DIFFERENTIAL SUBORDINATION AND
SUPERORDINATION FOR ANALYTIC AND
MEROMORPHIC FUNCTIONS DEFINED BY

LINEAR OPERATORS

NARAYANASAMY SEENIVASAGAN

SCHOOL OF MATHEMATICAL SCIENCES
UNIVERSITI SAINS MALAYSIA

2007



DIFFERENTIAL SUBORDINATION AND
SUPERORDINATION FOR ANALYTIC AND
MEROMORPHIC FUNCTIONS DEFINED BY

LINEAR OPERATORS

NARAYANASAMY SEENIVASAGAN

Thesis submitted in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy in Mathematics

May 2007



CONTENTS

CONTENTS ii
ACKNOWLEDGEMENT v
ABSTRAK Vi
ABSTRACT viii
SYMBOLS X
CHAPTER 1. INTRODUCTION 1
1.1. UNIVALENT FUNCTIONS 1
1.2. HYPERGEOMETRIC FUNCTIONS 4
1.3. MULTIPLIER TRANSFORMATIONS 8
1.4. SUBORDINATION AND SUPERORDINATION 11
1.5. SCOPE AND MOTIVATION OF THIS WORK 14

CHAPTER 2. SUFFICIENT CONDITIONS FOR JANOWSKI

STARLIKENESS 17
2.1. INTRODUCTION 17
2.2. A BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION 19
2.3. APPLICATION TO THE BERNARDI'S INTEGRAL OPERATOR 22
2.4. ANOTHER DIFFERENTIAL SUBORDINATION 24

CHAPTER3. DIFFERENTIAL SUBORDINATION AND SUPERORDINATION
FOR CERTAIN SUBCLASSES OF ANALYTIC

FUNCTIONS 31
3.1. INTRODUCTION 31
3.2.  SCHWARZIAN DERIVATIVES AND STARLIKENESS 33

3.3. SCHWARZIAN DERIVATIVES AND CONVEXITY 41



3.4. SUBORDINATION RESULTS INVOLVING THE DZIOK-SRIVASTAVA
LINEAR OPERATOR 45
3.5. SUPERORDINATION OF THE DZIOK-SRIVASTAVA LINEAR OPERATOR 59
3.6. SUBORDINATION RESULTS INVOLVING THE MULTIPLIER
TRANSFORMATION 65
3.7. SUPERORDINATION OF THE MULTIPLIER TRANSFORMATION 76

CHAPTER4. DIFFERENTIAL SUBORDINATION AND SUPERORDINATION
OF MEROMORPHIC FUNCTIONS 82
4.1. INTRODUCTION 82
4.2. SUBORDINATION INEQUALITIES ASSOCIATED WITH THE LIU-
SRIVASTAVA LINEAR OPERATOR 83
4.3. SUPERORDINATION OF THE LIU-SRIVASTAVA LINEAR OPERATOR 92
4.4. SUBORDINATION INEQUALITIES ASSOCIATED WITH THE

MULTIPLIER TRANSFORMATION 96

4.5. SUPERORDINATION OF THE MULTIPLIER TRANSFORMATION 104
CHAPTER 5. SUBORDINATION BY CONVEX FUNCTIONS 109
5.1. INTRODUCTION 109
5.2.  SUBORDINATION WITH CONVEX FUNCTIONS 112

CHAPTER 6. COEFFICIENT BOUNDS FOR p-VALENT FUNCTIONS 115

6.1. INTRODUCTION 115
6.2. COEFFICIENT BOUNDS 118
PUBLICATIONS 131
CONFERENCE PRESENTATION 132

REFERENCES 133



ACKNOWLEDGEMENT

| would like to express my gratitude to my Supervisor, Professor Dato’ Rosihan
M. Ali, Deputy Vice-Chancellor (Academic and International Affairs), Universiti Sains
Malaysia, and my Co-Supervisor, Dr. V. Ravichandran, School of Mathematical Sciences,
Universiti Sains Malaysia, for their guidance, encouragement and support throughout my
research. Because of their untiring guidance, care and affection, | could work continuously

without any slackness. In fact, | am fortunate enough to work with such great exponents.

| am thankful to Associate Professor Dr Ahmad lzani Md. Ismail, Dean, School
of Mathematical Sciences, Universiti Sains Malaysia, and to Dr Adli Mustaffa, Deputy
Dean (Graduate Studies and Research), School of Mathematical Sciences, Universiti Sains
Malaysia. | am also thankful to the authorities of Universiti Sains Malaysia for providing

me an opportunity to pursue my research at Universiti Sains Malaysia.

My research is supported by a Research Assistantship from an Intensification of Re-
search in Priority Areas (IRPA) grant (09-02-05-00020 EAR) to Professor Dato’ Rosihan
M. Ali.

My appreciation also goes to all my friends, especially S. Sivaprasad Kumar, for

their encouragement and motivation.

Finally, my heartfelt gratitude goes to my wife S. Santha, and my children.



SUBORDINASI DAN SUPERORDINASI PEMBEZA UNTUK FUNGSI
ANALISIS DAN FUNGSI MEROMORFI YANG TERTAKRIF OLEH
PENGOPERASI LINEAR

ABSTRAK

Suatu fungsi f yang tertakrif pada cakera unit terbuka U dalam satah kompleks C
disebut univalen jika fungsi tersebut memetakan titik berlainan dalam U ke titik berlainan
dalam C. Suatu fungsi f disebut subordinat terhadap suatu fungsi univalen g jika
f(0) = ¢(0) dan f(U) C g(U). Fungsi ternormalkan f disebut bak-bintang Janowski
jika zf'(2)/f(2) adalah subordinat terhadap (1 + Az)/(1+ Bz), (-1 < B < A <1).
Dengan menggunakan teori subordinasi pembeza peringkat pertama, kami memperoleh
beberapa syarat cukup untuk fungsi f menjadi bak-bintang Janowski. Syarat-syarat cukup
ini diperoleh dengan mengkaji implikasi

N zp'(2) <1—i-DZ ()<1+Az
z
Bp(z) +v 14+ Ez b 1+ Bz

p(2)

dimana simbol < menandai subordinasi antara fungsi analisis dan implikasi-implikasi lain

yang serupa yang melibatkan 1 + (Gzp/(2), 1 + ﬁ% dan 1 + ﬁ‘;];/((j)). Keputusan-
keputusan ini digunakan kemudian untuk memperoleh syarat-syarat cukup bagi fungsi

analisis menjadi bak-bintang Janowski.

Andaikan €2 sebagai set dalam C, fungsi ¢; adalah univalen dan ¢, adalah analisis
dalam ¢/. Juga andaikan 1) : C3xU — C. Miller dan Mocanu [ Differential Subordinations,
Dekker, New York, 2000.] telah mengkaji teori subordinasi pembeza peringkat pertama
dan kedua. Baru-baru ini, Miller dan Mocanu (Subordinants of differential superordina-
tions, Complex Var. Theory Appl. 48(10) (2003), 815-826.) mengkaji konsep kedualan
superordinasi pembeza dan berjaya mendapat beberapa keputusan ‘tersepit’. Dengan

menggunakan teori subordinasi pembeza, kami menentukan kelas fungsi sedemikian

) ()
v ( ORI

mengimplikasikan zf’(2)/f(z) < q(z), dimana simbol { f, z} menandai terbitan Schwarz

2U.5)) <

fungsi f. Kami juga memperoleh beberapa keputusan serupa yang melibatkan nisbah

antara fungsi yang tertakrif melalui operator linear Dziok-Srivastava dan transformasi

vi



pendarab bagi fungsi analisis. Kami juga memperoleh bagi superordinasi yang sepadan
beberapa keputusan tersepit. Tambahan pula, kami mengkaji masalah yang serupa bagi
fungsi meromorfi yang tertakrif melalui pengoperasi linear Liu-Srivastava dan transformasi

pendarab.

Bagi fungsi analisis g(z) = z + >, g,2" yang tetap dan tertakrif pada cakera
unit terbuka dan v < 1, andaikan 7T,(y) sebagai kelas semua fungsi analisis f(z) =
Z4 Y 0, a,z" yang memenuhi syarat Y, |a,g,| < 1—y. Bagi fungsi f € T,(7y) dan

fungsi cembung h, kami menunjukkan bahawa

g2
L S h) < h,
292+1—’Y(f* )

dan menggunakan keputusan ini untuk memperoleh batas bawah bagi Rf(z). Keputusan

ini meranggkumi beberapa keputusan awal sebagai kes khas.

Andaikan ¢(z) fungsi analisis dengan bahagian nyata positif pada cakera unit U,
dengan ¢(0) = 1 and ¢'(0) > 0, yang memetakan U secara keseluruh kesuatu rantau bak-
bintang terhadap 1 dan simetri terhadap paksi nyata. Ma dan Minda (A unified treatment
of some special classes of univalent functions, in Proceedings of the Conference on Com-
plex Analysis (Tianjin, 1992), 157-169, Int. Press, Cambridge, MA.) memperkenalkan ke-
las S*(¢) yang terdiri daripada semua fungsi analisis ternormalkan f(z) = z+> ", a,2"
sedemikian zf’(2)/f(z) < ¢(z). Andaikan A, menandakan kelas semua fungsi analisis
berbentuk f(2) = 2P+ 32 arz® (2 €U, pe N :={1,2,3...}). Andaikan S} (¢)

sebagai subkelas A, yang ditakrifkan sebagai

o PG
S0 ={r 4 T <o),

Bagi fungsi f € S;(y), batas atas tepat bagi fungsian pekali |ap2 — pal, | dan |a,s]
telah diperoleh; batas-batas ini menghasilkan batas atas tepat bagi pekali kedua, ketiga

dan keempat. Seterusnya kami mengkaji masalah pekali yang serupa bagi fungsi-fungsi

dalam subkelas yang tertakrif dengan ungkapan 1 + % <1 25 _ 1), 1+ % ( fe) 1>,

p f(z) pzP—
Lta(l=p) 2f'(2) | a22f"(z) 1—az2f'() | «a 2f"(2) 122\ O
P e T @ p o o (H f’(2)> dan ( f<z>> (1+ f’(Z)> :

Keputusan-keputusan ini digunakan kemudian untuk memperoleh ketaksamaan bak Fekete-

Szego bagi beberapa kelas fungsi yang tertakrif melalui konvolusi.
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DIFFERENTIAL SUBORDINATION AND SUPERORDINATION FOR
ANALYTIC AND MEROMORPHIC FUNCTIONS DEFINED BY LINEAR
OPERATORS

ABSTRACT

A function f defined on the open unit disk U of the complex plane C is univalent
if it maps different points of U to different points of C. The function f is subordinate
to an univalent function ¢ if f(0) = ¢(0) and f(U) C g(U). A normalized function f is
Janowski starlike if zf'(z)/f(2) is subordinated to (1+ Az)/(1+ Bz), (-1 < B< A<
1). By making use of the theory of first order differential subordination, we obtain several
sufficient conditions for a function f to be Janowski starlike. These sufficient conditions
are obtained by investigating the implication

(2)+ 2p'(2) _<1—|—Dz:> ()_<1—|—Az
2 2
b Bp(z)+y 1+ Ez b 1+ Bz

where < denotes subordination between analytic functions and other similar implications

involving 1+ (zp/(2), 1+ﬂ% and 1+6;’;’((ZZ)). These results are then applied to obtain

sufficient conditions for analytic functions to be Janowski starlike.

