0$. Let $q(z) \in \mathcal{A}$ be univalent in \triangle and satisfy the following conditions for $z \in \triangle$:

- (1) Let $Q(z) = \delta z q(z) q'(z)$ be starlike,
- (2) Re $\{\frac{2\alpha}{\delta} + zQ'(z)/Q(z)\} > 0$.

If $p(z) \in \mathcal{A}$ satisfies

$$\alpha p(z)^2 + \delta z p(z) p'(z) \prec \alpha q(z)^2 + \delta z q(z) q'(z),$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

The proof of this theorem is similar to that of Theorem 2.1 and therefore omitted.

Let q(z) be the function

$$q(z) = \left(\frac{1+Az}{1+Bz}\right)^{\frac{1}{2}}, \qquad -1 < B < A \le 1, \qquad 0 < \lambda \le 1.$$

Then we have

$$zq(z)q'(z) = \frac{(A-B)z}{2(1+Bz)^2}.$$

Let Q(z) = zq(z)q'(z). Then

$$\frac{zQ'(z)}{Q(z)} = \frac{1 - Bz}{1 + Bz}.$$

If $z = re^{i\theta}$, we have

$$\operatorname{Re} \frac{zQ'(z)}{Q(z)} = \frac{1 - B^2r^2}{1 + B^2r^2 + 2Br\cos\theta} \ge 0.$$

Hence zq(z)q'(z) is starlike in \triangle . Thus, we have

$$\frac{2\alpha}{\delta} + \frac{zQ'(z)}{Q(z)} = \frac{(2\alpha/\delta + 1) + (2\alpha/\delta - 1)Bz}{1 + Bz}$$
$$= \frac{u + vz}{1 + Bz},$$

where $u=(2\alpha/\delta+1)$ and $v=(2\alpha/\delta-1)B$. The function $w(z)=\frac{u+vz}{1+Bz}$ maps \triangle into the disk

$$\left|w - \frac{\overline{u} - B\overline{v}}{1 - B^2}\right| \le \frac{|v - B\overline{u}|}{1 - B^2}.$$

Therefore

$$\operatorname{Re}\left[\frac{2\alpha}{\delta} + \frac{zQ'(z)}{Q(z)}\right] = \frac{\operatorname{Re}(\overline{u} - B\overline{v}) - |v - B\overline{u}|}{1 - B^2} \ge 0$$

provided that

$$\operatorname{Re}(\overline{u} - B\overline{v}) \ge |v - B\overline{u}|$$

or

$$\operatorname{Re}(u - Bv) \ge |v - B\overline{u}|.$$

Therefore we have the following result:

Corollary 2.7. Let $-1 < B < A \le 1$. Let α, β and δ satisfy $Re(u-Bv) \ge |v-B\overline{u}|$ where $u = (2\alpha/\delta + 1)$ and $v = (2\alpha/\delta - 1)B$. If $p(z) \in \mathcal{A}$ and

$$\alpha p(z)^2 + \delta z p(z) p'(z) \prec \alpha \left(\frac{1+Az}{1+Bz}\right) + \frac{\delta}{2} \frac{(A-B)z}{(1+Bz)^2}$$

then $p(z) \prec \left(\frac{1+Az}{1+Bz}\right)^{\frac{1}{2}}$.

By taking A = 1, B = -1 and α, β, δ to be real, we have the following result:

Corollary 2.8. If $p(z) \in A$ and

$$\alpha p(z)^2 + \delta z p(z) p'(z) \prec \alpha \frac{1+z}{1-z} + \frac{\delta z}{(1-z)^2}$$

then $p(z) \prec \left(\frac{1+z}{1-z}\right)^{\frac{1}{2}}$.

Theorem 2.9. Let α, β, γ and δ be complex numbers, $\delta \neq 0$. Let $0 \neq q(z) \in \mathcal{A}$ be univalent in \triangle and satisfy the following conditions for $z \in \triangle$:

- (1) Let $Q(z) = \delta z q'(z)/q(z)$ be starlike,
- (2) Re $\left\{\frac{\alpha}{\delta}q(z) + \frac{2\beta}{\delta}q^2(z) \frac{\gamma}{\delta q(z)} + zQ'(z)/Q(z)\right\} > 0$.

