Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions

H. M. Srivastavaa, Sevtap Sümer Ekerb, Rosihan M. Alic

aDepartment of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
bDepartment of Mathematics, Faculty of Science, Dicle University, TR-21280 Diyarbakır, Turkey
cSchool of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Abstract. In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk \(U \). By using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class. Some interesting recent developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.

1. Introduction

Let \(\mathcal{A} \) denote the class of functions \(f(z) \) which are \textit{analytic} in the open unit disk

\[U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} \]

and normalized by the following Taylor-Maclaurin series expansion:

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \] \hspace{1cm} (1.1)

Also let \(\mathcal{S} \) denote the subclass of functions in \(\mathcal{A} \) which are univalent in \(U \) (see, for details, [8]). It is well known that every function \(f \in \mathcal{S} \) has an inverse \(f^{-1} \), which is defined by

\[f^{-1}(f(z)) = z \quad (z \in \mathbb{U}) \]

and

\[f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); \quad r_0(f) \geq \frac{1}{4} \right), \] \hspace{1cm} (1.2)

2010 Mathematics Subject Classification. Primary 30C45, 30C50; Secondary 30C80

Keywords. Analytic functions; Univalent functions; Faber polynomials; Bi-Univalent functions; Taylor-Maclaurin series expansion; Coefficient bounds and coefficient estimates; Taylor-Maclaurin coefficients.

Received: 06 November 2013; Accepted: 12 April 2014

Communicated by Dragan S. Djordjević

\textit{Email addresses:} harimsri@math.uvic.ca (H. M. Srivastava), sevtaps35@gmail.com (Sevtap Sümer Eker), rosihan@cs.usm.my (Rosihan M. Ali)
according to the *Koebe One-Quarter Theorem* (see, for example, [8]). In fact, the inverse function \(f^{-1} \) is given by

\[
f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_3^3 - 5a_2a_3 + a_4)w^4 + \cdots.
\]

(1.3)

A function \(f \in A \) is said to be *bi-univalent* in \(\mathbb{U} \) if both \(f(z) \) and \(f^{-1}(z) \) are univalent in \(\mathbb{U} \). Let \(\Sigma \) denote the class of analytic and bi-univalent functions in \(\mathbb{U} \) given by the Taylor-Maclaurin series expansion (1.1). Some examples of functions in the class \(\Sigma \) are presented below:

\[
\frac{z}{1 - z}, \quad \log(1 - z), \quad \frac{1}{2} \log \left(\frac{1 + z}{1 - z} \right),
\]

and so on. However, the familiar Koebe function is not a member of the class \(\Sigma \). Other common examples of functions in \(\mathcal{S} \) such as

\[
z - \frac{z^2}{2} \quad \text{and} \quad \frac{z}{1 - z^2}
\]

are also not members of the class \(\Sigma \).

For a brief history of functions in the class \(\Sigma \), see [22] (see also [4], [14], [18] and [25]). In fact, judging by the remarkable flood of papers on the subject (see, for example, [5–7, 9–12, 15–17, 19–21, 23, 26, 27, 29, 30]), the recent pioneering work of Srivastava et al. [22] appears to have revived the study of analytic and bi-univalent functions in recent years (see also [3], [13] and [24]).

The object of the present paper is to introduce a new subclass of the function class \(\Sigma \) and use the Faber polynomial expansion techniques to derive bounds for the general Taylor-Maclaurin coefficients \(|a_n| \) for the functions in this class. We also obtain estimates for the first two coefficients \(|a_2| \) and \(|a_3| \) of these functions.

2. Bounds Derivable by the Faber Polynomial Expansion Techniques

We begin by introducing the function class \(\mathcal{N}_{\Sigma}^{(\alpha, \lambda)} \) by means of the following definition.

Definition. A function \(f(z) \) given by (1.1) is said to be in the class \(\mathcal{N}_{\Sigma}^{(\alpha, \lambda)} \) \((0 \leq \alpha < 1; \ \lambda \geq 0)\) if the following conditions are satisfied:

\[
f \in \Sigma \quad \text{and} \quad \Re \{f'(z) + \lambda z f''(z)\} > \alpha \quad (z \in \mathbb{U}; \ 0 \leq \alpha < 1; \ \lambda \geq 0).
\]

(2.1)

By using the Faber polynomial expansions of functions \(f \in \mathcal{A} \) of the form (1.1), the coefficients of its inverse map \(g = f^{-1} \) may be expressed as follows (see [1] and [2]; see also [12]):

\[
g(w) = f^{-1}(w) = w + \sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n} (a_2, a_3, \ldots, a_n) w^n.
\]