Let €2 be any set in C and the functions ¢; be univalent and g, be analytic in U.
Let ¢ : C3 x U — C. Miller and Mocanu [Differential Subordinations, Dekker, New York,
2000.] have investigated the theory of first and second order differential subordination.
Recently Miller and Mocanu (Subordinants of differential superordinations, Complex Var.
Theory Appl. 48(10) (2003), 815-826.) investigated the dual concept of differential
superordination to obtain several sandwich results. By using the theory of differential
subordination, we determine the class of functions so that

G )
w( ORI IORE {f’Z}) <0

implies 2 f'(2)/f(2) < q(2), where {f, z} denotes the Schwarzian derivative of the func-
tion f. We also obtain similar results involving the ratios of functions defined through the
Dziok-Srivastava linear operator and the multiplier transformation of analytic functions.

We also obtain the corresponding superordination and sandwich type results. Further, we
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investigate similar problems for meromorphic functions defined through the Liu-Srivastava

linear operator and the multiplier transformation.

For a fixed analytic function g(z) =z + > -, g,2" defined on the open unit disk
and v < 1, let T,(v) denote the class of all analytic functions f(z) = z 4+ >, a,2"
satisfying > >, [angn| < 1 — . For a function f € T,(y) and a convex function h, we
show that

92
_ h) < h

and use this to obtain the lower bound for ftf(z). These results includes several earlier

results as special cases.

Let ¢(z) be an analytic function with positive real part in the unit disk U with
©(0) =1 and ¢/(0) > 0, maps U onto a region starlike with respect to 1 and symmetric
with respect to real axis. Ma and Minda (A unified treatment of some special classes
of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin,
1992), 157-169, Int. Press, Cambridge, MA.) introduced the class S*(¢) consisting of all
normalized analytic functions f(z) = 24>~ , a,2" satisfying zf'(z)/f(z) < ¢(z). Let
A, denote the class of all analytic functions of the form f(z) = 2# + "2 ap2® (2 €

U peN:={1,2,3...}). Let S;(¢) be a subclass of A, defined by

o PG
S0 ={r 4 T <o)},

For the function f € S} (y), the sharp upper bounds for the coefficient functionals |a,2—

ua§+1| and |a,3| are obtained; these bounds yield the sharp upper bounds for the second,
third and fourth coefficients. Further we investigate a similar coefficient problem for func-
e i ; ; 1(12f(z) _ 1)
tions in the subclasses defined by the expressions 1+ 7 (p o) 1), I+5 (pzp_l 1),
Lra(l-p) /() | a2"() 1=azf'() | a 21"(2) 1(@)* THON.
S (O N [ R O M (1 T ) and 3 ( Ie) ) (1 e > :
These are then applied to obtain Fekete-Szego-like inequalities for several classes of func-

tions defined by convolution.



Symbol
Ay
A=A

IL(n,\), A+p>0,neN)
K

SYMBOLS

Description

Class of all p-valent analytic functions of the form
flz) =22+ 302, (2€U)

Class of analytic functions of the form

flz) =2+ 35 a2® (2 €U)

Pochhammer symbol or shifted factorial

Argument

Complex plane

Class of normalized convex functions in U

Class of normalized convex functions of order v in U
Convolution or Hadamard product of functions f and g
Schwarzian derivative of f

Confluent hypergeometric functions

Gaussian hypergeometric functions

Generalized hypergeometric functions

Class of analytic functions in U

Class of analytic functions in U of the form
f(z) =a+ap2" + ap 12"+ (z€U)
Class of analytic functions in U of the form
fR)=az+a*>+--- (2€U)

Class of analytic functions in U of the form
fR)=1+a1z+az*+--- (z€U)
Dziok-Srivastava / Liu-Srivastava linear operator
Subordinate to

Imaginary part of a complex number
Multiplier transformation from A4, — A,

Class of close to convex functions in A



S*[A, B]

U,

oU

o[, q, Pl q], P[]
On[ ql, ©1[Q,q], ©/[S2, M]
Z

Koebe function

Set of all positive integers

Set of all real numbers

{feA:fl(z) <2 (-1<B<A<1)}
{feA:|f'(z)—1|<l—-a (z€U, 0<a<1)}
Real part of a complex number

Class of all normalized univalent functions of the form
fz)=z+a?+--+ 2€U

Class of normalized starlike functions in U

Class of normalized starlike functions of order v in U

{(feA: L < (—1<B<A<1)}
{f(z) e A 3000 langa] <1 -1,
9(2) =24+ > 2" gn > 92 > 0,n > 2,y < 1}
Class of all p-valent functions of the form
FE) =5+ Y0, ad (e UY)
Class of all functions of the form
FE) =L+ T at (zeU?)
Open unit disk {z € C: |z| < 1}
Punctured unit disk U \ {0}
Open disk of radius r, {z € C : |z| < r}

Boundary of unit disk U, {z € C : |z| = 1}

Classes of admissible functions

Set of all integers
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CHAPTER 1

INTRODUCTION

1.1. UNIVALENT FUNCTIONS

Let C be the complex plane and U := {z € C : |z| < 1} be the open unit disk
in C. Let H(U) be the class of functions analytic in U. Let H[a,n| be the subclass of
H(U) consisting of functions of the form f(z) = a + a,2" + apy12"™ + -+ and let
Ho = H[0,1] and H = H|[1,1]. Let A denote the class of all analytic functions defined
in U and normalized by f(0) = 0, f/(0) = 1. A function f € A has the Taylor series of

the form
(1.1.1) f(z):z—l—Zakzk (zeU).
k=2

More generally, let A, denote the class of all analytic functions of the form

(1.1.2) f(z) =2+ i ap?® (z€U, peN:={1,2,3...}).

=p+1
A function f € H(U) is univalent if it is one to one in U. The function f € H(U) is
locally univalent at z, € U if it is univalent in some neighborhood of z;. The function
f(2) is p-valent (or multivalent of order p) if for each wy with infinity included, the
equation f(z) = wy has at most p roots in U, where the roots are counted with their
multiplicities, and for some w; the equation f(z) = w; has exactly p roots in U [31].
The subclass of A consisting of univalent functions is denoted by S. Thus § is the class

of all normalized univalent functions in U.

In 1916, Bieberbach [12] studied the second coefficient ay of a function f € S of
the form (1.1.1). He has shown that |as| < 2, with equality if and only if f is a rotation
of the Koebe function k(z) = 2/(1 — 2)? and he mentioned “|a,| < n is generally valid”.
This statement is known as the Bieberbach conjecture. The Koebe function

ij)Q—q :nf;mn (z € D)

(1.13)  k(z) = (1_’22)2 :i




which maps U onto the complex plane except for a slit along the half-line (—oo, —1/4]
is the “largest” function in 8. The function e~k (e?z), (3 € R) also belongs to S and
is referred to as a rotation of the Koebe function. These functions play a very important
role in the study of the class S and are the only extremal functions for various extremal

problems in S.

In 1923, Lowner [53] proved the Bieberbach conjecture for n = 3. Schaeffer
and Spencer [96], Jenkins [37], Garabedian and Schiffer [29], Charzyriski and Schiffer
[16, 17], Pederson [76, 77], Ozawa [66] and Pederson and Schiffer [78] have investigated
the Bieberbach conjecture for certain values of n. Finally, in 1985, de Branges proved the

Bieberbach conjecture for all coefficients n with the help of the hypergeometric functions.

Since the Bieberbach conjecture was difficult to settle, several authors have con-
sidered classes defined by geometric conditions. Notable among them are the classes
of convex functions, starlike functions and close-to-convex functions. A set D in the
complex plane is called convex if for every pair of points w; and ws lies in the interior
of D, the line segment joining w; and wsy lies in the interior of D. If a function f € A
maps U onto a convex domain, then f(z) is called a convex function. Let C' denotes
the class of all convex functions in A. An analytic description of the class C' is given
by C:={feA:R{A+=z2f"(2)/f(2)) >0} [24, 30, 31, 32, 80]. Let wy be an in-
terior point of D. A set D in the complex plane is called starlike with respect to wy
if the line segment joining w, to every other point w € D lies in the interior of D. If
a function f € A maps U onto a domain starlike, then f(z) is called a starlike func-

tion. The class of starlike functions with respect to origin is denoted by S*. Analytically,

S i={f e A:R(zf'(2)/f(z)) > 0} [24, 30, 31, 32, 80].

A function f € A is said to be close-to-convex if there is a convex function g(z)
such that R (f'(2)/¢'(z)) > 0 for all z € U. The class of all close-to-convex functions

in A is denoted by K.

A function in any one of these classes is characterized by either of the quantities

L+ 2zf"(2)/f(2), 2f'(2)/f(2) or f'(2)/¢'(2) lying in a given region in the right half

plane; the region is often convex and symmetric with respect to the real axis [54]. Let



f and F' be members of H(U). The function f(z) is said to be subordinate to F(z),
or F(z) is superordinate to f(z), if there exists a function w(z), analytic in U with
w(0) = 0 and |w(z)| < 1 (2 € U), such that f(z) = F(w(z)). In such a case, we
write f(z) < F(z). If F is univalent, then f(z) < F'(z) if and only if f(0) = F'(0) and
f(U) C FU).

Let ¢ be an analytic function with positive real part in the unit disk U, ¢(0) = 1
and ¢/(0) > 0, and map U onto a region starlike with respect to 1 and symmetric with

respect to real axis. Ma and Minda [54] introduced the classes S*(¢) and C(p) by

oy G
(1.1.4) S*(p) = {feA. 8 =< p( )},

_ T N
(1.1.5) Clp) = {feA. 1+ e < o )}.

The classes S*(¢) and C(¢) include the subclasses of starlike and convex functions as

special cases. When

the classes S*(p) and C(¢p) reduce to the class S*[A, B] of Janowski starlike functions

and the class C[A, B] of Janowski convex functions respectively [35, 79]. Thus

1+ Az
1+ Bz

S*[A,B] = & (

) and C[A, B :;c<1+‘4z).

1+ Bz

Also

S =8 1,~1] = & G “) and C=C[l,~1]=C (1 “)

—z 11—z

are the familiar classes of starlike and convex functions respectively.

For 0 < a < 1, the class §*[1 — 2a, —1] is the class S of starlike functions of

order a. An equivalent analytic description of S} is given by

S;:—{feA:%<Zf/(Z>> > a, (0§a<1)}.

f(2)
For 0 < o < 1,
S*(a) ::S*[l—a,o]:{feA: Zf;ij)—1‘<1—a (zeU, O§a<1)}.




For 0 < a < 1, Parvatham [74] introduced and studied the class S*[a] where

o)== {re 4 LELees)
2f'(z)

f(z) M+1‘ (ZGU,O<04§1)},

f(2)

(1.1.6) = {feA:

—1‘<Oz

For 0 < a < 1, C(a) := C[1 — 2a, —1] is the class of convex functions of order «.

Equivalently
C(a) = {f cA- 14 ZJ{(S) . 1+(11_—Z20z)z}
:{fEA:S%(lJrZJ{ZS)) > a, (0§g<1)}.

The transform

Ki%ﬁﬁ

is called the Alexander transform of f(z). Itis clear that f € C(«) if and only if zf" € S

or equivalently f € S if and only if the Alexander transform of f(z) is in C(«).

For real a, let

2f'(2)
f(2)

The class of a-convex functions is defined by

Mo, f;2)=(1—«)

ra (1408,

f'(2)

Mo =1{f € A:RM(a, f;2) > 0}

This class M, is a subclass of S, and was introduced and studied by Miller et al. [56].
It has the additional properties that M, C Mz C My = §* for 0 < o/ < 1, and
M, C M; cC fora>1.