If $p(z) \in \mathcal{A}$ satisfies

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta \frac{zp'(z)}{p(z)} \prec \alpha q(z) + \beta q(z)^2 + \frac{\gamma}{q(z)} + \delta \frac{zq'(z)}{q(z)},$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Proof. Let $\theta(w) = \alpha w + \beta w^2 + \frac{\gamma}{w}$ and $\phi(w) = \delta/w$. Then $\phi(w) \neq 0$ and $\theta(w)$, $\phi(w)$ are analytic in $\mathbb{C} - \{0\}$ which contains $q(\Delta)$. Let the function Q(z) and h(z) be defined by

$$Q(z) = zq'(z)\phi(q(z)) = \delta \frac{zq'(z)}{q(z)},$$

$$h(z) = \theta(q(z)) + Q(z) = \alpha q(z) + \beta q(z)^2 + \frac{\gamma}{q(z)} + \delta \frac{zq'(z)}{q(z)}.$$

Clearly Q(z) is starlike and

$$\operatorname{Re} \frac{zh'(z)}{Q(z)} = \operatorname{Re} \left\{ \frac{\alpha}{\delta} q(z) + \frac{2\beta}{\delta} q^2(z) - \frac{\gamma}{\delta q(z)} + \frac{zQ'(z)}{Q(z)} \right\} > 0.$$

The differential subordination

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta \frac{zp'(z)}{p(z)} \prec \alpha q(z) + \beta q(z)^2 + \frac{\gamma}{q(z)} + \delta \frac{zq'(z)}{q(z)}$$

becomes

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)),$$

and the result follows, by using Theorem A.

Corollary 2.10. Let β and δ be positive numbers. If $0 \neq p(z) \in \chi$ satisfies

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} - \delta \frac{zp'(z)}{p(z)} \prec \alpha \frac{1+z}{1-z} + \beta \left(\frac{1+z}{1-z}\right)^2 + \gamma \frac{1-z}{1+z} - \frac{2\delta z}{1-z^2}$$

then Re p(z) > 0.

Proof. The result follows from Theorem 2.9 by taking $q(z) = \frac{1+z}{1-z}$ and replacing δ by $-\delta$. Then the function $Q(z) = -2\delta z/1 - z^2$ is clearly starlike. Since

$$-\frac{\alpha}{\delta}q(z) - \frac{2\beta}{\delta}q^2(z) + \frac{\gamma}{\delta q(z)} + \frac{zQ'(z)}{Q(z)}$$

$$= -\frac{\alpha}{\delta}\left(\frac{1+z}{1-z}\right) - \frac{2\beta}{\delta}\left(\frac{1+z}{1-z}\right)^2 + \frac{\gamma}{\delta}\left(\frac{1-z}{1+z}\right) + \frac{1+z^2}{1-z^2},$$

we have, with $z = e^{i\theta}$

$$\operatorname{Re}\left\{-\frac{\alpha}{\delta}q(z) - \frac{2\beta}{\delta}q^2(z) + \frac{\gamma}{\delta q(z)} + zQ'(z)/Q(z)\right\} = \frac{2\beta}{\delta}\cot^2\frac{\theta}{2} \ge 0.$$

By taking $\alpha = 1, \beta = \gamma = 0$ and $\delta = -1$, then we have the following result of Nunokawa *et. al.*[2]:

Corollary 2.11. If $0 \neq p(z) \in \mathcal{A}$ and

$$p(z) + \frac{zp'(z)}{p(z)} \prec \frac{1+4z+z^2}{1-z^2},$$

then Re p(z) > 0.

Theorem 2.12. Let α, β and δ be complex numbers, $\delta \neq 0$. Let $0 \neq q(z) \in \mathcal{A}$ be univalent in \triangle and satisfy the following conditions for $z \in \triangle$:

- (1) Let $Q(z) = \delta z q'(z)/q^2(z)$ be starlike,
- (2) Re $\{\frac{\alpha}{\delta}q^2(z) + \frac{2\beta}{\delta}q^3(z) \frac{\gamma}{\delta} + zQ'(z)/Q(z)\} > 0$. If $p(z) \in \mathcal{A}$ satisfies

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} + \delta \frac{zp'(z)}{p^2(z)} \prec \alpha q(z) + \beta q(z)^2 + \frac{\gamma}{q(z)} + \delta \frac{zq'(z)}{q^2(z)},$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

The proof of this theorem is similar to that of Theorem 2.9 and therefore it is omitted.

Corollary 2.13. Let α, γ and δ be positive numbers. If $0 \neq p(z) \in \chi$ satisfies

$$\alpha p(z) + \beta p(z)^2 + \frac{\gamma}{p(z)} - \delta \frac{zp'(z)}{p^2(z)} \prec \alpha \frac{1+z}{1-z} + \beta \left(\frac{1+z}{1-z}\right)^2 + \gamma \frac{1-z}{1+z} - \frac{2\delta z}{(1+z)^2},$$

then Re p(z) > 0.

