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ON CERTAIN SUBCLASS OF ANALYTIC AND UNIVALENT

FUNCTIONS BASED ON RUSCHEWEYH DERIVATIVES AND

HADAMARD PRODUCT

R. THIRUMALAISAMY, T. V. SUDHARSAN, K. G. SUBRAMANIAN

AND S. M. KHAIRNAR

Abstract
Let S denote the class of functions f(z) analytic and univalent in the unit disc
∆ = {z : |z| < 1} and normalized by f(0) = 0 and f ′(0) = 1. In this paper
we introduce a new subclass of S based on Ruscheweyh derivative and Hadamard
product. Coefficient estimates, extreme points, distortion theorem, closure theorem,
radius of starlikeness and convexity, radii of close-to-convexity, inclusion property
and integral operators are determined for functions in this subclass.

1. Introduction

Let S denote the class of function f(z) analytic and univalent in the unit disc

∆ = {z/|z| < 1} and normalized by f(0) = 0 and f ′(0) = 1. The Hadamard product of

two functions f(z) = z +
∞∑
m=2

amz
m and g(z) = z +

∞∑
m=2

bmz
m in S is given by

(f ∗ g)(z) = z +
∞∑
m=2

ambmz
m. (1)
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Let Dαf(z) = z
(1−z)α+1 ∗ f(z), α ≥ −1. Ruscheweyh [5] observed that

Dnf(z) = z(zn−1f(z))n

n! when n ∈ N0 = {0, 1, 2, . . . }. This symbol Dnf(z), n ∈ N0, was

called the nth Ruscheweyh derivative of f(z).

Several subclasses of S have been introduced and studied by using either the Hadamard

product or Ruscheweyh derivatives by many authors [1, 2, 3, 4, 6, 9].

Definition 1.1 : A function f of the form

f(z) = z +
∞∑
m=2

amz
m (2)

is said to be in Sn(φ, ψ, α, λ), 0 ≤ α < 1, 0 ≤ λ < 1 if

<


Dn+1(f∗φ)(z)
Dn(f∗ψ)(z)

λD
n+1(f∗φ)(z)
Dn(f∗ψ)(z) + (1− λ)

 > α (3)

where φ(z) = z +
∞∑
m=2

λmz
m; ψ(z) = z +

∞∑
m=2

µmz
m; λm ≥ 0, µm ≥ 0, λm ≥ µm;

m = 2, 3, . . . and (f ∗ ψ)(z) 6= 0.

Let T denote the subclass of S consisting of functions of the form f(z) = z−
∞∑
m=2

amz
m,

am ≥ 0 and let TSn(φ, ψ, α, λ) = Sn(φ, ψ, α, λ) ∩ T . The family TSn(φ, ψ, α, λ) is of

special interest for it contain many well-known as well as new classes of T for suitable

choices of φ(z), ψ(z), α and λ. We provide necessary and sufficient coefficient condition,

extreme points, distortion theorem, closure theorem, radius of starlikeness and convex-

ity, radii of close-to-convexity, inclusion property and integral operators for functions in

TSn(φ, ψ, α, λ).

2. Coefficient Inequalities

In this section, we find a necessary and sufficient condition for a functions to be in

TSn(φ, ψ, α, λ) and consequently calculate coefficient estimates for functions in

TSn(φ, ψ, α, λ).

Theorem 2.1 : A function f(z) = z −
∞∑
m=2

amz
m ∈ TSn(φ, ψ, α, λ) if and only if

∞∑
m=2

(m+ n− 1)!
(m− 1)!(n+ 1)!

Km|am| ≤ 1− α, n ∈ N0 (4)
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where Km = (1− αλ)(m+ n)λm − α(1− λ)(n+ 1)µm, φ and ψ are as given in

Definition 1.1, and 0 ≤ α < 1, 0 ≤ λ < 1.