More information on univalent functions can be found in the text books [24, 30,

31, 32, 33, 58, 80].

1.2. HYPERGEOMETRIC FUNCTIONS

The use of the hypergeometric functions in the celebrated de Branges proof of the

Bieberbach conjecture prompted renewed interest in the investigation of special functions.



Prior to this proof, there had been only a few articles in the literature dealing with the

relationships between these special functions and univalent function theory.

Let @ and ¢ be any complex numbers with ¢ £ 0, —1, - - -, and consider the function

defined by

(121) @fa,¢2) = 1Fifa,¢2) = 1+EF+ clcr1) 2! eler Dcr2) 3!

This function, called a confluent (or Kummer) hypergeometric function is analytic in C

and satisfies Kummer's differential equation
2w (2) 4+ (¢ — 2)w'(z) — aw(z) = 0.

The Pochhammer symbol (a),, is defined by

(1.2.2) (@)y = ———= =
ala+1)(a+2)...(a+n—1), (neN)

where I'(a), (a € N') denotes the Gamma function. Then (1.2.1) can be written in the

form
(a)p 2*  T(c) =T(a+k) 2~
( 3) (CL,CyZ) Z(C)kk' F(G)ZF(C+I{J) |
k=0 k=0
Let a, b and ¢ be any complex numbers with ¢ # 0,—1,---, and consider the

function defined by

(1.2.4) F(a,b,c;2) = gFl(abcz)—l—i—%b%—i— ala (C)j(f;r )22__|_ ..

This function, called a (Gaussian) hypergeometric function is analytic in U and satisfies

the hypergeometric differential equation

2(1=2)w"(z) + [e = (a+ b+ 1)zJw'(2) — abw(z) = 0.

Using the notation (1.2.2) in (1.2.4), F' can be written as

= k T(a+k)T(b+k) 2
(1.2.5) F(a,b,c; z) :Z ) e+ k) g
k=0 k::O



More generally, for a; € C (j =1,2,...,1)and 3; € C\ {0,-1,-2,...} (j =

1,2,...m), the generalized hypergeometric function

1Fon(2) = (Fo(aq,. ..o 81,0y Bms 2)

is defined by the infinite series

n

lFm<041, e, Qg ﬁl; . 76m7 Z) = Z ((gll))n((gél)>n %

n=0

(I<m+1;l,me Ny :=NU{0})

where (a),, is the Pochhammer symbol defined by (1.2.2). The absence of parameters is

emphasized by a dash. For example,

oFi (- Z

k:0

is the Bessel's function. Also

(o]
oFo(—;—; 2) Z —exp

and
= (a)pz* 1
Fila: —: — — )
Fola—i2) = 32 1-2)"
k=0
Similarly,
1
2F1(a,b;b;z): (1—,2)‘1’ 2F1(171717Z): 1_27
—In(l -2 1
2F1(17172a2): (Z >’ and 2F1(17271’Z): (1_2)2

For two functions f(z) given by (1.1.2) and g(z) = 2P+ ;2 ., b.z", the Hadamard

product (or convolution) of f and g is defined by

(1.2.6) (f*xg)(z) =2+ Z arbrz® =: (g% £)(2).

k=p+1

Corresponding to the function
hp(ala I 7al;ﬁ17' t 7ﬁm;z) = Zp lFm(C(la I 705l;ﬁ17 e 7ﬁm;z)7
the Dziok-Srivastava operator [25] (see also [107])

H(Lm)(alu'"705l;ﬁ17"'7ﬁm) :Ap - Ap

p



is defined by the Hadamard product

ngl’m)(al,...,al;ﬂl,...,ﬁm)f(z) = hylag, ... a5 01, Bm; 2) * f(2)

- » al n—p - @l)n —p On% z"
(1.2.7) - Z ‘Fnjggl (B1)np - - (ﬁ;ﬂn »(n—p)

For brevity,
Hjl)’m[al]f(z) = Hj()hm)(ala s O 617 T 7ﬁm)f<z>

The linear (convolution) operator H)"[a] f(z) includes, as its special cases, many
earlier linear (convolution) operators investigated in geometric function theory. Some of

these special cases are described below.

The linear operator F(«, (3,7) defined by

Fla, B,7) = H (o, B;7) f(2)

is Hohlov linear operator [34]. The linear operator L(«, ) defined by

L(a,y) = Hi (0, 15,9)f(2) = Fla, 1,7)

is the Carlson and Shaffer linear operator [15]. The differential operator D* : A — A

defined by the Hadamard product:

Ao Q) = BP0+ 1L/, 0217 ed)

is the Ruscheweyh derivative operator [92]. This operator can also be defined by,

D f(2) :=

2(2" 1 f(2) ™)
D" f(z) := (2" f(2)) ., (ne Ny, f(z) € A).

n |

In 1969, Bernardi [10] considered the linear integral operator F': A — A defined by

(1.2.8) F(z):= C:Cl /Z 7 f(t)d.
0
When ¢ = 1, this operator was investigated by Libera [47] and Livingston [48]. Therefore
the operator in (1.2.8) is called the generalized Bernardi-Libera-Livingston linear operator.
Clearly
F(2)=H ' (c+1,1,c+2)f(2), (c>—1,f€A.
It is well-known [10] that the classes of starlike, convex and close-to-convex functions

are closed under the Bernardi-Libera-Livingston integral operator.



DEFINITION 1.2.1. [67, 71] The fractional integral of order X is defined by

D) = s | e (<)

where f(z) is an analytic function in a simply connected region of the complex z-plane
containing the origin, and the multiplicity of (z —()*~! is removed by requiring log(z — ()

to be real when z — ¢ > 0.

DEFINITION 1.2.2. [67, 71] The fractional derivative of order X is defined by

D) f(z) := ﬁ% /OZ (zf—(cg))AdC O<A<1)

where f(z) is constrained, and the multiplicity of (z — ¢)*~! is removed as in definition

(1.2.1) above.

DEFINITION 1.2.3. [67, 71] Under the hypothesis of Definition 1.2.2, the fractional

derivative of order n + X is defined, by
dn
DI f(z) = @Dﬁf(z) (0<A<1, neNy.

In 1987, Srivastava and Owa [105] studied a fractional derivative operator Q* :
A — A defined by
DM f(2) :=T(2 = N2 DX f(2).

The fractional derivative operator is a special case of the Dziok-Srivastava linear

operator since

QM f(z) = HPN (2,12 = N f(2)

=L(2,2-X0f(2), AEN\{1},f € A).

1.3. MULTIPLIER TRANSFORMATIONS

The S3l3gean [95] derivative operator D™ f(z) order m (m € N') is defined by
D" f(z) := f(z) * (z + anz"> =z+ ananz” (meN,feA.
n=2 n=2
Clearly D f(2) = f(2), D' f(2) = 2f'(z) and in general

D"f(z) = 2(D" ' f(2)) (meN,fE€A.



In 1990, Komatu [42] introduced a certain integral operator Z7' (a > 0,\ > 0)

defined by
. A 1\ M1
I f(z) = e /0 - (log ;) f(zt)at,
9] a A
(131) = Z+Z(m> a,z" (ZEU, a>0, >0, fG.A)
n=2

When a = 2, the integral operator 7. f(z) is essentially the multiplier transformation
studied by Flett [27]. Subsequently Junk et al. [38] studied the following one-parameter

families of integral operators:

POF(s) e /01 (1ogf)a_1f(t)dt (a > 0),

— 2D(a) t
-1
Q= ("I [e (1-4) s 5=0a> -,
and
F(z2) = O‘; ! / Lt (o> —1),
0

where I'(a) is Gamma function, o € . The operator P*, Q% and F'(z) were considered
by Bernardi [10, 11]. Further, for a real number a > —1, the operator F'(z) was used
by several authors [70, 74, 103, 104].

For f € A given by (1.1.1), Jung et al. [38] obtained
o _ — 2 “ n
(1.32)  PUf(2)=2z+ Z (—n ) a,z"  (a>0),

(133)  Q°f(2) =2+

az" (8>0,a>—1),

F(a+ﬁ+1)§: I'(a+n) .
I'(

[la+1) “—T(a+p+n)
and
(1.3.4) F)=z2+Y (jii) 42" (o> —1).

By virtue of (1.3.1), (1.3.2), (1.3.3) and (1.3.4), we see that
Ty f(z) = P f(z) (A>0)

and

F(z) = Qaf(2) (a>-1).



Ali and Singh [4] and Fournier and Ruscheweyh [28] have studied integral operators
Vy of functions f € A by

f(2t)
t

(1.3.5) Vaf(2) ::/le(t) it (A1) € ),

where

d)::{)\(t):k(t)zo (0<t<1) and /OlA(t)dtzl}.

Recently, Li and Srivastava [46] have studied an integral operator V* of functions

f € A defined by

t )

(1.3.6) Vef(z) = /O Aal?)

where the real valued functions A\, and \,_; satisfy the following conditions:

(i) For a suitable parameter «,
Aa1 €PN, €P and A\, (1) =0;
(ii) There exists a constant ¢ (—1 < ¢ < 2) such that

Aalt) =N () = (c+ DAay (0<t<1—1<c<2).

Further Li and Srivastava [46] found a relation between V®f(2), P®f(z) and QP f(z)

by setting particular values of \,(t). By setting

Ao(t) = (O‘ * ﬁ)a(l ) (a>0,8>—1)

«

in (1.3.6), they obtained V¥ f(2) = QF f(2); similarly by setting

Aa(t) = F?Z)t (log %)al (a>0),

in (1.3.6), they obtained V" f(2) = P f(2).
Motivated by these operators , Cho and Him [20, Definition, p. 400] introduced a

more general linear operator called the multiplier transformation. For any integer n, the

multiplier transformation I} : A — A is defined by

= (k+A\"
(1.3.7) INf(z) =z+ Z (1::__—/\> apz® (A>0, neZ2).
k=2

10



For A = 1, the operator I} was studied by Uralegaddi and Somanatha [111]. The
operator [} is closely related to the Komatu integral operators [42] and the differential

and integral operators defined by Siligean [95].

Motivated by the multiplier transformation on A, we define the operator I,(n, \)

on A, by the following infinite series
~ [(k+ A
1.3. Iy(n, A = 2P —
138)  ponfe =2 Y (25

)nakzk (A>—p, neZ).
k=p+1

The operator I;(m, 0) is the S3ldgean derivative operator D™ [95]. The operator I1(n, \)
was studied recently by Cho and Srivastava [19] and Cho and Kim [20]. The operator
I(n,1) was studied by Uralegaddi and Somanatha [111]. The operator I;(—1,¢) is the

generalized Bernardi-Libera-Livingston linear operator [10, 11].

1.4. SUBORDINATION AND SUPERORDINATION

Let o(r,s,t;2) : C3 x U — C and let h(z) be univalent in U. If p(z) is analytic in

U and satisfies the second order differential subordination

(1.41) U(p(z), 20 (2), 2°D"(2); 2) < h(2),

then p(z) is called a solution of the differential subordination. The univalent function
q(z) is called a dominant of the solution of the differential subordination or more simply
dominant, if p(z) < q(z) for all p(z) satisfying (1.4.1). A dominant ¢,(z) satisfying
¢1(z) < q(2) for all dominants ¢(z) of (1.4.1) is said to be the best dominant of (1.4.1).
The best dominant is unique up to a rotation of U. If p(z) € H|a,n], then p(z) will be
called an (a,n)-solution, q(z) an (a,n)-dominant, and ¢,(z) the best (a,n)-dominant.

