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Abstract

A normalized analytic function f is shown to be univalent in the
open unit disk D if its second coefficient is sufficiently small and relates
to its Schwarzian derivative through a certain inequality. New crite-
ria for analytic functions to be in certain subclasses of functions are
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established in terms of the Schwarzian derivatives and the second coef-
ficients. These include obtaining a sufficient condition for functions to
be strongly α-Bazilevič of order β.

Keywords and Phrases: Univalent functions, Bazilevič functions, Gron-
wall’s inequality, Schwarzian derivative, Second coefficient.

1. Introduction

Let A be the set of all normalized analytic functions f of the form f(z) = z+∑∞
k=2 akz

k defined in the open unit disk D := {z ∈ C : |z| < 1} and denote by S
the subclass ofA consisting of univalent functions. A function f ∈ A is starlike
if it maps D onto a starlike domain with respect to the origin, and f is convex
if f(D) is a convex domain. Analytically, these are respectively equivalent
to the conditions Re(zf ′(z)/f(z)) > 0 and 1 + Re(zf ′′(z)/f ′(z)) > 0 in D.
Denote by ST and CV the classes of starlike and convex functions respectively.
More generally, for 0 ≤ α < 1, a function f ∈ A is starlike of order α if
Re(zf ′(z)/f(z)) > α, and is convex of order α if 1 + Re(zf ′′(z)/f ′(z)) > α.
We denote these classes by ST (α) and CV(α) respectively. For 0 < α ≤ 1, let
SST (α) be the subclass of A consisting of functions f satisfying the inequality∣∣∣∣arg

zf ′(z)

f(z)

∣∣∣∣ ≤ απ

2
.

Functions in SST (α) are called strongly starlike functions of order α.

The Schwarzian derivative S(f, z) of a locally univalent analytic function
f is defined by

S(f, z) :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

.

The Schwarzian derivative is invariant under Möbius transformations. Also,
the Schwarzian derivative of an analytic function f is identically zero if and
only if it is a Möbius transformation.

Nehari showed that the univalence of an analytic function in D can be
guaranteed if its Schwarzian derivative is dominated by a suitable positive
function [10, Theorem I, p. 700]. In [9], by considering two particular positive
functions, a bound on the Schwarzian derivative was obtained that would
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ensure univalence of an analytic function in A. In fact, the following theorem
was proved.

Theorem 1.1. [9, Theorem II, p. 549] If f ∈ A satisfies

|S(f, z)| ≤ π2

2
(z ∈ D),

then f ∈ S. The result is sharp for the function f given by f(z) = (exp(iπz)−
1)/iπ.

The problems of finding similar bounds on the Schwarzian derivatives that
would imply univalence, starlikeness or convexity of functions were investi-
gated by a number of authors including Gabriel [4], Friedland and Nehari [3],
and Ozaki and Nunokawa [11]. Corresponding results related to meromorphic
functions were dealt with in [4, 6, 9, 12]. For instance, Kim and Sugawa [8]
found sufficient conditions in terms of the Schwarzian derivative for locally
univalent meromorphic functions in the unit disk to possess specific geometric
properties such as starlikeness and convexity. The method of proof in [8] was
based on comparison theorems in the theory of ordinary differential equations
with real coefficients.

Chiang [1] investigated strong-starlikeness of order α and convexity of func-
tions f by requiring the Schwarzian derivative S(f, z) and the second coefficient
a2 of f to satisfy certain inequalities. The following results were proved:

Theorem 1.2. [1, Theorem 1, pp. 108-109] Let f ∈ A, 0 < α ≤ 1 and
|a2| = η < sin(απ/2). Suppose

sup
z∈D
|S(f, z)| = 2δ(η), (1.1)

where δ(η) satisfies the inequality

sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
.

Then f ∈ SST (α). Further, | arg(f(z)/z)| ≤ απ/2.

Theorem 1.3. [1, Theorem 2, p. 109] Let f ∈ A, and |a2| = η < 1/3. Suppose
(1.1) holds where δ(η) satisfies the inequality

6η + 5(1 + η)δeδ/2 < 2.
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Then

f ∈ CV
(

2− 6η − 5(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2

)
.