Proof : Assume that f(z) ∈ TSn(φ, ψ, α, λ). Then

<


Dn+1(f∗φ)(z)
Dn(f∗ψ)(z)

λD
n+1(f∗φ)(z)
Dn(f∗ψ)(z) + (1− λ)


= <

{
Dn+1(f ∗ φ)(z)

λDn+1(f ∗ φ)(z) + (1− λ)Dn(f ∗ ψ)(z)

}

= <


1−

∞∑
m=2

(m+n)!
(m−1)!(n+1)!λmamz

m−1

1−
∞∑
m=2

(m+n−1)!
(m−1)!(n+1)! [λ(m+ n)λm + (1− λ)(n+ 1)µm] amzm−1


> α, z ∈ ∆. (5)

Let z → 1− through real values, from (5), we obtain

1−
∞∑
m=2

(m+ n)!
(m− 1)!(n+ 1)!

λmam

> α− α
∞∑
m=2

(m+ n− 1)!
(m− 1)!(n+ 1)!

[λ(m+ n)λm + (1− λ)(n+ 1)µm] am

or
∞∑
m=2

(m+ n− 1)!
(m− 1)!(n+ 1)!

Kmam ≤ 1− α,

where Km = (1− αλ)(m+ n)λm − α(1− λ)(n+ 1)µm.

Conversely, assume that (4) holds.

Then we have,∣∣∣∣∣∣
Dn+1(f∗φ)(z)
Dn(f∗ψ)(z)

λD
n+1(f∗φ)(z)
Dn(f∗ψ)(z) + (1− λ)

− 1

∣∣∣∣∣∣
=
∣∣∣∣ Dn+1(f ∗ φ)(z)
λDn+1(f ∗ φ)(z) + (1− λ)Dn(f ∗ ψ)(z)

− 1
∣∣∣∣

=
∣∣∣∣(1− λ)Dn+1(f ∗ φ)(z)− (1− λ)Dn(f ∗ ψ)(z)

λDn+1(f ∗ φ)(z) + (1− λ)Dn(f ∗ ψ)(z)

∣∣∣∣
≤

(1− λ)
∑∞

m=2
(m+n−1)!

(m−1)!(n+1)! [(m+ n)λm − (n+ 1)µm] |am|

1−
∑∞

m=2
(m+n−1)!

(m−1)!(n+1)! [λ(m+ n)λm + (1− λ)(n+ 1)µm] |am|
.



14 R. THIRUMALAISAMY, T. V. SUDHARSAN, K. G. SUBRAMANIAN & S. M. KHAIRNAR

This shows that the value of
Dn+1(f∗φ)(z)
Dn(f∗ψ)(z)

λ
Dn+1(f∗φ)(z)
Dn(f∗ψ)(z)

+(1−λ)
lies in a circle centered at w = 1 whose

radius is 1− α. This implies that f(z) ∈ TSn(φ, ψ, α, λ).

Corollary 2.1 : If f ∈ TSn(φ, ψ, α, λ), then am ≤ (m−1)!(n+1)!(1−α)
(m+n−1)!Km

,

m = 2, 3, . . . and n ∈ N0. The equality holds, for each m, for functions of the form

fm(z) = z − (m−1)!(n+1)!(1−α)
(m+n−1)!Km

zm, z ∈ ∆.

Remark 2.1 :

1. For 0 ≤ α < 1, λ = 0,

TSn(φ, ψ, α, λ) = Snp (φ, ψ, α, β) with β = 0 [9].

2. For 0 ≤ α < 1, λ = 0, φ(z) = ψ(z) = z
1−z and n = 0,

TSn(φ, ψ, α+1
2 , λ) = TSp (α) [8].

3. For 0 ≤ α < 1, λ = 0, φ(z) = ψ(z) = z
1−z and n = 0,

TSn(φ, ψ, α+1
2 , λ) = TSgp(α) [10].

4. For 0 ≤ α < 1, λ = 0, n = 0, φ(z) = ψ(z) = z
1−z ;

TSn(φ, ψ, α, λ) = T ∗(α) [7].