Let 2 C C and let (1.4.1) be replaced by

(1.4.2) V(p(2), 20 (2), 20" (2); 2) € Q, forall z € U.

Even though this is a “differential inclusion” and v (p(2), 2p'(2), 2%p"(2); z) may not be

analytic in U, the condition in (1.4.2) will also be referred as a second order differential

subordination, and the same definition of solution, dominant and best dominant as given

11



above can be extended to this generalization. See [58] for more information on differential

subordination.
Let o(r,s,t;2) : C3 x U — C and let h(z) be analytic in U. If p(z) and

Y(p(2), 20 (2), 2°p"(2); 2)

are univalent in U and satisfies the second order differential superordination

(1.43) hz) < ¥(p(2), 20 (2), 2°p"(2); 2),

then p(z) is called a solution of the differential superordination. An analytic function
q(z) is called a subordinant of the solution of the differential superordination or more
simply subordinant, if ¢(z) < p(z) for all p(z) satisfying (1.4.3). A univalent subordinant
q1(z) satisfying q(z) < ¢i(2) for all subordinants ¢(z) of (1.4.3) is said to be the best
subordinant of (1.4.3). The best subordinant is unique up to a rotation of U. Let Q C C

and let (1.4.3) be replaced by

(1.4.4) Q C {Y(p(2), 20 (2), 2%p" (2); 2)| 2 € U}.

Even though this more general situation is a “differential containment”, the condition in
(1.4.4) will also be referred as a second order differential superordination and the definition
of solution, subordinant and best subordinant can be extended to this generalization. See

[69] for more information on the differential superordination.

Denote by Q the set of all functions ¢(z) that are analytic and injective on U\ E(q)

where
E(g) = {¢ € 0U : lim q(z) = oo},
and are such that ¢/({) # 0 for ¢ € OU \ E(q). Further let the subclass of Q for which

q(0) = a be denoted by Q(a), Q(0) = Qy and Q(1) = Q;.

DEFINITION 1.4.1. [58, Definition 2.3a, p. 27] Let Q be asetinC, ¢ € Q and n be
a positive integer. The class of admissible functions W,,[€2, ¢] consists of those functions

1 : C3 x U — C that satisfy the admissibility condition

(1.4.5) W(r, s, t;2) E 2

12



whenever = ¢(¢), s = k(q'(¢), and

AR RS bRt

ze U, (e€dU\ E(q) and k > n. We write V[, q] as V[€2, q|.

If ¢ : C? x U — C, then the admissible condition (1.4.5) reduces to

(1.4.6) U(a(C), kCq'(C); 2) & L2,

zeU,(€dU\ E(q) and k > n.

In particular when ¢(z) = M4FEEe, with M > 0 and [a| < M, then ¢(U) =
Uy = {w : |lw| < M}, q(0) = a, E(q) = 0 and ¢ € Q. In this case, we set
U, [Q, M, a] := U,[,q], and in the special case when the set 2 = Uy, the class is

simply denoted by ¥,,[M, al.

DEFINITION 1.4.2. [59, Definition 3, p. 817] Let Q be a set in C, ¢(z) € H]a,n|
with ¢'(z) # 0. The class of admissible functions W’ [, g] consists of those functions

1 : C® x U — C that satisfy the admissibility condition

(1.4.7) W(r, s,t;¢) € Q

z
whenever r = ¢(z),s = ==, and

()t )

z€U, (€0U and m >n > 1. When n =1, we write V][, q] as ¥'[Q2, q].

If 1 : C2xU — CIf¢p : C?x U — C, then the admissible condition (1.4.7) reduces

to

(1.4.8) P(q(2), 24'(2)/m; ¢) € Q,
zeU, (€U and m > n.

13



1.5. SCOPE AND MOTIVATION OF THIS WORK

In the present work, certain properties of analytic functions and meromorphic func-
tions are investigated. In particular, certain sufficient conditions for Janowski starlikeness
are obtained for various classes of analytic functions. Certain general differential subor-
dination and superordination results are also obtained. These are then used to obtain
differential sandwich results. Also non-linear coefficient problems involving the first three

coefficients of a p-valent function are discussed.
In 1969, Bernardi [10] introduced and studied a linear integral operator

c+1
ZC

F(z):=

/Z tHf()dt (e > 1),

now called the Bernardi integral operator. He proved that the classes of starlike, convex
and close-to-convex functions are closed under the Bernardi integral operator. In the
year 2000, Parvatham [74] extended Bernardi's results for functions in S*[a] defined in
(1.1.6). We have extended the results of Parvatham [74] by considering a more general
subordinate function. In the year 1999, Silverman [99] introduced and studied classes
of functions obtained by the quotient of expressions defining the convex and starlike
functions. Later Obradovi¢ and Tuneski [64] and Tuneski [109] improved the results of
Silverman [99]. Further many researchers [61, 62, 63, 85, 88| have studied these classes.
These results are extended by considering a more general subordinate function. Sufficient
conditions for Janowski starlikeness for functions in several subclasses of analytic functions

are also obtained. These results are presented in Chapter 2.

By using differential subordination, Miller and Mocanu [58] found some sufficient
conditions relating the Schwarzian derivative to the starlikeness or convexity of f € A.
Aouf et al. [7] and Kim and Srivastava [41] derived several inequalities associated with
some families of integral and convolution operators that are defined for the class of nor-
malized analytic functions in the open unit disk U. Recently Aghalary et al. [2] obtained
some inequalities for analytic functions in the open unit disk that are associated with
the Dziok-Srivastava linear operator and the multiplier transformation. Similar results

for meromorphic functions defined through a linear operator are considered by Liu and
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Owa [49]. These results motivate our main results in Chapters 3 and 4. Chapter 3 deals
with the applications of differential subordination and superordination to obtain sufficient
conditions on the Schwarzian derivative of normalized analytic functions. Subordination
and superordination results for analytic functions associated with the Dziok-Srivastava
linear operator and multiplier transformation are obtained. Additionally sandwich results
are obtained. In Chapter 4, we consider the Liu-Srivastava linear operator for the case of
meromorphic functions [51, 52] and also the multiplier transformation for meromorphic
functions. Differential subordination and superordination results are obtained for mero-
morphic functions in the punctured unit disk that are associated with the Liu-Srivastava
linear operator and the multiplier transformation. These results are obtained by inves-
tigating appropriate class of admissible functions. Certain related sandwich-type results

are also obtained.

In 1975, Silverman [98] studied the class of analytic functions whose Taylor co-
efficients are negative. Several other authors (see for example, Al-Amiri [3], Attiya [9],
Srivastava and Attiya [102], Owa and Srivastava [72], as well as Owa and Nishiwaki [68])
have studied several classes of analytic functions with negative coefficients. These results
are shown to be special cases of our main results in Chapter 5. For a fixed analytic func-
tion g(z) = 2+ -, gn2" defined on the open unit disk and y < 1, let T,(~) denote the
class of all analytic functions f € A of the form (1.1.1) satisfying ", [a,g,| < 1—7.
For functions in T,(7y), a subordination result is derived involving the convolution with a

normalized convex function.

In 1992, Ma and Minda [54] obtained sharp distortion, growth, rotation and cov-
ering theorems for the classes C'(¢) and S*(). In addition, they obtained some sharp
results for coefficient problems, particularly, the sharp bound on the coefficient func-
tional |as — pa3|, —oo < pu < oo, which implies sharp upper bounds for the second and
third coefficients. They also studied some convolution properties. Also, several authors
[1, 23, 39, 40, 43, 82, 89] have studied the coefficient problems for various classes
of univalent functions. In Chapter 6, sharp upper bounds for the coefficient function-

als |ap2 — pal | and |ap 3| are derived for certain p-valent analytic functions. These

15



are then applied to obtain Fekete-Szego like inequalities for several classes of functions

defined by convolution.
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CHAPTER 2

SUFFICIENT CONDITIONS FOR JANOWSKI STARLIKENESS

2.1. INTRODUCTION

Fortheclass S*[a| ={f e A: z2f'(2)/f(z) < 1+ az)/(1 —az) (0<a<1)},

Parvatham proved the following:

THEOREM 2.1.1. [74, Theorem 1, p. 438] Let ¢ > 0, 0 < a < 1 and 0 be given

by
5= 2+a+c(l—a)
14+2a+c¢(1—-a)

If f € §*[6], then the function F'(z) given by the Bernardi's integral as defined in (1.2.8)
belong to S*[a].

It is well-known [10] that the classes of starlike, convex and close-to-convex func-
tions are closed under the Bernardi's integral operator. Since 6 > «, Theorem 2.1.1

extends the result of Bernardi [10].

Parvatham also considered a similar problem for the class R[«] of functions f € A
satisfying
If'z) =1 <alf'(z)+1] (€U, 0<a<l),
or equivalently

1+ az
1—oaz

(zeU, 0<a<),

f'(z) <

and proved the following:

THEOREM 2.1.2. [74, Theorem 2, p. 440] Let ¢ > 0, 0 < o < 1 and 0 be given

by
2—a+c(l—a)
1+¢(l—a)

If f € R[0], then the function F(z) given by the Bernardi’s integral (1.2.8) is in R[a].

0=
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The class R[] can be extended to the general class R[A, B] consisting of all
analytic functions f(z) € A satisfying

1+ Az
1+ B2’

f(z) < (-1<B< A<,
or the equivalent inequality,
If'(z) =1 <|A—=Bf'(z)] (€U, -1<B<A<LI).
For 0 < v < 1, the class R[1 — 2, —1] consists of functions f € A for which
Rf'(z)>a (€U, 0<a<l),
and R[1 — «,0] =: R, is the class of functions f € A satisfying the condition
lf'z)—1l<1l—a (z€eU, 0<a<]l).

When 0 < o < 1, the class R[a, —a] is the class R|a] considered by Parvatham [74].

Silverman [99], Obradovi¢ and Tuneski [64] and many others (see [61, 62, 63,

85, 88|) have studied properties of functions defined in terms of the quotient

21"(2)

1+ 5755
T
i)

In fact, Silverman [99] have obtained the order of starlikeness for functions in the class

(G, defined by

14208
GbZ: fGAT(z)_l

f(z)

<a0<bngeU}.

Obradovi¢ and Tuneski [64] improved the result of Silverman [99] by showing
Gy, C §*[0,—-b] € S*(2/(1 + V1 +8Db)).
Later Tuneski [109] obtained conditions for the inclusion G, C S*[A, B] to hold. If we

let z2f'(2)/f(z) =: p(2), then G, C S*[A, B] becomes

2p'(z) 1+ Az
1+5b .
BE < 1+bz=p(z) < T B>

(2.1.1) 1+

Let f € Aand 0 < a < 1. Frasin and Darus [26] have shown that

FE) 2:'()  (1—a)z _ |2()

e fe) 2ma PR

<1l-—oa.
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By writing 22 f'(2)/(f(2))? as p(z), we see that the above implication is a special case

of
2p'(2) 14+ Dz 1+ Az
1 < = < .
+h p(2) 1+ Bz p(z) 1+ Bz

Another special case of the above implication was considered by Ponnusamy and Ra-

jasekaran [81].
Obradovi¢ et. al. [60] have shown that if p(z) is analytic in U, p(0) = 1 and
1+2p'(2) < 1+2z, thenp(z) <1+ z.

Using this, they have obtained a criterion for a normalized analytic function to be univa-

lent.