Proof. The result follows from the Theorem 2.12 by taking $q(z) = \frac{1+z}{1-z}$ and replacing δ by $-\delta$. Then the function $Q(z) = -2\delta z/(1+z)^2$ is clearly starlike. Since

$$-\frac{\alpha}{\delta}q^2(z) - \frac{2\beta}{\delta}q^3(z) + \frac{\gamma}{\delta} + \frac{zQ'(z)}{Q(z)} = -\frac{\alpha}{\delta}\left(\frac{1+z}{1-z}\right)^2 - \frac{2\beta}{\delta}\left(\frac{1+z}{1-z}\right)^3 + \frac{\gamma}{\delta} + \frac{1-z}{1+z}$$

we have, with $z = e^{i\theta}$

$$\operatorname{Re}\left\{-\frac{\alpha}{\delta}q^{2}(z) - \frac{2\beta}{\delta}q^{3}(z) + \frac{\gamma}{\delta} + \frac{zQ'(z)}{Q(z)}\right\} = \frac{\alpha}{\delta}\cot^{2}\frac{\theta}{2} + \frac{\gamma}{\delta} \ge 0.$$

By taking $\alpha = \beta = \gamma = 0$ in Theorem 2.12, we have the following:

Corollary 2.14. Let $q(z) \in \mathcal{A}$ be univalent in Δ , $q(z) \neq 0$. Let $zq'(z)/q(z)^2$ be starlike. If $p(z) \in \mathcal{A}$ satisfies

$$\frac{zp'(z)}{p(z)^2} \prec \frac{zq'(z)}{q(z)^2},$$

then $p(z) \prec q(z)$. The dominant q is the best dominant.

3. Starlikeness Criteria

In this section, we give application of our results for getting sufficient conditions for starlikeness. Let $-1 < B < A \le 1$. The class $S^*[A, B]$ consists of functions $f \in \mathcal{A}_0$ satisfying

 $\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, \qquad z \in \triangle.$

In particular $S^*[1,-1] = S^*$, the class of starlike functions. For the class $S^*[A,B]$, we have the following:

Theorem 3.1. Let $-1 < B < A \le 1$. Let α, β and δ satisfy $Re(u - Bv) \ge |v - B\overline{u}|$ where $u = 1 + \alpha + 2\beta/\delta$ and $v = 2\beta A/\delta - (1 - \alpha)B$. If $f(z) \in \mathcal{A}_0$ and

$$\frac{zf'(z)}{f(z)} \left[\alpha + (\beta - \delta) \frac{zf'(z)}{f(z)} + \delta \left(1 + \frac{zf''(z)}{f'(z)} \right) \right]$$

$$\prec \alpha \left(\frac{1+Az}{1+Bz}\right) + \beta \left(\frac{1+Az}{1+Bz}\right)^2 + \delta \frac{(A-B)z}{(1+Bz)^2}$$

then $f(z) \in S^*[A, B]$.

Proof. Let $p(z) = \frac{zf'(z)}{f(z)}$. Then a computation shows that

$$\frac{zp'(z)}{p(z)} + p(z) = 1 + \frac{zf''(z)}{f'(z)}.$$

Therefore, it follows that

$$\frac{zf'(z)}{f(z)} \left[\alpha + (\beta - \delta) \frac{zf'(z)}{f(z)} + \delta \left(1 + \frac{zf''(z)}{f'(z)} \right) \right]$$

$$= p(z) \left[\alpha + (\beta - \delta)p(z) + \delta \left(\frac{zp'(z)}{p(z)} + p(z) \right) \right]$$

$$= \alpha p(z) + \beta p(z)^2 + \delta z p'(z)$$

$$\prec \alpha \left(\frac{1 + Az}{1 + Bz} \right) + \beta \left(\frac{1 + Az}{1 + Bz} \right)^2 + \delta \frac{(A - B)z}{(1 + Bz)^2}.$$

Using Corollary 2.3, we have the result.

As a special case, we have the following:

Corollary 3.2. Let $1 + 2\beta/\delta > 0$. If $f(z) \in \mathcal{A}_0$ and

$$\frac{zf'(z)}{f(z)}\left[(\beta-\delta)\frac{zf'(z)}{f(z)} + \delta\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] \prec \beta\left(\frac{1+z}{1-z}\right)^2 + \frac{2\delta z}{(1-z)^2},$$

then $f(z) \in S^*$.