3. Distortion Theorem

Theorem 3.1 : Let f ∈ TSn(φ, ψ, α, λ)

and Km = (λ+ 1)(m+ n)λm − (n+ 1)(α+ λ)µm, m = 2, 3, . . . , then

r − 1− α

min
{

(m+n−1)!
(m−1)!(n+1)!Km

}r2 ≤ |f(z)| ≤ r +
1− α

min
{

(m+n−1)!
(m−1)!(n+1)!Km

}r2,
|z| = r < 1. The result is sharp for f(z) = z + 1−α

min
{

(m+n−1)!
(m−1)!(n+1)!

Km
}r2.

Proof : Let |z| = r. For f(z) = z −
∞∑
m=2

amz
m, we have

|f(z)| ≤ |z|+
∞∑
m=2

|am||z|m

≤ r +
∞∑
m=2

amr
m
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≤ r +
∞∑
m=2

amr
2

≤ r + r2
∞∑
m=2

am.

Since

min
{

(m+ n− 1)!
(m− 1)!(n+ 1)!

Km

}
≤ (m+ n− 1)!

(m− 1)!(n+ 1)!
Km

we have

min
{

(m+ n− 1)!
(m− 1)!(n+ 1)!

Km

} ∞∑
m=2

am ≤
∞∑
m=2

(m+ n− 1)!
(m− 1)!(n+ 1)!

≤ 1− α

or
∞∑
m=2

am ≤
1− α

min
{

(m+n−1)!
(m−1)!(n+1)!Km

}
This gives |f(z)| ≤ r + 1−α

min
{

(m+n−1)!
(m−1)!(n+1)!

Km
}r2.

Similarly, we have |f(z)| ≥ r − 1−α
min

{
(m+n−1)!

(m−1)!(n+1)!
Km

}r2.

4. Closure Theorem

Theorem 4.1 : The class TSn(φ, ψ, α, λ) is closed under convex linear combination.

Proof : Let f, g ∈ TSn(φ, ψ, α, λ) and let f(z) = z −
∞∑
m=2

amz
m,

g(z) = z −
∞∑
m=2

bmz
m, am ≥ 0, bm ≥ 0. For µ such that 0 ≤ µ ≤ 1, it is sufficient to

show that the function h, defined by h(z) = (1 − µ)f(z) + µg(z), z ∈ ∆ belongs to

TSn(φ, ψ, α, λ).

Since h(z) = z −
∞∑
m=2

[(1− µ)am + µbm]zm, applying Theorem 2.1, we obtain,

∞∑
m=2

(m+ n− 1)!Km

(m− 1)!(n+ 1)!
[(1− µ)am + µbm]

≤ (1− µ)
∞∑
m=2

(m+ n− 1)!Km

(m− 1)!(n+ 1)!
am + µ

∞∑
m=2

(m+ n− 1)!Km

(m− 1)!(n+ 1)!
bm

≤ (1− µ)(1− α) + µ(1− α)

= 1− α.
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This implies that h ∈ TSn(φ, ψ, α, λ).

We now determine the extreme points of TSn(φ, ψ, α, λ).

Theorem 4.2 : Let f1(z) = z, fm(z) = z − (m−1)!(n+1)!(1−α)
(m+n−1)!Km

zm, m = 2, 3, . . . , z ∈ ∆

and n ∈ N0. Then f ∈ TSn(φ, ψ, α, λ) if and only if it can be expressed as

f(z) =
∞∑
m=1

ρmfm(z), ρm ≥ 0 and
∞∑
m=1

ρm = 1.

Proof : Suppose that

f(z) =
∞∑
m=1

ρmfm(z)

= z −
∑ (m− 1)!(n+ 1)!(1− α)

(m+ n− 1)!Km
ρmz

m

= z −
∞∑
m=2

tmz
m.

Therefore f ∈ TSn(φ, ψ, α, λ), since
∞∑
m=2

(m+ n− 1)!Kmtm
(m− 1)!(n+ 1)!(1− α)

=
∞∑
m=2

ρm = 1− ρ1 < 1.

Conversely, If f ∈ TSn(φ, ψ, α, λ), by Corollary 2.1, we have am ≤ (m−1)!(n+1)!(1−α)
(m+n−1)!Km

,

m = 2, 3, . . . . We may set ρm = (m+n−1)!Km
(m−1)!(n+1)!(1−α)am, m = 2, 3, . . . , n ∈ N0 and

ρ1 = 1−
∞∑
m=2

ρm.