In this chapter, we extend Theorems 2.1.1 and 2.1.2 to hold true for the more
general classes S*[A, B] and R[A, B] respectively. In fact a more general result for
functions p(z) with p(0) = 1 satisfying

2p'(2) <1+Dz_ lies ()<1+Az
implies p(z
Bp(z) +v 1+ Ez Pres P 1+ Bz

p(2) +

is obtained and by applying this result, we investigate the Bernardi's integral operator
on the classes S*[A, B] and R[D, E]. Similar results are obtained by considering the
expressions 1 + Gzp/'(2), 1 + 5;1;’((5)) and 1+ ﬁzgég). These results are then applied to

obtain sufficient conditions for analytic functions to be Janowski starlike.

2.2. A BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION

THEOREM 2.2.1. Llet -1 < B<A<land -1<E<0<D<I1. For3>0
and B+~ >0, let G:= AB+ By, H:= (3+7)(D - E), I :=(AB+ By)(D - E) +
(BD — AE)(B+ ) — kE(A— B), J := (A3 + By)(BD — AE), and L := 3+~ + k.

In addition, for all k > 1, let
(2.2.1) (L + GH[(H + )] —4H|J|| +4LGHJ > LG[(H — J)* + I?].

Further assume that

B(14+ A)+~(1+ B)+1](A- B)

(2.2.2) B(1+A)+~+(1+B)|[DA+ B) — E(1+ A)] — E(A— B)

> 1.
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Let p(z) be analytic in U with p(0) = 1. If

2p'(z) 1+ Dz

p(z) + Op(z) +~ = 1+ E7’
then
1+ Az
p(2) < 1+ Bz’
PROOF. Define P(z) by
— zp’(Z)
(2.2.3) P(z) :=p(z) + e )
and w(z) by
p(z) -1

W) =
or equivalently by

(2.2.4) p(z) = %Z((z;

Then w(z) is meromorphic in U and w(0) = 0. We need to show that |w(z)| < 1in U.

By a computation from (2.2.4), it follows that

(A— B)zw'(z)

P = T o)
and using this in (2.2.3),
1+ Aw(z) (A— B)zw'(z)
Pz) = 1+ Bw(z) * (14 Bw(2))[B(1 + Aw(2)) + (1 + Bw(2))]
Therefore

Piz)—1 (A= B)(B+1w(z) + (A8 + By)w?(z) + 2w'(2)]
(D = E) + (BD — AE)w(2)][5 + v ‘
+(Aﬁ + B)w(z)] — E(A - B)zw'(2)

Assume that there exists a point 2y € U such that

max |w(z)| = |w(z)| = 1.
|2[<[=0]

Then by [93, Lemma 1.3, p. 28], there exists k& > 1 such that zow'(zy) = kw(zp). Let
w(zy) = €. For this zy, we have

(A — B)[L + Gw(z)]

T | Tw(z) + Jw(zp)? = (A= Bllplcosd))?

P(z) — 1
‘D — EP(z)
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where
|L + Ge?|?
[He— + Jei® + 1|2
L?+ G* +2LG cos 0

I+ (H + J)cosO)?2 + [(J — H)sin6]?
L? + G? + 2LG cos 0

12+ (H + J)2cos2 6 + 21 (H + J)cos§ + (J — H)2sin? f

L?*+ G? + 2LG cos 0
H?2+ J?+1?+2HJcos20 + 21(H + J) cos

Define the function

L? + G* + 2LGt
2.2. = .
(225) (1) AHJ?2 +2I(H+ J)t+ (H — J)2 + I?

We shall show that ¢(t) is a decreasing function. A simple computation using (2.2.5)
yields

(1) = _ALGHIP + AHI(I? + G)t 4+ 112 + G*)(H +J) = LGII* + (H = J)’
A= [AH T2 + 21 (H + D)t + (H — J)2 + 122 '

The function (t) is a decreasing function if ¢/(¢) < 0 or equivalently if
ALGHJt +4AHJ(L* + G*)t + I(L* + G*)(H + J) — LG[I* + (H — J)*] > 0.
In view of the fact that

doe=b if a >0 and || < 2a

min{at®> + bt +c: -1 <t <1} =
a—|b|+¢, otherwise,

the condition (2.2.1) shows that ((¢) is a decreasing function of ¢t = cosf. Thus
L+G |
t)>po(l) = | ———
o0 2 o0 = | o]
Consider the function
L+G
k) = ————
vk) I+J+H

1+A)pB+(1+B)y+k
[(1+B)D—-(1+A)E][(1+A)pB+(1+B)y] —kE(A—B)’

Since

[+ B)D—-(1+AE](1+A)B+ 1+ B)y] —kE(A— B)]?’
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clearly ¢’(k) > 0 and hence (k) is an increasing function of k. Since k > 1, we have

(k) > (1) and therefore

g [B(1 +A) + (1 + B) + 1](A - B)
“BO+A) 1+ B)D(+B) - E(1+ A)] - E(A-B)’

P(z) — 1
‘D " EP(z)

which by (2.2.2) is greater than or equal to 1. This contradicts that P(z) < (1 +
Dz)/(1 + Ez) and completes the proof. O

2.3. APPLICATION TO THE BERNARDI'S INTEGRAL OPERATOR

THEOREM 2.3.1. Let the conditions of Theorem 2.2.1 hold with § = 1 and v =
c¢> —1. If f € §*[D, E], then the function F'(z) given by the Bernardi’s integral (1.2.8)
is in S*[A, BJ.
PRrROOF. Differentiation of the Bernardi's integral (1.2.8) yields
(c+1)f(2) = 2F'(2) + cF(z).

Logarithmic differentiation now yields

2f'(2) 2/ (2)
=plz) + ;
[C I ATE R
with p(z) = zF'(z)/F(z). The result now follows from Theorem 2.2.1. O

Observe that when J = 0, the condition (2.2.1) reduces to the equivalent form

(2.3.1) (LI — GH)(LH — GI) > 0.

REMARK 231. f A=a, B=—a, D=3§dand E = —§ (0 < o, < 1), then
G=al—c), H=201+¢), I =2a0(1+k—¢), J=0and L =1+c+k.
In this case, LI — GH = 2ad0k(2 + k) > 0. In addition, LH — GI > 0 becomes
(1+c¢)(1+c+k) > a?(1 —c)(1 — c+ k). Clearly this condition holds when ¢ > 0. In

the case —1 < ¢ < 0, since

(I+¢)(2+¢)
(1-0¢)(2—1¢)

(1+)(1+c+k)
1-ol—ctk)

condition (2.3.1) holds provided o < (1+¢)(2+4¢)/(1—¢)(2—c¢). Thus Theorem 2.3.1

<

not only reduces to Theorem 2.1.1 for ¢ > 0, but also extends it for the case —1 < ¢ < 0.
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COROLLARY 2.3.1. Let -1 < ¢ <0, 0<a </ (1+c)2+c)/(1—c)(2—0),
and § be as in Theorem 2.4.2. If f € S*[0], then the function F(z) given by the Bernardi’s
integral (1.2.8) belongs to S*[a].

REMARK 232. Let A=1—qa,B=0,D=1—-dand E=0 (0 < o,0 < 1).
ThenG=1—-a, H=(1-0)1+¢), I=(1—-a)(1—=9), J=0and L=1+c+k.

Since J = 0, the condition (2.3.1) reduces to
(2.3.2) (1+c)(1+c+k)—(1-a)*>0.

Since (1+c¢)(1+c+k)—(1—a)? > (1+¢)(2+c)—(1—a)?, the inequality (2.3.2) holds pro-
vided a > 1 — /(14 ¢)(2 + ¢). This condition holds for ¢ > [ dla—1)2+1— 3] /2.

This yields the following result for the class S*(4).

COROLLARY 2.3.2. Letd :=a— (1 —a)/(2+c—a), f(z) € S*(9) and F(z)
be given by the Bernardi’s integral (1.2.8). If oy < v < 1, then F(z) € S*(«) for all
¢>—1. Hereag:= 34+ c—+/(3+¢)2—4)/2.

THEOREM 2.3.2. Under the conditions stated in Theorem 2.2.1 with 3 = 0 and
v =c+1, if f € R[D, EJ, then the function F'(z) given by the Bernardi’s integral (1.2.8)
is in R[A, B].

PROOF. Since
(c+1)f(z) = 2F'(2) + cF(z2),
it follows that

(2.3.3) fl(z) = %(i) +F(2).

The result now follows from Theorem 2.2.1 with p(z) = F'(z), =0and y=c+1. O

REMARK 233. For A=a, B=—a,D=0and E=—§ (0 < a,d < 1), then
G=—-a(l+c¢), H=2(1+¢), I =2ad0(k—1—¢),J=0and L=1+4c+ k. The

condition (2.3.1) becomes
4o’k (1+c)[(1+e)(1 —a?) + k(1 +a?)] >0
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which holds for any ¢ > —1. This shows that Theorem 2.3.2 reduces to Theorem 2.1.2

and that the assertion even holds in the case —1 < ¢ < 0.

REMARK 234. For A=6§, B=0,D=aand £E =0 (0 < a,0 <1), then
G=1=J=0 H=a(l+c¢),and L =1+ c+ k. In this case the condition (2.3.1)
holds for any ¢ > —1. Thus Theorem 2.3.2 extends the earlier result of Anbudurai [6,

Theorem 2.1, p. 20] even in the case —1 < ¢ < 0.

REMARK 235. Fr A=1—a, B=0,D=1-dand E=0 (0 <, < 1),
then G=0, H=(1-6)(1+¢),I=0,J=0and L =1+ c+ k. Theorem 2.3.2 yields

the following:
COROLLARY 2.3.3. Letc> —1,1/(24¢)<a<landd :=a—(1—a)/(1+c).

If f(z) € Rs, then F(2) € R,.

2.4. ANOTHER DIFFERENTIAL SUBORDINATION

LEMMA 24.1. Llet -1 < B< A<1,-1<E<D<1andp+#0. Assume that
(2.4.1) (A—DB)|8| > (D - E)(1+ B*) +|2B(D — E) — EB(A — B)|.

If p(z) is analytic in U with p(0) = 1 and

1+ Dz
1 / T
+ Bzp'(2) < T By
then
(2) < 1+ Az
PE =1 By
PROOF. Define the function P(z) by
(2.4.2) P(z) =1+ pzp'(2)

and the function w(z) by (2.2.4). Then w(z) is meromorphic in U and w(0) = 0. Using
(2.2.4) in (2.4.2), we get

(1+ Buw(2))® + (A - B)Bzw/(2)

Plz) = (1+ Bu(z))? |
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and therefore

P(z)—1 (A — B)fzw'(z)

D—EP(z) (D—-E)(1+ Bw(z))?— E(A- B)Bzw'(z)

If lw(z)| £ 1in |z| <1, then there is a point z, in U such that

max |w(z)| = |w(z)| =1
|z]<|z0]

and by [93, Lemma 1.3, p. 28], there exists &k > 1 such that zyw'(z9) = kw(zp). Let

w(zy) = €. For this zy, we have

‘ P(z) — 1 _ (A — B)k|S|
D — EP(z) [12+ (H — J)? +4HJt2 + 41 (H + J)i]z
- (A — B)k|f|
= max {[I2+ (H — J)? + AHJt2 + 4I(H + J)l]*}

“1<t<1
where [ :=2B(D—E)—kBE(A—B), J:=(D—FE)B?* H := (D —F) and t := cos#.
A computation shows that

(A—B)|Blk
T HAH|I+J

P(Zo) —1
‘D —EP(Z())

Yet another calculation shows that the function

_(A-B)|3lk
YW = g

is an increasing function of k. Since k > 1, ¥(k) > ¢(1) and therefore

- (A—B)|s]
“(D-E)1+ B+ 2B(D - E)— E3(A— B)|’

P(Zo) -1
‘D — EP(%)

which by (2.4.1) is greater than or equal to 1. This contradicts P(z) < (1+Dz)/(1+E=%)

and completes the proof. O

COROLLARY 2.4.1. [60, Lemma 1, p. 1035] If p(2) is analytic in U and zp'(z) < z,
then p(z) < 1+ z.