(2.2)

where

\[
K_{n-1}^{-n} = \frac{(-n)!}{(-2n+1)!(n-1)!} a_2^{n-1} + \frac{(-n)!}{(2(-n+1))(n-3)!} a_2^{n-3} a_3
\]

\[
\quad + \frac{(-n)!}{(-2n+3)!(n-4)!} a_2^{n-4} a_4
\]

\[
\quad + \frac{(-n)!}{(2(-n+2))(n-5)!} a_2^{n-5} \left[a_5 + (-n+2)a_3 \right]
\]

\[
\quad + \frac{(-n)!}{(-2n+5)!(n-6)!} a_2^{n-6} \left[a_6 + (-2n+5)a_3a_4 \right] + \sum_{j=7} a_j^{-j} V_j,
\]
where such expressions as (for example) \((-n)!\) are to be interpreted symbolically by
\[
(-n)! \equiv \Gamma(1-n) := (-n)(-n-1)(-n-2) \cdots (n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \text{ (N := \{1, 2, 3, \ldots\}))} \tag{2.3}
\]
and \(V_j \ (7 \leq j \leq n)\) is a homogeneous polynomial in the variables \(a_2, a_3, \ldots, a_n\) (see, for details, [2]). In particular, the first three terms of \(K_{n-1}^n\) are given below:

\[
K_{1}^2 = -2a_2,
K_{2}^3 = 3(2a_3^2 - a_3),
K_{3}^4 = -4\left(5a_2^3 - 5a_2a_3 + a_4\right).
\]

In general, an expansion of \(K_n^p\) is given by (see, for details, [1])
\[
K_n^p = pa_n + \frac{p(p-1)}{2}D_n^2 + \frac{p!}{(p-3)!5!}D_n^3 + \cdots + \frac{p!}{(p-n)!n!}D_n^n \quad (p \in \mathbb{Z})
\]

where
\[
Z := \{0, \pm 1, \pm 2, \ldots\} \quad \text{and} \quad D_n^p = D_n^p(a_2, a_3, \ldots)
\]
and, alternatively, by (see, for details, [28])
\[
D_n^m(a_1, a_2, \ldots, a_n) = \sum \left(\frac{m!}{\mu_1! \cdots \mu_n!}\right)a_1^{\mu_1} \cdots a_n^{\mu_n},
\]
where \(a_1 = 1\) and the sum is taken over all nonnegative integers \(\mu_1, \ldots, \mu_n\) satisfying the following conditions:

\[
\begin{cases}
\mu_1 + \mu_2 + \cdots + \mu_n = m \\
\mu_1 + 2\mu_2 + \cdots + n\mu_n = n.
\end{cases}
\]

It is clear that
\[
D_n^p(a_1, a_2, \ldots, a_n) = a_1^p.
\]

Our first main result is given by Theorem 1 below.

Theorem 1. Let \(f\) given by (1.1) be in the class \(\mathcal{N}_\lambda^{\alpha, \lambda}\) \((0 \leq \alpha < 1 \text{ and } \lambda \geq 0)\). If \(a_k = 0\) for \(2 \leq k \leq n-1\), then
\[
|a_n| \leq \frac{2(1-\alpha)}{n[1+\lambda(n-1)]} \quad (n \in \mathbb{N} \setminus \{1, 2\}). \tag{2.4}
\]

Proof. For analytic functions \(f\) of the form (1.1), we have
\[
f'(z) + \lambda z f''(z) = 1 + \sum_{n=2}^{\infty} [1 + \lambda(n-1)]n!a_n z^{n-1} \tag{2.5}
\]
and, for its inverse map $g = f^{-1}$, it is seen that
\[
g'(w) + \lambda wg''(w) = 1 + \sum_{n=2}^{\infty} [1 + \lambda(n-1)]nb_nw^{n-1}
\]
\[
= 1 + \sum_{n=2}^{\infty} [1 + \lambda(n-1)]K_{n-1}^{-n}(a_2, a_3, \cdots, a_n)w^{n-1}.
\] (2.6)

On the other hand, since \(f \in \mathcal{N}_{\Sigma}^{\alpha, \lambda}\) and \(g = f^{-1} \in \mathcal{N}_{\Sigma}^{\alpha, \lambda}\), by definition, there exist two positive real-part functions
\[
p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n
\]
and
\[
q(w) = 1 + \sum_{n=1}^{\infty} d_n w^n,
\]
where
\[
\Re\left(p(z)\right) > 0 \quad \text{and} \quad \Re\left(q(w)\right) > 0 \quad (z, w \in U),
\]
so that
\[
f'(z) + \lambda zf''(z) = \alpha + (1 - \alpha)p(z)
\]
\[
= 1 + (1 - \alpha) \sum_{n=1}^{\infty} K_n^1 (c_1, c_2, \cdots, c_n) z^n
\] (2.7)

and
\[
g'(w) + \lambda wg''(w) = \alpha + (1 - \alpha)q(w)
\]
\[
= 1 + (1 - \alpha) \sum_{n=1}^{\infty} K_n^1 (d_1, d_2, \cdots, d_n) w^n.
\] (2.8)