Then

f(z) = z −
∞∑
m=2

amz
m

= z −
∞∑
m=2

(m− 1)!(n+ 1)!(1− α)
(m+ n− 1)!Km

ρmz
m

= z −
∞∑
m=2

ρm[z − fm(z)]

=

(
1−

∞∑
m=2

ρm

)
(z) +

∞∑
m=2

ρmfm(z)

=
∞∑
m=1

ρmfm(z).

Corollary 4.1 : The extreme points of TSn(φ, ψ, α, λ) are the functions fm(z),

m = 1, 2, . . . .
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5. Radius of Starlikeness and Convexity

Now, we determine the largest disc in which functions in TSn(φ, ψ, α, λ) are starlike and

convex of order δ (0 ≤ δ < 1) in ∆ for all admissible choice of φ(z), ψ(z), α, λ and n.

Theorem 5.1 : If f ∈ TSn(φ, ψ, α, λ), then f is starlike of order δ, 0 ≤ δ < 1 for

|z| < r1, where r1 = inf
m

{
(m+n−1)!(1−δ)Km

(m−1)!(n+1)!(m−δ)(1−α)

} 1
m−1 , m = 2, 3, . . . and n ∈ N0.

Proof : For 0 ≤ δ < 1, it is sufficient to show that∣∣∣∣zf ′(z)f(z)
− 1
∣∣∣∣ < 1− δ.

We have

∣∣∣∣zf ′(z)f(z)
− 1
∣∣∣∣ ≤

∞∑
m=2

(m− 1)am|z|m−1

1−
∞∑
m=2

am|z|m−1

< 1− δ

or
∞∑
m=2

m− δ
1− δ

am|z|m−1 < 1. (6)

It is easy to see that (6) holds if

|z|m−1 ≤ (m+ n− 1)!(1− δ)Km

(m− 1)!(n+ 1)!(m− δ)(1− α)
.

This completes the proof.

Upon noting the fact that f is convex if and only if zf ′ is starlike, we obtain

Theorem 5.2 : If f ∈ TSn(φ, ψ, α, λ), then f is convex of order δ, 0 ≤ δ < 1 for

|z| < r2,

r2 = inf
m

{
(m+n−1)!(1−δ)Km
m!(n+1)!(m−δ)(1−α)

} 1
m−1 , m = 2, 3, . . . and n ∈ N0.

6. Radii of Close-to-convexity

Theorem 6.1 : Let the function f(z) = z −
∞∑
m=2

amz
m, (am ≥ 0) be in the class

TSn(φ, ψ, α, λ). Then f(z) is close-to-convex of order δ (0 ≤ δ < 1) in |z| < r1(n, λ, α, δ),

where

r1(n, λ, α, δ) = Inf
m

{
(m+ n− 1)!(1− δ)Km

(m− 1)!(n+ 1)!(m− δ)(1− α)

} 1
m−1

,
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m = 2, 3, . . . and n ∈ N0.

The result is sharp with the extremal function f(z) given by

f(z) = z − (m− 1)!(n+ 1)!(1− α)
(m+ n− 1)!Km

zm, z ∈ ∆.

Proof : It is sufficient to show that |f ′(z)− 1| ≤ 1− δ (0 ≤ δ < 1), |z| < r1.

We have |f ′(z)− 1| −

∣∣∣∣∣
∞∑
m=2

mamz
m−1

∣∣∣∣∣ ≤
∞∑
m=2

mam|z|m−1.

Thus

|f ′(z)− 1| ≤ 1− δ if
∞∑
m=2

(
m

1− δ

)
am|z|m−1 ≤ 1. (7)

But Theorem 2.1 confirms that
∞∑
m=2

(m+ n− 1)!Km

(m− 1)!(n+ 1)!(1− α)
am ≤ 1. (8)

Hence (7) will be true if m|z|m−1

1−δ ≤ (m+n−1)!Km
(m−1)!(n+1)!(1−α)

or if

|z| ≤
[

(m+ n− 1)!Km

m!(n+ 1)!(1− α)

]1/m−1

(m ≥ 2). (9)

The theorem now follows easily from (9).