PROOF. The result follows from Lemma 2.4.1 by taking 6 =1, E = 0 = B and
D=1=A. O

COROLLARY 2.4.2. [60, Theorem 1, p. 1036] If f € A satisfies |(z/f(z))"| < 1
with f(z)/z # 0, then f(z) is univalent in U.
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PROOF. Define the function p(z) by

_2fl(2) = (.= ' N/
=507~ 7= () e 0,

Then we get

Since |(z/f(2))"] <1, it follows that

—22 (ﬁ)ﬂ < zorzp(z) <z

From Corollary 2.4.1, we have

2f'(2)
f(2)?

Thus we have |22 f(2)/f(2)*> — 1] < 1 and hence f(z) is univalent in U by [65, Theorem

<1+ z.

p(z) <1+ 2z or

2, p. 394] . O

By taking p(z) = zf'(2)/f(2) in Lemma 2.4.1, the following result is obtained.

THEOREM 2.4.1. Let the conditions of Lemma 2.4.1 holds. If f € A satisfies

2f'(2) (1 L) zf’(z)) 14D

TR i) 1) ) ST Ee

then f € S*[A, B].

COROLLARY 2.4.3. Let0 < a <1 andd§ = a/(1 + a)* If f € A satisfies

) (2" ) Q) () )
1) (” 1(2) f(z)) 1) (” ) f(z)>

then f(z) € S*[a].

<5'2+

Y

PROOF. The result follows from Theorem 2.4.1 by taking 5 =1, A=«a = —B and
D=-FE=6§0<aq,6<1). O

COROLLARY 2.4.4. If f € A satisfies

L) (1, 20| Lo

(243) 702) ) i) 3

(0<a<l),

then f(z) € Sk.
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PROOF. The result follows from Theorem 2.4.1 by taking 3 =1 A = 1-2a, B = —1,
D=(1-a)/3and E=0(0<a<1). O

By replacing p(z) by 1/p(2), 8 = —1, A replaced by —B and B replaced by —A

in Lemma 2.4.1, the following result is obtained.

LEMMA 242. Llet -1 < B<A<1,—-1<FE<D<1. Assume that
(2.4.4) (A-B)>(D—-E)1+ A +|E(A—- B) —2A(D — E)|.

If p(z) is analytic in U with p(0) = 1 and

2p'(z) 1+ Dz

1 < ;
* p?(2) 1+ Ez

then
1+ Az
1+ Bz

p(z) <

THEOREM 2.4.2. Llet -1 < B< A<1,—-1<E<D<1. Assume that (2.4.4)
holds. If f € A satisfies

zf"(2)

f/
L+=0y 14Dz

zf'(2) 14+ Ez’
1) R
then f € S*[A, B|.
PROOF. Let the function
2f'(2)
2.4.5 p(z) = .
(249 O
By a computation from (2.4.5), it follows that
2p'(z z2f"(z
o) + P gy f/()'
p(z) f'(z)
Thus
zf"(2)
zp'(2) o L+ ()
Y T TR
f(z)
The result now follows from Lemma 2.4.2. O

COROLLARY 2.4.5. [109, Corollary 2.6, p. 203] Let —1 < B < A < 1, then
Gy, C S*[A, B] where b = (A — B)/(1 + |A])%
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PROOF. The result follows from Theorem 2.4.2 by taking E =0and D=5 (0<
b<1). 0

COROLLARY 2.4.6. [64, Theorem 1, p. 61] Let f € G}, (0 < b < 1), then

z2f'(2) 1
f(z) B 1+0bz

PROOF. The result follows from Theorem 2.4.2 by taking A = 0 = F and D =
—-B=b (0<b<1). d

When A=0=F and D = —B =1, Theorem 2.4.2 reduces to:
COROLLARY 2.4.7. [99, Corollary 1, p. 76] If f € G4, then f € §*(1/2).

EXAMPLE 24.1. If f € G 1-a_, (0 < a < 1), then f € §*(a).

(2—a)?

The result follows by taking A =1 — «, B =0 in Corollary 2.4.5.

EXAMPLE 2.4.2. If f € A satisfies

(2.4.6)

2 2f() ) @ . a )
YR TR <5‘” 7 T | P Tisaga 07
then f € S*[a].

The result follows from Theorem 2.4.2 by taking A= —B =« and D = —F =
d (0<a<l).

EXAMPLE 2.4.3. If f € Asatisfies (2.4.6) with 3 = (1—a)/[1+(1—2a)*+|5a—3]]
(0 <a<1),then f €Sk

The result follows from Theorem 2.4.2 by taking A =1—2a, B=0and D =
-E=0 (0<a<]l).

LEMMA 243. Llet -1 < B<A<1,-1<E<D<1, AB>0and g #0.

Assume that
(2.4.7) IB(A—B)>(D—-FE)(1+AB)+|(D— E)(A+ B) — EG(A— B)|.
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Let p(z) be analytic in U with p(0) =1 and

2p'(z) 1+ Dz

1 <
+Bp(z) 1+ Ez’

then
1+ Az
1+ Bz

p(z) <

PROOF. The proof is similar to the proof of Lemma 2.4.1, and is therefore omitted.

O

REMARK 2.4.1. When EF < 0, AB < 0, Lemma 2.4.3 is valid provided the

following conditions holds:
(1—AB)*{2EB(A+ B)(D — E) — (A— B)(D — E)* + (EB)’]} > 43*(A— B)AB
instead of (2.4.7).

By taking 3= —1, A=A=FEand D=B =0 (|]\| <1)inLemma 2.4.3, we

have the following result:

COROLLARY 2.4.8. [81, Theorem 1(iii), p. 195] If p(z) is analytic in U, and

2p'(z) Az
A <1
p(2) _<1+)\z (A=< 1),
then
p(z) <1+z.

By taking 3 =1,B=0, D= A/(14+ A) and E =0 in Lemma 2.4.3, we have the

following result:

COROLLARY 2.4.9. Let 0 < A < 1. Let p(z) be analytic in U with p(0) = 1. If
|2p'(2)/p(2)| < AJ(1+ A), then p(z) < 1+ Az.

COROLLARY 2.4.10. If f € A satisfies

2f"(z)  2f'(2) -«

ST M T N

0<a<),

then f € S*(a).
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PROOF. Let the function
zf'(2)
f(z)

By a computation from (2.4.8), it follows that

W), G )

piz) 0 fe) f(2)
Hence the required result follows by taking A =1 — « in Corollary 2.4.9. O

(2.4.8) p(z) =

THEOREM 2.4.3. Let the conditions of Lemma 2.4.3 holds. If f € A satisfies

() 2:0()\ 14D
(249) (S5 < e

then
2f(z) 1+ Az
< .
2(2) 1+ Bz

PROOF. Let the function p(z) be defined by
2

fA(z)
By a computation from (2.4.10), it follows that

on CIE) 2:f(2)
1+5p@>‘1+5( () f@))'

(2.4.10) p(2)

Thus (2.4.9) becomes

2p'(z) 1+ Dz
1 < )
o p(2) 1+ Ez
The result now follows from Lemma 2.4.3. O

Bytakingf =1, A=1-a, B=0,E=0and D =(1—a)/(2—a) (0<a<]1)

in Theorem 2.4.3, we have the following result:

COROLLARY 2.4.11. [26, Theorem 2.4, p. 307] If f(z) € A satisfies

CICY 20| e o,
FG JG) | Tama 0EeSD
then
21 |y,
70) 1' <1 :
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CHAPTER 3

DIFFERENTIAL SUBORDINATION AND SUPERORDINATION
FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

3.1. INTRODUCTION

The Schwarzian derivative {f, z} of f € A is defined by

_ f”(Z)>' 1 (f”(z))2
vat=(75) -3 (7))
Owa and Obradovi¢ [69] proved that if f € A satisfies

% (1 + ZJ{/;(Z';)Y + 2*{f, z}] >0,

then f € C. Miller and Mocanu [58] proved that if f € A satisfies the condition

(3.1.1) R

(3.1.2) R [(1 - Zﬁg)) + a2 {f, z}} >0 (Ra>0),
(3.1.3) R (1 + ZJ{/;(ZZ)))Q 4227, z}] >0,
(3.1.4) R [(1 + %(ZZ))) e > 0,

then f € C. More generally, Miller and Mocanu [58] found conditions on ¢ such that
2f"(z)
%{gb(l—l— 2 f, 2} 2 >0
ORI
implies f € C. Miller and Mocanu [58] proved that if f € A satisfies the condition

o197 (755) +0 (0 5e5) + () 209

>0 (o,0€R),

or

(3.1.6) R K%) <1+%S)+z2{f,z}ﬂ > —%,
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then f € §*. More generally, they found conditions on ¢ such that

oo (G0 8 1))

implies f € §*.

Recently Miller and Mocanu [59] considered certain first and second order differen-
tial superordination. Using the results of Miller and Mocanu [59], Bulboaca considered
certain classes of first order differential superordination [13] as well as superordination-
preserving integral operators [14]. Ali et al. [5] used the results of Bulboaca [13] to
obtain some sufficient conditions for normalized analytic functions f to satisfy

2f'(2)
f(2)

where ¢, qo are given univalent functions in U. Our results includes several earlier results.

G(z) < < q2(2)

To prove our main results we need the following theorems.

THEOREM 3.1.1. [58, Theorem 2.3b, p. 28] Let ¥ € ¥, [, q] with ¢(0) = a. If

the analytic function p(z) = a + a,2" + ap12" + - -+ satisfies
D(p(2), 20 (2), 2°p" (2); 2) € Q,
then p(z) < q(z).

THEOREM 3.1.2. [59, Theorem 1, p. 818] Let ¢ € ¥/ [Q,q] with ¢(0) = a. If

p(2) € Q(a) and Y¥(p(2), zp'(2), 22p"(2); 2) is univalent in U, then
Q C{e(p(2), 20 (2), 2°p"(2); 2) - 2 € U}

implies q(z) < p(2).

In this chapter, we give an application of differential subordination and superordi-
nation to Schwarzian derivatives to obtain sufficient conditions for the functions f € A

to satisfy

0(2) < 2i0] < @2(2) or qi(z) <1+

f(2)

2f"(2)
f'(2)

< QQ(Z)
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where q1, g2 are respectively the given analytic and univalent functions in U. In addition,
subordination and superordination results for analytic functions associated with the Dziok-
Srivastava linear operator and the multiplier transformation are obtained. These results
are obtained by investigating appropriate class of admissible functions. Sandwich-type

results are also obtained.

3.2. SCHWARZIAN DERIVATIVES AND STARLIKENESS

The following definition of a class of admissible functions is required in Theo-

rem 3.2.1.

DEFINITION 3.2.1. Let Q be a setin C and ¢(z) € Q;N'H. The class of admissible
functions ®5[(2, ] consists of those functions ¢ : C3x U — C that satisfy the admissibility

condition

whenever

- { 2w + u22?vl_+u3)<v - u>2} S kR { ¢a"(Q) 1} ,

€U, (€dU\ E(q) and k > 1.

