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THE FEKETE-SZEGO COEFFICIENT FUNCTIONAL
FOR TRANSFORMS OF ANALYTIC FUNCTIONS

R.M. ALI, S.K. LEE, V. RAVICHANDRAN"
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Communicated by Mohammad Sal Moslehian

ABSTRACT. Sharp bounds for the Fekete-Szegd coefficient func-
tional associated with the k-th root transform [f(z*)]"/* of nor-
malized analytic functions f(z) defined on the open unit disk in the
complex plane are derived. A similar problem is investigated for
functions z/f(z) when f belongs to a certain class of functions.

1. Introduction

Let A be the class of all functions f(z) analytic in the open unit disk
A :={z € C: |z| < 1}, normalized by f(0) = 0 and f/'(0) = 1. For a uni-
valent function in the class A, it is well known that the n-th coefficient
is bounded by n. The bounds for the coefficients give information about
the geometric properties of these functions. For example, the bound for
the second coefficient of normalized univalent functions readily yields
the growth and distortion bounds for univalent functions. The Fekete-
Szego coefficient functional also arises naturally in the investigation of
univalency of analytic functions. Several authors have investigated the
Fekete-Szego functional for functions in various subclasses of univalent
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and multivalent functions [1-5, 7-11, 14, 15, 19, 20, 22|, and more re-
cently by Choi et al. [6].

Recall that a function f € A is starlike if f(A) is a starlike domain
and convex if f(A) is a convex domain. The classes consisting of starlike
and convex functions are usually denoted by S* and C, respectively.
The function f(z) is subordinate to the function g(z), written f(z) <
g(z), provided that there is an analytic function w(z) defined on A with
w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). A function f € A is
starlike if and only if Re 2 f'(2)/f(z) > 0, or equivalently if 2 f'(2)/ f(z) <
(14 2)/(1 — z). The superordinate function ¢(z) = (1+ z)/(1 — z) is a
convex function. Ma and Minda [13] have given a unified treatment of
various subclasses consisting of starlike and convex functions for which
either one of the quantities zf'(z)/f(z) or 14z f"(z)/f'(2) is subordinate
to a more general superordinate function. In fact, they considered the
analytic function ¢ with positive real part in the unit disk A, ¢(0) =1,
¢©'(0) > 0, where ¢ maps A onto a region starlike with respect to 1
and symmetric with respect to the real axis. The unified class S*(p)
introduced by Ma and Minda [13] consists of functions f € A satisfying

2f'(2)
f(z)

< p(2), (z€A).

They also investigated the corresponding class C'(¢) of convex functions
f € A satisfying

2f"(2)

1+ ) < p(2).

Ma and Minda [13] obtained subordination results, distortion, growth
and rotation theorems. They also obtained estimates for the first few
coefficients and determined bounds for the associated Fekete-Szego func-
tional. A function f € S*(¢) is said to be starlike function with respect
to ¢, and a function f € C(yp) is a convex function with respect to .

Several authors [12, 16-18, 21] have studied the classes of analytic
functions defined by using the expression (zf(2))/f(z)+a(22f"(2))/f(2).
The unified treatment of various subclasses of starlike and convex func-
tions by Ma and Minda [13] motivates one to consider similar classes
defined by subordination. Here, we consider the following classes of
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functions,
Rif)i={F €A 143 (1) - 1) < (o)}
stae) = {rea: T8 +a <o},
o= reas (F5) (1025 o).
=10 1 58) <)

where z € A, b€ C\ {0} and a > 0. Functions in the class L(a, ¢) are
called logarithmic a-convex functions with respect to ¢ and the functions
in the class M(«, ) are called a-convex functions with respect to ¢.
Some coefficient problems for functions f belonging to certain classes of
p-valent functions were investigated in [4].

For a univalent function f(z) of the form

(1.1) FE) =2+ e,
n=2
the k-th root transform is defined by:
(1.2) F(z)i=[fENYF =24 by 2
n=1

In Section 2, sharp bounds for the Fekete-Szegd coefficient functional
‘b2k+]_ — ,ubi +1| associated with the k-th root transform of the function
f belonging to the above mentioned classes are derived. In Section 3,
a similar problem is investigated for functions G, where G(z) := z/f(z)
and the function f belongs to the above mentioned classes.