7. Inclusion Property of the Class TSn(φ, ψ, α, λ)

Theorem 7.1 : Let 0 ≤ α < 1, 0 ≤ λ1 ≤ λ2 and n ∈ N0.

Then TSn(φ, ψ, α, λ1) ⊆ TSn(φ, ψ, α, λ2).

Proof : Let f(z) ∈ TSn(φ, ψ, α, λ1).

Then by Theorem 2.1, we have,
∞∑
m=2

(m+ n− 1)!
(m− 1)!(n+ 1)!

Km|am| ≤ 1− α

where Km = (1− αλ1)(m+ n)λm − α(1− λ1)(n+ 1)µm

≥ (1− αλ2)(m+ n)λm − α(1− λ2)(n+ 1)µm

= K ′m.

Therefore
∞∑
m=2

(m+ n− 1)!
(m− 1)!(n+ 1)!

K ′m|am| ≤
∞∑
m=2

(m+ n− 1)!
(m− 1)!(n+ 1)!

Km|am| ≤ 1− α.
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This shows that f(z) ∈ TSn(φ, ψ, α, λ2) and hence TSn(φ, ψ, α, λ1) ⊆ Sn(φ, ψ, α, λ2).

8. Integral Operators

Theorem 8.1 : Let the function f(z) = z −
∞∑
m=2

amz
m ∈ TSn(φ, ψ, α, λ) and let c be a

real number such that c > −1. Then the function F (z) defined by

F (z) =
c+ 1
zc

∫ z

0
tc−1f(t)dt (10)

also belongs to the class TSn(φ, ψ, α, λ).

Proof : From the representation of F (z), it follows that

F (z) = z −
∞∑
m=2

bmz
m, (11)

where bm =
(
c+ 1
c+m

)
am. (12)

Therefore,
∞∑
m=2

(m+ n− 1)!Km

(m− 1)!(n+ 1)!
bm =

∞∑
m=2

(m+ n− 1)!Km

(m− 1)!(n+ 1)!

(
c+ 1
c+m

)
am

≤
∞∑
m=2

(m+ n− 1)!Km

(m− 1)!(n+ 1)!
am

≤ 1− α, since f(z) ∈ TSn(φ, ψ, α, λ).

Hence by theorem 2.1, F (z) ∈ TSn(φ, ψ, α, λ).

Theorem 8.2 : Let c be a real number such that c > −1. If F (z) ∈ TSn(φ, ψ, α, λ),

then the function f(z) defined by (10) is univalent in |z| < R∗, where

R∗ = inf
m

{
(c+ 1)(m+ n− 1)!Km

(c+ k)(1− α)(m− 1)!(n+ 1)!

} 1
m−1

, (m ≥ 2). (13)

The result is sharp.

Proof : Let F (z) = z −
∞∑
m=2

amz
m (am ≥ 0).

It follows from (10) that

f(z) =
z1−c [zcF (z)]′

c+ 1

= z −
∞∑
m=2

(
c+ k

c+ 1

)
amz

m (c > −1). (14)
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In order to obtain the required result, it suffices to show that |f ′(z)−1| < 1 in |z| < R∗.

Now

|f ′(z)− 1| ≤
∞∑
m=2

m(c+m)
c+ 1

am|z|m−1.

Thus |f ′(z)− 1| < 1 if
∞∑
m=2

m(c+m)
c+ 1

am|z|m−1 < 1. (15)

Hence by using (8), (15) will be satisfied if

m(c+m)
c+ 1

|z|m−1 ≤ (m+ n− 1)!Km

(m− 1)!(n+ 1)!(1− α)
, m ≥ 2

or if

|z| ≤
[

(c+ 1)(m+ n− 1)!Km

m!(n+ 1)!(1− α)(c+m)

]1/m−1

(m ≥ 2).

Therefore f(z) is univalent in |z| < R∗. Sharpness follows if we take

f(z) = z − (1−α)(c+m)m!(n+1)!
(c+1)(m+n−1)!Km

zm, m ≥ 2.
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