In particular, if a2 = 0 and 2δ ≤ 0.6712, then f ∈ CV.

Chiang’s proofs in [1] rely on Gronwall’s inequality (see Lemma 2.1 below).
In this paper, Gronwall’s inequality is used to obtain sufficient conditions for
analytic functions to be univalent. Also, certain inequalities related to the
Schwarzian derivative and the second coefficient will be formulated that would
ensure analytic functions to possess certain specific geometric properties. The
sufficient conditions of convexity obtained in [1] will be seen to be a special
case of our result, and similar conditions for starlikeness will also be obtained.

2. Consequences of Gronwall’s Inequality

Gronwall’s inequality and certain relationships between the Schwarzian deriva-
tive of f and the solution of the linear second-order differential equation
y′′ + A(z)y = 0 with A(z) := S(f ; z)/2 will be revisited in this section. We
first state Gronwall’s inequality, which is needed in our investigation.

Lemma 2.1. [7, p. 19] Suppose A and g are non-negative continuous real
functions for t ≥ 0. Let k > 0 be a constant. Then the inequality

g(t) ≤ k +

∫ t

0

g(s)A(s)ds

implies

g(t) ≤ k exp

(∫ t

0

A(s)ds

)
(t > 0).

For the linear second-order differential equation y′′ + A(z)y = 0 where
A(z) := 1

2
S(f ; z) is an analytic function, suppose that u and v are two lin-

early independent solutions with initial conditions u(0) = v′(0) = 0 and
u′(0) = v(0) = 1. Such solutions always exist and thus the function f can
be represented by

f(z) =
u(z)

cu(z) + v(z)
, (c := −a2). (2.1)
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It is evident that

f ′(z) =
1

(cu(z) + v(z))2
. (2.2)

Estimates on bounds for various expressions related to u and v were found in
[1]. Indeed, using the integral representation of the fundamental solutions

u(z) = z +
∫ z
0

(η − z)A(η)u(η)dη,

v(z) = 1 +
∫ z
0

(η − z)A(η)v(η)dη,
(2.3)

and applying Gronwall’s inequality, Chiang obtained the following inequalities
[1] which we list for easy reference:

|u(z)| < eδ/2, (2.4)∣∣∣∣u(z)

z
− 1

∣∣∣∣ < 1

2
δeδ/2, (2.5)

|cu(z) + v(z)| < (1 + η)eδ/2, (2.6)

|cu(z) + v(z)− 1| < η +
1

2
(1 + η)δeδ/2. (2.7)

For instance, by taking the path of integration η(t) = teiθ, t ∈ [0, r], z = reiθ,
Gronwall’s inequality shows that, whenever |A(z)| < δ and 0 < r < 1,

|u(z)| ≤ 1 +

∫ r

0

(r − t)|A(teiθ)| |u(teiθ)|dt

≤ exp(

∫ r

o

(r − t)|A(teiθ)|dt) ≤ exp(δ/2).

This proves inequality (2.4). Note that there was a typographical error in [1,
Inequality (8), p. 112], and that inequality (2.5) is the right form.

3. Inclusion Criteria for Subclasses of Analytic

Functions

The first result leads to sufficient conditions for univalence.

Theorem 3.1. Let 0 < α ≤ 1, 0 ≤ β < 1, f ∈ A and |a2| = η, where α, β
and η satisfy

sin−1
(
β(1 + η)2

)
+ 2 sin−1 η <

απ

2
. (3.1)
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Suppose (1.1) holds where δ(η) satisfies the inequality

sin−1
(
β(1 + η)2eδ

)
+ 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
. (3.2)

Then | arg(f ′(z)− β)| ≤ απ/2.