Let © be the class of analytic functions w, normalized by w(0) = 0,
satisfying the condition |w(z)| < 1. The following two lemmas regarding
the coefficients of functions in €2 are needed to prove our main results.
Lemma 1.1 is a reformulation of the corresponding result for functions
with positive real part due to Ma and Minda [13].
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Lemma 1.1. [4] If w € Q and

(1.3) w(z) == wiz +we? + -+ (2 €A),
then,
—t ift<-—1
lwy —tw?| << 1 if —1<t<1
t o ift>1.

Fort < —1 ort > 1, equality holds if and only if w(z) = z or one of
its rotations. For —1 < t < 1, equality holds if and only if w(z) = 2>
or one of its rotations. Equality holds for t = —1 if and only if w(z) =

zﬁjfz(o < A< 1) or one of its rotations, while for t = 1, equality holds

if and only if w(z) = —zl’\j)\zz (0 < X <1) or one of its rotations.

Lemma 1.2. [10] If w € Q, then,

jws — twi] < max{1; |t[},

for any complex numbert. The result is sharp for the function w(z) = 22

or w(z) = z.

2. Coefficient bounds for the k-th root transformation

In the first theorem below, the bound for the coefficient functional
|boge+1 — pb? 41/ corresponding to the k-th root transformation of starlike
functions with respect to ¢ is given. Notice that the classes S*(«, ¢),
L(a, ) and M («, ¢) reduce to the class S*(¢) for appropriate choice of
the parameters.

Although Theorem 2.1 is contained in the corresponding results for
the classes S*(a, ¢), L(a, @) and M (a, ), it is stated and proved sep-
arately here because of its importance in its own right as well as to
illustrate the main ideas.

Theorem 2.1. Let p(z) =1+ Bz + Boz? + B3z3 + -, and

._1 k B2 __1 k B2
nimg|p (3-1) 41| =g |5 (5 +1)+1].
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If f given by (1.1) belongs to S*(p), and F is the k-th root transformation
of [ given by (1.2), then,

( B? By
—(1-2 — ) <
srl—2W)+ o i pson
9 By .
‘b2k+1_,ufbk+1| < %7 if o1 < <oy,
B2 By _
——(1—2u) — — >
2k2( :u) ok’ Zf H = 02,
and for u complex,
By 1 By
bor1 — pb? <max{1; 1—-2 +}.
‘ 2k+1 — M k+1‘ = o L ( 1) B,

Proof. If f € S*(¢), then there is an analytic function w € Q of the
form (1.3) such that

. SE i,
Since

Z;;S) =14 agz + (—d3 + 2a3)2* + (3aq — 3azas + a3)z* + ...
and

o(w(z)) = 1+ Biwiz + (Bywy + Bow}) 22 + ...,
then it follows from (2.1) that

(2.2) az = Biw
and
1
(2.3) a3 = 5 [Biws + (B + B} w?).

For a function f given by (1.1), a computation shows that

1 1 1k-1
(24)  [FEE = 2t TaetH (kag N L ) SR

The equations (1.2) and (2.4) yield:

1

(25) bk+1 == %CLQ,
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and
1 1k—1,
(2.6) bok+1 = 103 — 5503,
By using (2.2) and (2.3) in (2.5) and (2.6), it follows:
B1w1

b =

k+1 A
and

1 Biw?
bak+1 = o7 [B1w2 + Byw? + 1k 1} ;

and hence,

B B B
2 1 1 2 2
bokt1 — pbiyy = 5% {w2 - [—k(l —2pu) — 31] w1} :

The first result is established by an application of Lemma 1.1.
If —%(1 —2u) — g—f < —1, then,

1k (B
< |l=(=-1)+1 <
=3 [Bl <31 >+ } (< 00),
and Lemma 1.1 gives:

B? B
2 i 2
Dok 1 — pbi 4| < 27_2(1 —2p) + o0

For -1 < —521(1—2p) - g—f <1, we have,

1|k (B 1|k (B
—_ —1 1] < < — | — [ == 1 1 < <
2[31(31 >+}_M_2[31<B1+>+} (o1 2 u<02)

and Lemma 1.1 yields:
By

|baky1 — pbjyq | < o

For —%(1 —2u) — g—f > 1, we have,

11k (B
>-|=|=+1 1 >

and it follows from Lemma 1.1 that

BZ
b2kt — ibgin | < =55 (1 —2p) — o
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The second result follows by an application of Lemma 1.2:

B B B
s =l = g o2 = |20 =2 = 2]
Bl Bl BQ
<2 1251 —2u) + 22|
_kaax{"k( M)—I_Bl}

O

Remark 2.2.