The class $SS^*(\lambda)$ of strongly starlike functions of order λ consists of functions $f \in \mathcal{A}_0$ satisfying

$$\left| \operatorname{Arg} \left(\frac{zf'(z)}{f(z)} \right) \right| \leq \frac{\lambda \pi}{2}.$$

Which is equivalent to the following:

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\lambda}, \qquad z \in \triangle.$$

For this class, we have the following:

Theorem 3.3. Let $-1 < B < A \le 1$. Let α, β and δ satisfy $Re(u - Bv) \ge |v - B\overline{u}|$ where $u = (2\alpha/\delta + 1)$ and $v = (2\alpha/\delta - 1)B$. If $f(z) \in \mathcal{A}_0$ and

$$\alpha \left(\frac{zf'(z)}{f(z)}\right)^2 + \frac{\delta z}{2} \left[\left(\frac{zf'(z)}{f(z)}\right)^2 \right]' \prec \alpha \frac{1 + Az}{1 + Bz} + \frac{\delta}{2} \frac{(A - B)z}{(1 + Bz)^2},$$

then
$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+Az}{1+Bz}\right)^{\frac{1}{2}}$$
.

The result can be obtained by using Corollary 2.7, with

$$p(z) = zf'(z)/f(z).$$

As a special case, we have

Corollary 3.4. If $f(z) \in A_0$ and

$$\alpha \left(\frac{zf'(z)}{f(z)} \right)^2 + \frac{\delta z}{2} \left[\left(\frac{zf'(z)}{f(z)} \right)^2 \right]' \prec \alpha \frac{1+z}{1-z} + \frac{\delta z}{(1-z)^2},$$

then $\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\frac{1}{2}}$ or equivalently f(z) is strongly starlike of order 1/2.

Using Corollary 2.10, with p(z) = zf'(z)/f(z), we have the following result:

Theorem 3.5. Let β and δ be positive numbers. If $f(z) \in A_0$ satisfies

$$(\alpha+\delta)\frac{zf'(z)}{f(z)} + \beta\left(\frac{zf'(z)}{f(z)}\right)^2 + \frac{\gamma f(z)}{zf'(z)} - \delta\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \alpha\frac{1+z}{1-z} + \beta\left(\frac{1+z}{1-z}\right)^2 + \gamma\frac{1-z}{1+z} - \frac{2\delta z}{1-z^2},$$

$$then \ f(z) \in S^*.$$

Using Corollary 2.13, with p(z) = zf'(z)/f(z), we have the following result:

Theorem 3.6. Let α, γ and δ be positive numbers. If $f(z) \in A_0$ satisfies

$$\alpha \frac{zf'(z)}{f(z)} + \beta \left(\frac{zf'(z)}{f(z)}\right)^2 + \gamma \frac{f(z)}{zf'(z)} - \delta \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}}$$

$$\prec \alpha \frac{1+z}{1-z} + \beta \left(\frac{1+z}{1-z}\right)^2 + \gamma \frac{1-z}{1+z} - \frac{2\delta z}{(1+z)^2} - \delta,$$

then $f(z) \in S^*$.

By taking $\alpha = \beta = \gamma = 0$, we have the following result of Obradovič and Tuneski[3]:

Corollary 3.7. If $f(z) \in A_0$ satisfies

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \prec 1 + \frac{2z}{(1+z)^2},$$

then $f(z) \in S^*$.

Using Corollary 2.2 , with $\alpha=\beta=0$ and p(z)=zf'(z)/f(z), we have the following result:

Theorem 3.8. Let γ and δ be positive numbers. If $f(z) \in A_0$ satisfies

$$\frac{\gamma f(z)}{zf'(z)} + \frac{\delta z f'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) \prec \gamma \frac{1-z}{1+z} + \frac{2\delta z}{(1-z)^2},$$

then $f(z) \in S^*$.

References

- [1] Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications, Pure and Applied Mathematics, No. 225, Marcel Dekker, New York, 2000.
- [2] Nunokawa, M., Owa, S., Takahashi, N., Saitoh, H.: Sufficient Conditions for Caratheodory Functions, *Indian J. pure appl. Math.* **33**(9), 1385-1390 (2002).
- [3] Obradovič, M., Tuneski, N.: On the starlike criteria defined Silverman, Zesz. Nauk. Politech. Rzesz., Mat. 181(24), 59-64 (2000).