Proof. Using a limiting argument as δ → 0, the condition (3.1) shows that
there is a real number δ(η) ≥ 0 satisfying inequality (3.2). The representation
of f ′ in terms of the linearly independent solutions of the differential equation
y′′ + A(z)y = 0 with A(z) := S(f ; z)/2 as given by equation (2.2) yields

f ′(z)− β =
1− β(c u(z) + v(z))2

(c u(z) + v(z))2
. (3.3)

In view of the fact that for w ∈ C,

|w − 1| ≤ r ⇔ | argw| ≤ sin−1 r,

inequality (2.6) implies

| arg[1− β(c u(z) + v(z))2]| ≤ sin−1
(
β(1 + η)2eδ

)
. (3.4)

Similarly, inequality (2.7) shows

| arg[c u(z) + v(z)]| ≤ sin−1
(
η +

1

2
(1 + η)δeδ/2

)
. (3.5)

Hence, it follows from (3.3), (3.4) and (3.5) that

| arg(f ′(z)− β)| ≤ | arg[1− β(c u(z) + v(z))2]|+ 2| arg[c u(z) + v(z)]|

≤ sin−1(β(1 + η)2eδ) + 2 sin−1
(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
,

where the last inequality follows from (3.2). This completes the proof.

By taking β = 0 in Theorem 3.1, the following univalence criterion is
obtained.
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Corollary 3.1. Let f ∈ A, and |a2| = η < sin(απ/4), 0 < α ≤ 1. Suppose
(1.1) holds where δ(η) satisfies the inequality

η +
1

2
(1 + η)δeδ/2 ≤ sin

(απ
4

)
.

Then | arg f ′(z)| ≤ απ/2, and in particular f ∈ S.

Example 3.1. Consider the univalent function g given by

g(z) =
z

1 + cz
, |c| ≤ 1, z ∈ D.

Since the Schwarzian derivative of an analytic function is zero if and only if
it is a Möbius transformation, it is evident that S(g, z) = 0. Therefore the
condition (1.1) is satisfied with δ = 0. It is enough to take η = |c| and to
assume that η, α and β satisfy the inequality (3.1). Now

| arg(g′(z)− β)| =
∣∣∣∣arg

1

(1 + cz)2
− β

∣∣∣∣ ≤ | arg(1− β(1 + cz)2)|+ 2| arg(1 + cz)|

≤ sin−1(β(1 + |c|)2) + 2 sin−1 |c|.

In view of the latter inequality, it is necessary to assume inequality (3.1) for g
to satisfy | arg(g′(z)− β)| ≤ απ/2.

Let 0 ≤ ρ < 1, 0 ≤ λ < 1, and α be a positive integer. A function f ∈ A is
called an α-Bazilevič function of order ρ and type λ, written f ∈ B(α, ρ, λ), if

Re

(
zf ′(z)

f(z)1−αg(z)α

)
> ρ (z ∈ D)

for some function g ∈ ST (λ). The following subclass of α-Bazilevič functions
is of interest. A function f ∈ A is called strongly α-Bazilevič of order β if∣∣∣∣∣arg

((
z

f(z)

)1−α

f ′(z)

)∣∣∣∣∣ < βπ

2
, (α > 0; 0 < β ≤ 1),

(see Gao [5]). For the class of strongly α-Bazilevič functions of order β, the
following sufficient condition is obtained.
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Theorem 3.2. Let α > 0, 0 < β ≤ 1, f ∈ A and |a2| = η, where η, α and β
satisfy

η < sin

(
βπ

2(1 + α)

)
.

Suppose (1.1) holds where δ(η) satisfies the inequality

|1− α| sin−1
(

1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ βπ

2
. (3.6)

Then f is strongly α-Bazilevič of order β.

Proof. The condition η < sin(βπ/2(1+α)) ensures that there is a real number
δ(η) satisfying (3.6). Using (2.1) and (2.2) lead to∣∣∣∣∣arg

((
z

f(z)

)1−α

f ′(z)

)∣∣∣∣∣ =

∣∣∣∣∣arg

((
u(z)

z

)α−1
(cu(z) + v(z))−(α+1)

)∣∣∣∣∣
≤ |1− α|

∣∣∣∣arg

(
u(z)

z

)∣∣∣∣+ |α + 1| |arg(cu(z) + v(z))| .

It now follows from (2.5), (3.5) and (3.6) that∣∣∣∣∣arg

((
z

f(z)

)1−α

f ′(z)

)∣∣∣∣∣ ≤ |1− α| sin−1
(

1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ βπ

2
.

For α ≥ 0, consider the class R(α) defined by

R(α) = {f ∈ A : Re (f ′(z) + αzf ′′(z)) > 0, α ≥ 0}.