(1) In view of the Alexander result that f € C(y) if and only if zf’ €
S*(p), the estimate for ’bng - ,ubiﬂ| for a function in C'(¢) can
be obtained from the corresponding estimates in Theorem 2.1 for
functions in S*(¢). The details are omitted here.

(2) For k = 1, the k-th root transformation of f reduces to the
given function f itself. Thus, the estimate given in equation
(2.1) of Theorem 2.1 is an extension of the corresponding result
for the Fekete-Szego coefficient functional corresponding to func-
tions starlike with respect to (. Similar remarks apply to other
results in this section.

The well-known Noshiro-Warschawski theorem states that a function
f € A with positive derivative in A is univalent. The class Ry(¢) of
functions defined in terms of the subordination of the derivative f’ is
closely associated with the class of functions with positive real part.
The bound for the Fekete-Szegd functional corresponding to the k-th
root transformation of functions in Ry(¢) is given in Theorem 2.3.

Theorem 2.3. Let p(z) =1+ Bz + Boz? + B3z3 +---. If f given by
(1.1) belongs to Ry(v), and F is the k-th root transformation of f given
by (1.2), then,

Proof. If f € Ry(p), then there is an analytic function w(z) = wiz +
wyz? 4 - -+ € Q such that

(1 L) D
4

b| By
_ 2 < 7| .
‘b2k+1 :ubk+1| T max{l, 5 " ok + A

(2.7) 1+ % (f'(z) — 1) = p(w(z)).



126 Ali, Lee, Ravichandran and Shamani

Since

1 2 3
1+ - (f'(z)—1) = 14 Zapz + Sazz® + ...
b b b
and
p(w(z)) = 1+ Biwiz + (Biwy + Bowi)2* + ...,

then it follows from (2.7) that

bB
(2.8) ay = ——1
2
and
b 2
(2.9) az = g(Bl’LUQ -+ ngl).
By using (2.8) and (2.9) in (2.5) and (2.6), it follows:
b _ bB1w1
k+1 — 2k
and

bBiws n bBow? B vV Biw? b’ Biw?
3k 3k 8k 8k2

bog+1 =

and hence,

bB1 3bBl 1 1 1% B2 2
2.10) bopy1 —pbi g = — — Sl ,
(2.10) ba1—=pbis1 = 31 {w2 { 4 <2 2k+k) Bl]wl

Applying Lemma 1.2 yields:
3B, (1 1 p By ,
wa [ 1 <2 ok + k:) 31] wy

6] By
1 1
< ‘b;‘),fl max{l; 30B; < ,u> By }

|bok41 — b3y | =

3k
T \27% k) B

Remark 2.4. When k=1 and

(2) = 1+ Az
14 1+ Bz

Theorem 2.3 reduces to a result in [9, Theorem 4, p. 894].
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It is important to consider the special case of functions f € A having
positive derivatives, in particular, functions f satisfying the subordina-
tion f'(z) < ¢(z). The class of such functions is the special case of the
class Ry(¢), when b = 1. In fact, when b = 1, equation (2.10) becomes:

B1 3Bl 1 1 % B2 2
Dot — b2y = b Qg — |22 (- = ) 22 .
2l T 0kl = g {“’2 [ 1 (2 2% " k:) Bl}wl

Lemma 1.1 now yields the following result.

Corollary 2.5. If f € A satisfies f'(z) < p(z), then,

2
. (1—1+“>+BQ, if p<on,

a4k \2 2 k) 3k
2 Bl .
[bakr — b | < § 50 if o1<p<oy,
B /(1 1 p\ B _
Y (S el >
4k <2 2k+k> 0 onze
where,
4B 4k k1 o =B 4k k]
VT 3BT 3B, 2 2 727 3p? T3 22

The following result gives the bounds for the Fekete-Szego coefficient
functional corresponding to the k-th root transformation of functions in
the class S* (o, ).

Theorem 2.6. Let p(z) = 1+ Biz + Boz? + B3z3 + - --. Define o1, 0
and v by:

P k(1+204)2 [ By @_Bl(k—l)(l—i—fia) _1-
YT2B(1+30) [(1+2a) | B (1+ 20)2 |’
k(1+2a)? [ B +@_ Bi(k—1)(1+ 3a) )
72T 9B1(1+3a) |[(1+2a) ' B (1+ 20)2 ’
B [(k—1)(1+3a) 2u(l+3q) By

v = — — .