THEOREM 3.2.1. Let ¢ € 5[, q]. If f € A satisfies

Q) L s
(3.2.1) {¢( 8 1+ 702 2 f, 2} ) : EU} CQ,
then

2f'(2)

o A

PROOF. Define p(z) by

_ 2f'(2)
(3.2.2) p(z) = 78
A simple computation yields
) ()
(3.2.3) 1+ ) p(z) + (2)
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Further computations yield

N 2 (2)+ 22" (2) 3[2p(2)]7  1—p(2)
(3.2.4) 2{f,z} = P b —5{]9 } + P,

(325) UZT,U:T—i-—,w: _

Let

(3.2.6) (1, s,t;2) = d(u,v,w; 2) :¢<T,T—|—;’S+t 3 [f]2+ 1—7=2;Z>‘

The proof shall make use of Theorem 3.1.1. Using equations (3.2.2), (3.2.3) and (3.2.4),

from (3.2.6), it follows that

), A6

(3.2.7) U(p(2), 21/ (2), 2°p"(2); 2) = ¢< @ " Pl

Uz,
Hence (3.2.1) becomes
b(p(2), 20/ (2), 2°p"(2); 2) € Q.
The proof is completed if it can be shown that the admissibility condition for ¢ € ®4[€2, ¢

is equivalent to the admissibility condition for ¢ as given in Definition 1.4.1. Note that

t 2w+ u? — 1+ 3(v —u)?
S41= :
s 2(v —u)

and hence ¢ € V[, ¢|. By Theorem 3.1.1, p(z) < ¢(z) or

2f'(2)
f(2)

< q(z). O

If 2 # C is a simply connected domain, then 2 = h(U) for some conformal mapping
h(z) of U onto . In this case, the class ®s[h(U), ¢ is written as ®5[h, ¢]. The following

result is an immediate consequence of Theorem 3.2.1.

THEOREM 3.2.2. Let ¢ € ®g[h,q]. If f € A satisfies

(3.2.8) o) (Zﬁg), 1+ Z;/;S) 2 f, 2 ) z) < h(z),
then
£
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The next result is an extension of Theorem 3.2.1 to the case where the behavior of

q(z) on OU is not known.

COROLLARY 3.2.1. Let Q C C and let q(z) be univalent in U, q(0) = 1. Let

¢ € Ps[, q,] for some p € (0,1) where q,(z) = q(pz). If f € A and

(3.2.9) & <z}f(/iz>) 1+ Zﬂg) 22 fL 2 z) €,
then
Z;(g) < q(2).

PROOF. Theorem 3.2.1 yields

q(z).

'(2)
)

ZJ]:(Z < ¢,(z). The result is now deduced from ¢,(z) <

THEOREM 3.2.3. Let h(z) and q(z) be univalent in U, with q(0) = 1 and set
4,(2) = q(pz) and h,(z) = h(pz). Let ¢ : C* x U — C satisfy one of the following

conditions:

(1) ¢ € ®g[h, q,] for some p € (0,1), or
(2) there exists py € (0,1) such that ¢ € ®glh,,q,| for all p € (po, 1).

If f € A satisfies (3.2.8), then

2

8 q(2).

PROOF. The proof is similar to the proof of [68, Theorem 2.3d, p. 30|, and is

therefore omitted. O

The next theorem yields the best dominant of the differential subordination (3.2.8).

THEOREM 3.2.4. Let h(z) be univalent in U, and ¢ : C* x U — C. Suppose that

the differential equation

(3.2.10) ¢ (9(2),24'(2), 22¢"(2); 2) = h(2)

has a solution q(z) with q(0) = 1 and satisfy one of the following conditions:

(1) q(2) € Qq and ¢ € Dglh,q|,
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(2) q(2) is univalent in U and ¢ € ®g[h, q,], for some p € (0,1), or
(3) q(#) is univalent in U and there exists py € (0,1) such that ¢ € ®glh,,q,], for

all p € (po,1).

If f € A satisfies (3.2.8), then

and q(z) is the best dominant.

PROOF. Following the same arguments as in the proof of [58, Theorem 2.3e, p.
31], from Theorems 3.2.2 and 3.2.3, it follows that ¢(z) is a dominant. Since ¢(z)
satisfies (3.2.10), it is also a solution of (3.2.8) and therefore ¢(z) will be dominated by

all dominants. Hence ¢(z) is the best dominant. O

In the particular case ¢(z) = 14+ Mz, M > 0, in view of Definition 3.2.1, the class

of admissible functions ®5[€2, ], denoted by ®5[2, M], is described below.

DEFINITION 3.2.2. Let ) be a set in C and M > 0. The class of admissible
functions ®5[S2, M| consists of those functions ¢ : C3 x U — C such that

(3.2.11)
(M +e™)[2(k —1)M — (Me” + 3)
k14 Me?, Gy xMPe® 4 2Le”] - 3KEM?
14 Me¥ ’ 2(M + e9)2 ’

o1+ Me" 1+ ZQ

whenever z € U, 0 e R, R (Le_w) > (k—1)kM for all real § and k > 1.

COROLLARY 3.2.2. Let ¢ € ®g[Q2, M]. If f € A satisfies

& (zf/(z) 14 26 ey z};z) € Q,

f) 7 )
then
2f'(2) '
-1 < M.
f(2)
In the special case Q = {w : |w — 1| < M}, the class ®g[€2, M] is simply denoted
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COROLLARY 3.2.3. Let ¢ € ®g[M]. If f € A satisfies

HELCRIELC

2, z};z> - 1‘ <

fiz) 7 fz)
then
/
ZUC) — 1| < M.
f(2)
EXAMPLE 3.2.1. Let a > 2(M —1). If f € A satisfies
2f'(z) ( z ”(2))
11—« +all+ — 1| < M,
-2 )
then
/
1) -1 < M.
f(2)
This follows from Corollary 3.2.3, by taking ¢(u, v, w; 2) = (1 —a)u+av (o > 0).
EXAMPLE 3.2.2. If 0 < M <2 and f € A satisfies
|4 2
f'(2)
e 1| < M,
I(z)
then
/
1) — 1' < M.
f(z)

This follows from Corollary 3.2.3, by taking ¢(u, v, w; 2) = v/u.

COROLLARY 3.2.4. [113, Corollary 2, p. 583] Let0 < M < 1land A > —2(1—-M).
If f € A satisfies

200 5 (£

) T )| < veea-an,

then

2f'(2)
f(2)

—1'<M.

PROOF. The proof follows from Corollary 3.2.3, by taking ¢(u,v,w;z) = u(v —
)4+ AMu—=1) (A > =2(1 — M)) and Q = h(U) where h(z) = M(A+ 2 — M)z,
(0< M <1). O
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Next, we apply Theorem 3.2.1 to the particular case where ¢(U) is a half-plane
qU) ={w: Rw > 0} =1 A. Let ¢(z) :== (1 +2)/(1 — z2), then ¢(0) = 1, E(q) = {1}
and ¢ € Q;. Let ¢ =: ( € U\ E(q), then ¢(¢) = ip, and (¢'(¢) = —(1+ p?)/2 where
p := cot §. The class of admissible functions ®[(2, g], denoted by ®5[Q2, A], is described

below.

DEFINITION 3.2.3. Let €2 be a set in C, ¢(z) € Q; and ¢(0) = 1. The class of
admissible functions ®¢[Q2, A] consists of those functions ¢ : C3 x U — C that satisfy

the admissibility condition
(3.2.12) o(ip,iT,E+1in;z) & Q
for all z € U and for all real p, 7, & and 1 with

pr > =(1+3p%), and pn > 0.

N | —

THEOREM 3.2.5. Let ¢ € Og[Q, Al. If f € A satisfies

(3.2.13) & (ZJ{(/(;) 14 Zfé?,%{f, z};z) €,

then f € §*.

If 2 2 C is a simply connected domain, then 2 = h(U) for some conformal mapping
h(z) of U onto ). Let the function h(z) = (1 + 2)/(1 — 2), clearly h(U) = A. In this
case, the class of admissible functions ®g[h(U), A] is written as ®g[A] and hence the

following result is an immediate consequence of Theorem 3.2.5.

COROLLARY 3.2.5. [58, Theorem 4.6a, p. 244] Let ¢ € g[A]. If f € A satisfies

(3.2.14) R {gb (Z]{;i? St ZJ{:&S) L2 f, 2 ) z) } >0,

then f € §*.

A dual result of Theorem 3.2.1 for the differential superordination is given below.

38



DEFINITION 3.2.4. Let 2 be a set in C, q(z) € H with z¢'(z) # 0. The class of
admissible functions ®%[(2, ¢ consists of those functions ¢ : C3 x U — C that satisfy the

admissibility condition

o(u, v, w; ) € Q
whenever
u=q:), =g+ 2LE (@) £0. 2() 20)
2w+ u? — 1+ 3(v — u)? 124" (2)
S S el

zeU, (€dU and m > 1.

THEOREM 3.2.6. Let ¢ € D[Q,q|. If f € A, z2f'(2)/f(2) € Q; and

Zf’() Zf”() 2 .
¢(ﬂ>1+f%w2““h)

is univalent in U, then

(3.2.15) Qc:{¢(fﬂ%) ?q%)zqﬁzhz):zeU}

implies
2f'(z)

q(z) < o)

PROOF. From (3.2.7) and (3.2.15), it follows that

QC{¢(p(z),z '(2), 22" (2); ):zEU}.

In view of (3.2.5), the admissibility condition for ¢ € P[€2, ¢] is equivalent to the
admissibility condition for 1) as given in Definition 1.4.2. Hence ¢ € ¥'[Q, q], and by

Theorem 3.1.2, ¢(z) < p(z) or
2f'(2)
q(z) < o) O

THEOREM 3.2.7. Let q(z) € H, h(z) be analytic in U and ¢ € Pylh,q] =
OL[1(U), q). If f € A,

2f'(2) an zf'(2) 2f"(2) 20 F o1,
ﬂaegld¢(ﬂ@‘+fw’{ﬁh)

is univalent in U, then

(3.2.16) ()<¢(?¥Q1+#ﬁ£ 2{f, 2} )
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implies
2f'(2)
fz)

q(z) <

Theorems 3.2.6 and 3.2.7 are used to obtain subordinants of differential superor-
dination of the form (3.2.15) or (3.2.16). The following theorem proves the existence of

the best subordinant of (3.2.16) for an appropriate ¢.

THEOREM 3.2.8. Let h(z) be analytic in U and ¢ : C> x U — C. Suppose that

the differential equation

(32.17) 6(a(2), 24 (=), 4" (); 2) = h(2)

has a solution q(z) € Qy. If p € Pg[h,ql], [ € A,

2f'(2) FE) L) s
o € o (St e 3 20 he)
is univalent in U, then
G L)
) <o (S50 1+ S e
implies
o) < 45

and q(z) is the best subordinant.

PROOF. The proof is similar to the proof of Theorem 3.2.4, and is therefore omitted.

g

Combining Theorems 3.2.2 and 3.2.7, the following sandwich-type theorem is ob-

tained.

COROLLARY 3.2.6. Let hyi(z) and q1(z) be analytic functions in U, hs(z) be uni-
valent function in U, g3(z) € Q1 with q1(0) = ¢2(0) = 1 and ¢ € Pglha, q2] N P[h1, ¢1].
IffeA,

2f'(2)

) |, ")
1)

eHnand o (5 1+

,fﬁﬁh%
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is univalent in U, then

A1) |, )

’“”*¢<ﬂ@’ )

w%ﬂ%w)<bw)

implies

3.3. SCHWARZIAN DERIVATIVES AND CONVEXITY

The following definition of a class of admissible functions is required in Theorem

3.3.1.