For this class, the following sufficient condition is obtained.

Theorem 3.3. Let α ≥ 0, f ∈ A and |a2| = η, where η and α satisfy

2 sin−1 η + sin−1
(

2ηα

1− η

)
<
π

2
. (3.7)

Suppose (1.1) holds where δ(η) satisfies the inequality

2 sin−1
(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4α
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
. (3.8)

Then f ∈ R(α).
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Proof. Again it is easily seen from a limiting argument that the condition
(3.7) guarantees the existence of a real number δ(η) ≥ 0 satisfying the in-
equality (3.8). It is sufficient to show that∣∣∣∣arg

(
f ′(z)

(
1 + α

zf ′′(z)

f ′(z)

))∣∣∣∣ < π

2
.

The equation (2.2) yields

zf ′′(z)

f ′(z)
= −2z

cu′(z) + v′(z)

cu(z) + v(z)
. (3.9)

A simple calculation from (2.3) shows that

cu′(z) + v′(z) = c−
∫ z

0

A(η)[cu(η) + v(η)]dη,

and an application of (2.6) leads to

|cu′(z) + v′(z)| ≤ η + (1 + η)δeδ/2. (3.10)

Use of (2.7) results in

|cu(z) + v(z)| ≥ 1− |cu(z) + v(z)− 1| ≥ 1− η − 1

2
(1 + η)δeδ/2. (3.11)

The lower bound in (3.11) is non-negative from the assumption made in (3.8).
From (3.9), (3.10) and (3.11) , it is evident that∣∣∣∣(1 + α

zf ′′(z)

f ′(z)

)
− 1

∣∣∣∣ =

∣∣∣∣2zαcu′(z) + v′(z)

cu(z) + v(z)

∣∣∣∣
≤

2α
(
η + (1 + η)δeδ/2

)
1− η − 1

2
(1 + η)δeδ/2

.

Hence, ∣∣∣∣arg

(
1 + α

zf ′′(z)

f ′(z)

)∣∣∣∣ ≤ sin−1

(
4α
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
. (3.12)

From (3.5) it follows that

| arg f ′(z)| = 2| arg(cu(z) + v(z))| ≤ 2 sin−1
(
η +

1

2
(1 + η)δeδ/2

)
. (3.13)
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Using (2.2) and (3.5), the inequality (3.13) together with (3.12) and (3.8)
imply that∣∣∣∣arg

(
f ′(z)

(
1 + α

zf ′′(z)

f ′(z)

))∣∣∣∣ ≤ | arg f ′(z)|+
∣∣∣∣arg

(
1 + α

zf ′′(z)

f ′(z)

)∣∣∣∣
≤ 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4α
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
.

Theorem 3.4. Let f ∈ A, |a2| = η ≤ 1/3, and β, α be real numbers satisfying

|α| sin−1 η + |β| sin−1
(

2η

1− η

)
<
π

2
. (3.14)

Suppose (1.1) holds where δ(η) satisfies the inequality

|α| sin−1
(

1

2
δeδ/2

)
+ |α| sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ |β| sin−1

(
4
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
.

(3.15)

Then

Re

((
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β)
> 0. (3.16)

Proof. The inequality (3.14) assures the existence of δ satisfying (3.15). From
(2.1) and (2.2) it follows that

zf ′(z)

f(z)
=

z

u(z)

1

cu(z) + v(z)
, z ∈ D. (3.17)

By (2.5) and (3.5),∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ ≤ sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.18)
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Using (3.12) with α = 1, (3.18) and (3.15) lead to∣∣∣∣∣arg

((
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β)∣∣∣∣∣ ≤ |α|
∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣+ |β|
∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)

)∣∣∣∣
≤ |α| sin−1

(
1

2
δeδ/2

)
+ |α| sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ |β| sin−1

4
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

≤ π

2
.

This shows that (3.16) holds.

Remark 3.1. Theorem 3.4 yields the following interesting special cases.

(i) If α = 0, β = 1, a sufficient condition for convexity is obtained. This
case reduces to a result in [1, Theorem 2, p. 109].

(ii) For α = 1, β = 0, a sufficient condition for starlikeness is obtained.