Thus, upon comparing the corresponding coefficients in (2.5) and (2.7), we get
\[
[1 + \lambda(n-1)]na_n = (1 - \alpha) c_{n-1}.
\] (2.9)

Similarly, by using (2.6) and (2.8), we find that
\[
[1 + \lambda(n-1)]K_{n-1}^{-n}(a_2, a_3, \cdots, a_n) = (1 - \alpha) d_{n-1}.
\] (2.10)

We note that, for \(a_k = 0 \ (2 \leq k \leq n - 1)\), we have
\[
b_n = -a_n
\]
and so
\[
[1 + \lambda(n-1)]na_n = (1 - \alpha)c_{n-1}
\] (2.11)

and
\[
-[1 + \lambda(n-1)]na_n = (1 - \alpha)d_{n-1}.
\] (2.12)
Thus, according to the Carathéodory Lemma (see [8]), we also observe that
\[|c_n| \leq 2 \quad \text{and} \quad |d_n| \leq 2 \quad (n \in \mathbb{N}). \]

Now, taking the moduli in (2.11) and (2.12) and applying the Carathéodory Lemma, we obtain
\[
|a_n| \leq \frac{(1 - \alpha) |c_{n-1}|}{n[1 + \lambda(n - 1)]} = \frac{(1 - \alpha) |d_{n-1}|}{n[1 + \lambda(n - 1)]} \leq \frac{2(1 - \alpha)}{n[1 + \lambda(n - 1)]},
\]
which evidently completes the proof of Theorem 1. \[\square\]

3. Estimates for the Initial Coefficients \(a_2\) and \(a_3\)

In this section, we choose to relax the coefficient restrictions imposed in Theorem 1 and derive the resulting estimates for the initial coefficients \(a_2\) and \(a_3\) of functions \(f \in \mathcal{N}_{\Sigma}^{\alpha,\lambda}\) given by the Taylor-Maclaurin series expansion (1.1). We first state the following theorem.

Theorem 2. Let \(f\) given by (1.1) be in the class \(\mathcal{N}_{\Sigma}^{\alpha,\lambda}\) \((0 \leq \alpha < 1 \text{ and } \lambda \geq 0)\). Then

\[
|a_2| \leq \begin{cases} \sqrt{\frac{2(1 - \alpha)}{3(1 + 2\lambda)}}, & 0 \leq \alpha < \frac{1 + 2\lambda - 2\lambda^2}{3(1 + 2\lambda)} \\ \frac{1 - \alpha}{1 + \lambda'}, & \frac{1 + 2\lambda - 2\lambda^2}{3(1 + 2\lambda)} \leq \alpha < 1 \end{cases}
\]

and

\[
|a_3| \leq \frac{2(1 - \alpha)}{3(1 + 2\lambda)}.
\]

Proof. If we set \(n = 2\) by and \(n = 3\) in (2.9) and (2.10), respectively, we obtain

\[
2(1 + \lambda)a_2 = (1 - \alpha)c_1,
\]
\[
3(1 + 2\lambda)a_3 = (1 - \alpha)c_2,
\]
\[
-2(1 + \lambda)a_2 = (1 - \alpha)d_1
\]
and

\[
3(1 + 2\lambda)(2a_2^2 - a_3) = (1 - \alpha)d_2.
\]

Upon dividing both sides of (3.3) or (3.5) by \(2(1 + \lambda)\), if we take their moduli and apply the Carathéodory Lemma, we find that

\[
|a_2| \leq \frac{(1 - \alpha) |c_1|}{2(1 + \lambda)} = \frac{(1 - \alpha) |d_1|}{2(1 + \lambda)} \leq \frac{1 - \alpha}{1 + \lambda'}.
\]

Now, by adding (3.4) to (3.6), we have

\[
6(1 + 2\lambda)a_2^2 = (1 - \alpha)(c_2 + d_2),
\]
that is,
\[a_2^2 = \frac{(1 - \alpha)(c_2 + d_2)}{6(1 + 2\lambda)}. \] (3.9)

Another application of the Carathéodory Lemma followed by taking the square roots in this last equation (3.9) yields
\[|a_2| \leq \sqrt{\frac{2(1 - \alpha)}{3(1 + 2\lambda)}}. \] (3.10)

which proves the first assertion (3.1) of Theorem 2.

Next, for
\[\frac{1 + 2\lambda - 2\lambda^2}{3(1 + 2\lambda)} \leq \alpha < 1, \]

we note that
\[\frac{1 - \alpha}{1 + \lambda} \leq \sqrt{\frac{2(1 - \alpha)}{3(1 + 2\lambda)}}. \] (3.11)

Thus, upon dividing both sides of (3.4) by 3(1 + 2\lambda), if we take the modulus of each side and apply the Carathéodory Lemma once again, we get
\[|a_3| \leq \frac{2(1 - \alpha)}{3(1 + 2\lambda)} \] (3.12)

which completes the proof of the second assertion (3.2) of Theorem 2. \(\square \)

References