(1+2a) E(1+2a) k(1 + 2a) By
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If f given by (1.1) belongs to S*(a, ), and F is k-th root transformation
of f given by (1.2), then

( By .
Tt Forson
|bak 1 — pbiq | < L? if o1 < p <oy,
— ] 2k(1+ 3a)
B ,
m% if 2> o,
and for i complex,
By

bopys — b2, | < — L L v}
|bok41 — iy | < TORER max {1; [u|}

Proof. If f € S*(«, ), then there is an analytic function w(z) =
w1z 4+ wez? + - - € Q) such that

! 2 el
2/'(2) | 02f'(2)

e e )
Since
(2.11) foéij) =14 a2+ (—a3 + 2a3)2* + - --
and
(2.12) O‘Z;(:)(Z) = 2apaz — (2030 — 6aza)2?,
‘Egirg)equations (2.11) and (2.12) yield:
Z;:;Ej) + az;{:)(z) = 1+as(1+2a)z+[2(1+3a)az — (1+20)a2]z2+- - .
Since

o(w(z)) = 1+ Biwiz + (Biws + Bow?)z? + ...,
then equation (2.13) gives:

Biwy
2.14 = —
(2.14) 2= 11 20q)
and
1 B2 2
(2.15) as Biws + Byw? + 11

~ 2(1+ 3a) (1+2a)]"
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Using (2.14) and (2.15) in (2.5) and (2.6), we get

b o 1 Blwl
T R+ 2a)

and

1 B2w? B?w?
b — B B 2 1*1 . 1*1 -1
26+ = 9k(1 + 3a) < e+ Bawi+ 5 5 ) T g g 202 KL
and hence,

B B (k- 1)(1+ 3a)
S e S _ 1
bok41 — b1 2%(1 + 3a) {wQ [ <

(1+20) \" k(1 +2a)
2u(1 + 3a) B
k(1 + 20) ‘Q‘Bﬂ w%}'

The first part of the result is established by applying Lemma 1.1.
If 4 < o1, then v < —1 and hence Lemma 1.1 yields:

B

b — ub? < ——" 0.

[b2ks1 = by | < 2k(1+ 3a)

If 09 < pu <09, then —1 < v <1 and hence Lemma 1.1 yields:

By
by — b2, < — 1
[bars1 = by | < 2k(1 + 3a)

For pp > o9, then v > 1 and hence Lemma 1.1 yields

By
b — < ————.
’ 2k+1 — M k;+1} = 2k(1+3a)v

The second result follows by an application of Lemma 1.2.
Observe that Theorem 2.6 reduces to Theorem 2.1 when o = 0.

Theorem 2.7. Let o(2) = 1+ Biz+ B22?+ Bsz3+-++ and B = (1—q).
Also, let

ol =

k [(a+2ﬁ)2 <B2 B 1) _ (a+20)* —3(a+45)
2(a + 30) B By 2
(k- 1)(a+3ﬁ)}

? :
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o k (a+28)* (B _ (a+28)* =3(a+4p)
7 3+ 35) [ B, <31 “) 2
_(k—l)(a—l—Sﬂ)}
kf )
B (a+28)?—3(a+48) 1
vim as | . + k=D +39)
Q/L B2
+?( +3ﬂ)] B

If f given by (1.1) belongs to L(a, @), and F is k-th root transformation
of f given by (1.2), then,

By

oh(atsp Tor=on
By
2 .
(2.16)  [bogs1 — pbiyq| < (0 +35)’ if o1 <p< o,
B .
- - @@ >
ohatap om0

and for u complex,

B
2 1 .
|bokt1 — pbk+1| < (o + 30) max {1; |v]}.