(iii) For α = −1 and β = 1, then the class of functions satisfying (3.16)
reduces to the class of functions

G :=

{
f ∈ A

∣∣∣∣∣ Re

(
1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)

)
> 0

}
.

This class G was considered by Silverman [14] and Tuneski [15].

Theorem 3.5. Let β ≥ 0, f ∈ A and |a2| = η, where η satisfies

sin−1 (η) + sin−1
(

2βη

1− η

)
<
π

2
. (3.19)

Suppose (1.1) holds where δ(η) satisfies the inequality

sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4β
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
.
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Then

Re

(
zf ′(z)

f(z)
+ β

z2f ′′(z)

f(z)

)
> 0. (3.20)

The proof is similar to the proof of Theorem 3.4, and is therefore omitted.
The inequality (3.19) is equivalent to the condition

η
(

1 +
√

(1− η)2 − 4β2η2 + 2β
√

1− η2
)
< 1.

For β = 1, the above equation simplifies to

η8 − 4η7 + 12η6 − 12η5 + 6η4 + 20η3 − 4η2 − 4η + 1 = 0;

the value of the root η is approximately 0.321336. Functions satisfying in-
equality (3.20) were investigated by Ramesha et al. [13].

Consider the class P (γ), 0 ≤ γ ≤ 1, given by

P (γ) :=

{
f ∈ A :

∣∣∣∣arg

(
(1− γ)

f(z)

z
+ γf ′(z)

)∣∣∣∣ < π

2
, z ∈ D

}
.

The same approach applying Gronwall’s inequality leads to the following result
about the class P (γ).

Theorem 3.6. Let 0 ≤ γ < 1, f ∈ A and |a2| = η, where η and γ satisfy

sin−1
(

γ

1− γ
1

η − 1

)
+ sin−1 η <

π

2
. (3.21)

Suppose (1.1) holds where δ(η) satisfies the inequality

sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
2γ

1− γ
1

2− 2η − (1 + η)δeδ/2
1

1− 2eδ/2

)
≤ π

2
.

(3.22)

Then f ∈ P (γ).
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Proof. Condition (3.21) assures the existence of a real number δ(η) ≥ 0 sat-
isfying the inequality (3.22). A simple calculation from (2.3) and Lemma 2.1
shows that

|u(z)− 1| ≤ |z − 1|+
∣∣∣∣∫ z

0

(ζ − z)A(ζ)u(ζ)dζ

∣∣∣∣
≤ 2eδ/2.

The above inequality gives∣∣∣∣ z

u(z)

∣∣∣∣ ≤ 1

|u(z)|
≤ 1

1− |u(z)− 1|
≤ 1

1− 2eδ/2
. (3.23)

Therefore, for some 0 < β ≤ γ/(1− γ), (3.17), (3.23) and (3.11) lead to∣∣∣∣1 + β
zf ′(z)

f(z)
− 1

∣∣∣∣ = β

∣∣∣∣ z

u(z)

∣∣∣∣ 1

|cu(z) + v(z)|

≤ β

1− 2eδ/2
1

1− η − 1
2
(1 + η)δeδ/2

=
2β

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2
.

Hence∣∣∣∣arg

(
1 + β

zf ′(z)

f(z)

)∣∣∣∣ ≤ sin−1
(

2β

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2

)
. (3.24)

Also, (2.5) and (3.5) yield∣∣∣∣arg
f(z)

z

∣∣∣∣ =

∣∣∣∣arg
u(z)

z(cu(z) + v(z))

∣∣∣∣
≤
∣∣∣∣arg

u(z)

z

∣∣∣∣+ |arg(cu(z) + v(z))|

≤ sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.25)
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Replacing β by γ/(1−γ) in inequality (3.24), and using (3.25) and (3.22) yield∣∣∣∣arg

(
(1− γ)

f(z)

z
+ γf ′(z)

)∣∣∣∣ ≤ ∣∣∣∣arg
f(z)

z

∣∣∣∣+

∣∣∣∣arg

(
1 +

γ

1− γ
zf ′(z)

f(z)

)∣∣∣∣
≤ sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
2γ

1− γ
1

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2

)
≤ π

2
,

and hence f ∈ P (γ).
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