Proof. If f € L(«a, ¢), then there is an analytic function w(z) = wiz +
wyz? + -+ € Q such that

Zf'(Z))a < Zf”(z))ﬂ _
(2.17) ( ) 1+ e o(w(2)).
We hayve,
széiz)') =1+ asz + (2a3 — a3)z* + (3a4 + a3 — 3azaz)z® + -,

and therefore,
(2.18) zf(2) a_1+aaz+ 20a +a2_70‘a2 2y

' f(Z) N 2 3 2 2 .
Similarly,

14 zf//(Z) =144 2asz + (6a3 _ 4a§)22 NI

f'(2)
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and therefore,
21"(2)

2.19 1+

e19) (1425

Thus, from (2.18) and (2.19),

(FE) (1 30) = 1+ e 2 ot a0

B
) =1+2Basz + (6/80,3 +2(8% - 36)@%) 224

+(a+2ﬁ)223(a+4ﬁ)a§ P

Since
o(w(z)) =1+ Biwz + (Bywy + Bow?)2% + .. .,
then it follows from (2.17) that

(2.20) a4y = (Oiugﬁ)
and
(2.21) oy = Brwa+ Bouwd _ [(a+28)° — 3 + 48)| But
2(a+30) 4(a +28)2(a + 36)

Using (2.20) and (2.21) in (2.5) and (2.6), we get

by = 1 Biw

S a1 28)
and

by g = D12 Bow?  [(@+26) = 3(a + 40)| Biwi
#417 S{a+38) | 2k(a + 30) (a1 28)2(a + 30)
B2w?(k —1)
2k2(a + 23)2
and hence,
bk~ Wi = gy (o).
2h(or + 30)

where,

2
o= f;ﬁ)Q (o +20) . 3o +4p) %(k —1)(a+38) + %(a +38)

By
-5

The results now follow by using lemmas 1.1 and 1.2.
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Remark 2.8. We note that if £ = 1, then inequality (2.16) is the result
established in [19, Theorem 2.1, p. 3.

For the class M («, ¢), we now get the following coefficient bounds.

Theorem 2.9. Let p(z) =1+ Bz + Byz? + B3z3 + ---. Also, let

] o2
al;_z(lfm) “*Bl) (gi—1>+(1+3a)—(l€—1)(1+20¢)},
] e
02;:2(1f2a) “*Bl) <gj+1>+(1+3a)—(k—1)(1+2a)},
B o B

If f given by (1.1) belongs to M (o, ), and F is k-th root transformation
of f given by (1.2), then,

—LU, if p<o,
2k(1 + 20)
By .
b2k+1—,ub%+1| < (1 + 20)° if o1 < p <oy,
By .
P >
it Torzor
and for u complex,
B
|boks1 — iy | < (1 + 20) max {1; v} .

Proof. If f € M(«a,p), then there is an analytic function w(z) =
w1z + woz? + - -+ € Q such that

(2.22) -2, (1 - Zfﬂ(z)) — p(w(2)).

f(2) f'(2)
Since
(2.23) (1—a)zjf(i§) = (1—a)+ay(l-a)z+(1—a)(—a+2a3)z%+- -
and

(2.24) o <1 + Z]{’/;,(z;)> = a+ 2a2az + 2a(3az — 2a%)z2,
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then from equations (2.23) and (2.24), it follows:

i zf'(2) N 2f"(2) _ ooz
(1 )f(z) + <1+ f’(z)) 1+ (14 a)az

+[—(1 4+ 3a)a3 + 2(1 + 2a)aslz® + - - .

Since
cp(w(z)) =14+ Bywiz + (Blwg + BQw%)zQ o
then it follows from equation (2.22) that

B1w1
2.2 =
and
1 (1 + 3a)Biw?
2.2 =———|B Bow? 4 ~———171
(2.26) as 51+ 20) { 1wz + Bawy + (1 +a)2
By using (2.25) and (2.26) in (2.5) and (2.6), it follows:
b _ B1w1
k+1 k(l + a)v
and
1 (1+3a)Biw?] B?w?(k—1)
b _ B Bow? 1wy | biwy
2417 9k(1 1 20) [ R N (e 2%2(1 + )2’
and hence,
o1 — by, = L{wg —ow?}
2k+1 k+1 2]€(1+O&) 1S
where,
B1 2,u BQ
= —1)(1+2 —(1+4+2a)—(1 - —=.
o 1ra? [(k: )(1 4 2a) + p (14+2a) —( +3oz)} B

The results follow from lemmas 1.1 and 1.2. we have
|boks1 — szﬂ} < —v.
For 01 < < 09, then —1 < v < 1 and hence by Lemma 1.1, we have
|bokt1 — Mbiﬂ‘ <.
For ;4 > o9, then v > 1 and hence by Lemma 1.1, we have

|bokgr — by | < o

Remark 2.10. When £ =1 and a = 1, Theorem 2.9 reduces to a result
in [13, Theorem 3, p. 164].
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3. The Fekete-Szegd functional associated with z/f(z)

Here, bounds for the Fekete-Szegé coefficient functional associated
with the function G defined by

(3.1) G(z) = ﬁ =1+ du2",
n=1

where f belongs to one of the classes S*(¢), Rp(¢), S* (e, ), L(a, )

and M (a, ), are investigated. Proofs of the results obtained here are

similar to those given in Section 2, and hence the details are omitted.
The following result is for functions belonging to the class S*(p).

Theorem 3.1. Let o(2) = 1+ Bz + Boz? + B3z + -+, and

1 2 Bs 1 n 2 Bs
O] i — - — — — —5 o9 1 — — - -
YT By 22 P2 B3 2B?
If f given by (1.1) belongs to S*(¢), and G is a function given by (3.1),
then,

( 1 1 3 .
_ZBIBQ - ZBl (2N - 1)7 Zf 2 < 01,
1
‘dg—ﬂd%‘ < §Bl) Zf g1 SMSUQ)
1 1, .
ZBlBQ + zBl(Q,u —1), if  w> o9,

and for u complex,

1
(1= wBi - 5(B2 + BY)

1
!dg—ud%} < 2Blmax{1; 5

b

Proof. A computation yields:

(3.2) ﬁzl—agz+(a%—a3)22+-~
Using (3.1), (3.2) yields:
(33) dl = —az

and

(3.4) dy = a3 — as.
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By using (2.2) and (2.3) in (3.3) and (3.4), it follows:
di = —Biun
and
dz = Biwi — %[Ble + (B2 + By )i,

and hence,
1 1
dy — pdi = —55 {w2 - [(1 — 1) B} — 5(32 + B%)] w%} :

The result is established from an application of Lemma 1.1. The second
result follows from Lemma 1.2:

1
|dy — pdi| = 3B

= (L= 0B} - 5B+ Bt
}.

For the class Rp(y), the following coefficient bound is obtained.

<

N | —

1
By max{l; '(1 — 1B} - 5(32 + BY)

Theorem 3.2. Let p(2) =1+ Byz + Boz? + B3z3 +---. If f given by
(1.1) belongs to Ry(p), and G is a function given by (3.1), then,

3 By
—(1—p)bB; — == .
4< M) 1 31}

- ] < 2

Proof. Using (2.8) and (2.9) in (3.3) and (3.4), it follows:

bByw
==
and
Loy o b 2
d2 = Zb Blwl — g(BlU)Q + BQ’LUl),
and hence,

bB 3 B
dy — pd? = _Tl {wg - [(1 — pu)bBy — 2] w%} .
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Lemma 1.2 gives:

21 _ |b|B1 3 By|

|d2 — pdi| = 3 - {4(1 — p)bBy — B | Y
16| B, 3 By

< 1;(=(1— By — —|,.
= 3k max ) 4( /’L)b 1 B1

0

For functions with positive derivative, the above theorem turns in to
the following result.

Corollary 3.3. If f € A satisfies f'(z) < ¢(z), then

1 Bs .
Z(l—N)B%—ga if p<o,
B
|dy — pdi| < ?1 if o1 <p< o,
1 B> .
\ —Z(l—u)B%—i—?, if p=o
where,
4 4Bs 4 4By
=1— =2 pd opi= 14— — 2
7 3B, 3B M 72T 1T3B T 3B
1 1

The following result gives the coefficient bounds for the class S*(a, ).

Theorem 3.4. Let p(2) = 1+ Byz+ Byz?+ B3z3 +---. Define o1, 03,
v and vy by:

(1+2a)Bsy 1 . (1+20)
2(1+3a)B?  2(1+3a) 2(1+43a)B1]’

o1:=(142a) |1+

(14 2a)Bs 1 (1+2a)
2(1+3a)B2 " 2(1+3a) ' 2(1+3a)B; ]’

oy :=(1+2a) |1+

o 231(1 + 30&) 2#(1 + 30[)31 B1 B2 B1

(1+ 2a)? (14 2a)? +(1+2a)+BT’ 7T T+ 3a)
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If f given by (1.1) belongs to S*(a,¢), and G is a function given by
(3.1), then,

LU, Zf ,U«<‘717
2(1+ 3«) -
By
_ ud?l < . ; <pu<
2 —pdi| <3 gaggy W mseson
By ‘
S >
Mt orzoz

and for u compler,

|dy — pdy max {1; |v]}.

< 2(1+ 3«)

Proof. By using the relations (2.14) and (2.15) in (3.3) and (3.4), it
follows:

g — B
LT T 0+ 20)
and
B2w? 1 B2w?
dy = =it — Biws + Byw? + 211
YT (1420 2(1+3a) < v BT T )
and hence,
b — B [ [2Bi1430)  2u(1430)B
2 — pay 2(1 4 3a) 2 (1 + 20)2 (1+ 2a)2
Bl BQ 2

The result is established by an application of Lemma 1.1. The second
result follows by an application of Lemma 1.2:

2 B, 231(1 + 304) 2,[1,(1 + 304)31

[ . 2 2
2(1+ 3a) (1+2a) (1+2a)

By By| o

Tay2a) " Bl] b

By
1
< s a1l

g

For the class L(«, ¢), we now get the following coefficient bounds.
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Theorem 3.5. Let p(z) = 1+ B1z+ Boz? + B3z3+- -+ and B = (1—a).
Also, let

(a +26)2Bs N [(a+428)? —3(a+48)](a+28) 1

T T 9+ 30) B2 A(o + 30) - By’
R G 23)% By N [(a428)% — 3(a + 48)](a + 23) 1
72T 9+ 30)B? A(a + 30) B’
_ (@ +28)°By  [(a+26)* - 3(a+48)]Bi(a +20)
v Bl_Q(a—i—?)ﬁ)Bl * 4(o 4 30) — 1B

If f given by (1.1) belongs to L(a, ), and G is a function given by (3.1),
then,
Biv

my if  p<oy,
By ‘
’d2—ud%| < ma if o1 < <o,
Bw A
\ —ma if > o2,

and for u complex,

By
}dg — ud12‘ < m max{l; ’U‘} .

Proof. Using (2.20) and (2.21) in (3.3) and (3.4), it follows:

g — B
YT T (@ +2p)
and
5~ Biwl  Bawi+ Bowi | [(a+28)* —3(a+4p)| Biuy
T (@+268)?2 2(a+30) Ha+20)%(a+38)
Hence,
B
2 1 2
do — pdi = —m {w2 _le}a
where,

o (@+28%By _ [(@+28)° —3(a+48)Bila+28)
=B e A(a + 36) HBi.
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The result now follows from Lemma 1.1. The second result follows by
an application of Lemma 1.2:

B
2 1 2
}dQ—Mdl\:m\wrawl\
Bi
<L 1; o]}
S EETTE max {1; |o|}

O

Finally, for the class M(a,¢), the following coefficient bounds are
obtained.

Theorem 3.6. Let p(2) =1+ Bz + Boz? + B3z3 + ---. Also, let

Bs(1+ «)? (1+ a)?
=1 (143a)— ———
7 2B2(1 + 20v) (14 3a) 2B (1 + 20)’
By(14 a)? (1+ a)?
=1 (143a) 4
72 2B2(1 + 2q) (1+3a) + 2B1(1 + 2a)’

2(1 + 2(1)31 By 2(1 + 20[)(1 + 30&)31 B 2,&(1 + 20[)31

(+a? B (1+apP 1+ a)?
If f given by (1.1) belongs to M(«a,¢), and G is a function given by
(3.1), then,

B, % <
——U 1 o
ol ed B
= 2(1+2a)’ - =T
By .
_ 1 >
21+ 2a) i p=z o

and for u complex,

B
[da = pdr?| < gy max {Liful}

1+ 2a)

Proof. Using (2.25) and (2.26) in (3.3) and (3.4), it follows:

Biwy

dy = — :
! (1+a)
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and
B?w? 1 1 4 3a)Biw?
dy = (141_03)2 "3t 2a) Biws + Bowi + {1+ 30)Bruy {a +L); L,
and hence,
dy—pl2 = —— DL 2
2T T T 2a)2 {ws —owi},
where,

2(1+2a)B1 By 2(1+42a)(1+3a)B1  2u(l 4+ 2a)By
(14 a)? By (14 «)? (14 «)?

The results follows from Lemma 1.1. The second result follows by an

application of Lemma 1.2:

B
2| _ 1 2
42 = di| = 5 gaye (02— 0wl
B
< — 1; .
< 5y M (11l
O
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