DEFINITION 3.3.1. Let Q be aset in C and ¢(z) € Q;N'H. The class of admissible
functions @[, ] consists of those functions ¢ : C>xU — C that satisfy the admissibility

condition
o (ke + - =H ) o

ze U, (e€dU\ E(q) and k > 1.

THEOREM 3.3.1. Let ¢ € $s.[Q,q|. If f € A satisfies

(3.3.1) {¢ <1 + Zﬁ;z),ﬁ{f, o) z) = U} cQ,
then
1+ Z;é? < q(2)

PROOF. Define p(z) by

(3.3.2) p(z) =1+

A simple calculation yields

(3.3.3) 2L 2y = 2l (2) + — L

Define the transformations from C? to C by

(3.3.4) u=r, v=s+
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Let

(3.3.5) W(r, s;2) = p(u,v;2) = @ (r, s+ L ;TQ;Z) .

The proof shall make use of Theorem 3.1.1. Using equations (3.3.2) and (3.3.3), from
(3.3.5), it follows that

(3.3.6) Bpl=), 29/ (2);2) = 6 (1 ;

Hence (3.3.1) becomes
U(p(z), 2p'(2); 2) € Q.
In view of (3.3.5), the admissibility condition for ¢ € ®g.[€2,¢| is equivalent to the

admissibility condition for ¢ as given in Definition 1.4.1. Hence 1) € W[, q] and by
Theorem 3.1.1, p(z) < ¢(z) or

2f"(2)
f'(2)

THEOREM 3.3.2. Let ¢ € ®g.[h,q] := Ps:[h(U),ql. If f € A satisfies

2f"(2)
f'(2)

1+ < q(2). O

(3.3.7) ¢ (1 + ,ZQ{f,z};z) < h(z),

then

DEFINITION 3.3.2. Let Q be a set in C and let ®g.[2, M] := g [, g] where
q(z) =1+ Mz, M > 0. The class of admissible functions ®.[(2, M] consists of those

functions ¢ : C?2 x U — C such that

—-1) - Me?
2

(3.3.8) o) (1 + Me™, 2(k Me™, z) Z 0

whenever z € U, 0 € R and k£ > 1.

COROLLARY 3.3.1. Let ¢ € $gs.[Q2, M]. If f € A satisfies

é (1 + ZJ{;/;(ZZ)),ZZ{]”, e z> cQ,

then
zf"(2)
f'(z)

< M.
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COROLLARY 3.3.2. Let ¢ € Pg[M] := Dg [, M] where Q = {w : |w—1] < M}.

If f € A satisfies
'¢< Zf”() 2{fZ} ) ’<M

Fz)
then
G|
O e
EXAMPLE 3.3.1. If 0 < M <4 and f € A satisfies
f//( ) Zf”(z)
f() + 22{f, 2z} < M, then ‘f’(z) < M.

This follows from Corollary 3.3.2 by taking ¢(u,v;2) = u + v.

Next, an application of Theorem 3.3.1 to the particular case corresponding to ¢(U)

being a half-plane ¢(U) = A is given.

DEFINITION 3.3.3. Let Q2 be asetin C. The class of admissible functions ®¢.[€2, A]

consists of those functions ¢ : C? x U — C that satisfy the admissibility condition

(3.3.9) o(ip,m; 2) & Q

for all z € U and for all real p and 7 such that n < 0.
THEOREM 3.3.3. Let ¢ € $g.[Q, A]. If f € A satisfies

(3.3.10) & (1 + ZJ{,/;()> 2{f, 2} z> €

then f € C.

Let h : U — C be defined by h(z) = (1 + z)/(1 — z), then h(U) = A. In this
case, we denote the class ®g.[h(U), A] by ®s.[A] and hence the following result is an

immediate consequence of Theorem 3.3.3.

COROLLARY 3.3.3. [58, Theorem 4.6b, p. 246] Let ¢ € Pg.[A]. If f € A satisfies

(3.3.11) %{(p (1+%iz)),zz{f,z};z>} >0

then f € C.
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DEFINITION 3.3.4. Let € be a set in C and ¢(z) € H. The class of admissible
functions @%_[(2, ¢] consists of those functions ¢ : C>xU — C that satisfy the admissibility

condition

ze U, (€dU and m > 1.

THEOREM 3.3.4. Let ¢ € D [Q,q]. If f € A 1+ 2f"(2)/f'(z) € Q1 and

Yae T,

is univalent in U, then

2f"(2) )
(3.3.12) QC{¢(1+ 702) 2 f, 2} > EU}
implies
2f"(2)
q(z) < 1+ i)

PROOF. From (3.3.6) and (3.3.12), it follows that

QC{y(p(2), 20/ (2);) : 2 € U}.

In view of (3.3.4), the admissibility condition for ¢ € @ [, ¢] is equivalent to the
admissibility condition for i) as given in Definition 1.4.2. Hence ¢ € ¥'[Q, q], and by
Theorem 3.1.2, q(2) < p(z) or

2f"(2)

q(z) < 1+ i)

For a simply connected domain €2 # C, let h : U — C be the conformal mapping
such that Q = h(U). In this case, the class @’ [h(U), ¢] is written as & [h, q]. Proceed-
ing similarly as in the previous section, the following result is an immediate consequence

of Theorem 3.3.4.

THEOREM 3.3.5. Let q(z) € H, h(z) be analyticinU and ¢ € Py [h,q]. If f € A,

Zf”(z) Zf”(z)

b f'(2) 7(2)

€ Q and ¢ (1 + ,ZQ{f,Z};Z>
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is univalent in U, then

2f"(2) s
(3.3.13) h(z) < ¢ (1+ ) 22 h )
implies
21" (z)
q(z) < 1+ )

Combining Theorems 3.3.2 and 3.3.5, the following sandwich-type theorem is ob-

tained.

COROLLARY 3.3.4. Let hy(z) and q1(z) be analytic functions in U, hs(2) be univa-
lent function in U, ga(z) € Q1 with ¢1(0) = ¢2(0) = 1 and ¢ € Pg.[ha, o] N Py [h1, ¢1].

IffeA,
zf"(2)
f'(2)

is univalent in U, then

2f"(2)
f'(2)

1+

EHOQland(b(l—i— ,22{f,z};z>

2f"(2)
f'(z)

hi(z) < ¢ (1 + 2{f,z}; z) < ho(2)

implies
2f"(2)
f'(2)

Q(z) <1+ =< @2(2).
3.4. SUBORDINATION RESULTS INVOLVING THE DZIOK-SRIVASTAVA
LINEAR OPERATOR

Differential subordination of the Dziok-Srivastava linear operator is investigated in
this section. For this purpose the class of admissible functions is given in the following

definition.

DEFINITION 3.4.1. Let Q be a set in C and ¢(z) € Qy NH[0,p|. The class of
admissible functions ® (2, q] consists of those functions ¢ : C3 x U — C that satisfy the
admissibility condition

O(u, v, w; 2) & Q
whenever

o — R (Q) + (a1 = p)e(Q)

aq

u = q(C),

(al S Ca a7 # 07 _1)7
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(o +Dw+ (p—ar)(an —p+Du o — ¢q"(¢)
" v+ (= on)u e —p)+ 0 2 k0| e 1.

zeU,(€dU\ E(q) and k > p.

THEOREM 3.4.1. Let ¢ € ©y[Q2,q]. If f € A, satisfies
(3.4.1)  {o (H)™[au]f(z), Hy™[ou + 1) f(2), Hy™[on + 2] f(2);2) 1 2 € U} C 9,

then

HyMan]f(2) < q(2), (2 €0).

PROOF. Define the analytic function p(z) in U by

(3.4.2) p(z) == H.™on] f(2).
In view of the relation

(3.4.3) ar H oy + 1] (2) = 2[H)™[oa] f(2)]' + (a1 — p) H ™ [oa] f(2),

p

a simple computation using (3.4.2), yields

2p'(2) + (a1 — p)p(2)

(3.4.4) HyMon +1]f(z) = o

Further computations yield
(3.4.5)

Hzl;m[@l L 9f(s) = 22p"(2) +2(ag —p+ 1)2p'(2) + (g — p)(ay — p+ l)p(z).

ar(ar +1)
Define the transformations from C3 to C by
(3.46) u=r, v= M7 w— t+2(a—p+1)s+ (g —p)lag —p+ 1)7'.
a1 aj(og +1)
Let

(3.47)  (r,s,t;2) = Pp(u,v,w; 2)

—gb(r s+ (g —p)r t+2(q —p+1)s+ (g —p)lar—p+1)r )
N ’ aq ’ ai(og + 1) )

The proof shall make use of Theorem 3.1.1. Using equations (3.4.2), (3.4.4) and (3.4.5),
from (3.4.7), it follows that

(3.4.8)

V(p(2), 20 (2), 2°0"(2); 2) = ¢ (H,™[en] f(2), H,™ [an + 1] f(2), H,™ o + 2] f(2); 2) -
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Hence (3.4.1) becomes

P(p(2), 2/ (2), 2p" (2); 2) € Q.
The proof is completed if it can be shown that the admissibility condition for ¢ € ® [, ¢
is equivalent to the admissibility condition for i as given in Definition 1.4.1. Note that

f+ - aj(on + Dw+ (p—ag)(lag —p+ 1u
s a1v+ (p—ar)u

- (2(a1 _p> + 1)7
and hence ¢ € V[, q]. By Theorem 3.1.1, p(z) < q(z) or

HY" o] £(2) < g(2). =

If Q % C is a simply connected domain and h is the corresponding conformal
mapping with Q@ = h(U), we denote the class ®y[h(U), q] by ®glh,q]. The following

result is an immediate consequence of Theorem 3.4.1.
THEOREM 3.4.2. Let ¢ € ®ylh,q|. If f € A, satisfies
(349) ¢ (H [ f(=), Hon + 11 (=), Hy o + 21 (2); 2) < h(z),

then

Hy™ ] f(2) < q(2).
The following result is an extension of Theorem 3.4.1 to the case where the behavior

of ¢(z) on QU is not known.

COROLLARY 3.4.1. Let Q C C, q(z) be univalent in U and q(0) = 0. Let

¢ € Py(Q,q,) for some p € (0,1) where q,(2) = q(pz). If f € A, and
6 (HE™on]f(2), H™on + 1] f(2), Hy™[ar + 2)f(2); 2) € 2,
then

Hy™[on] f(2) < a(2).

PROOF. Theorem 3.4.1 yields H)"[on]f(z) < qy(2). The result is now deduced

from g,(2) < q(2). O

47



THEOREM 3.4.3. Let h(z) and q(z) be univalent in U, with ¢q(0) = 0 and set
4,(2) = q(pz) and h,(z) = h(pz). Let ¢ : C* x U — C satisfy one of the following

conditions:

(1) ¢ € ®ylh,q,] for some p € (0,1), or

(2) there exists py € (0,1) such that ¢ € ®ylh,,q,| for all p € (po,1).
If f € A, satisfies (3.4.9), then

HY™ (] £(2) < q(2).

PROOF. The result is similar to the proof of Theorem 3.2.3 and is therefore omitted.

OJ

The next theorem yields the best dominant of the differential subordination (3.4.9).

THEOREM 3.4.4. Let h(z) be univalent in U. Let ¢ : C> x U — C. Suppose that

the differential equation

(3.4.10) ¢ (q(2), 2 (2), 2°¢"(2); 2) = h(z)

has a solution q(z) with q(0) = 0 and satisfies one of the following conditions:

(1) 9(2) € Qo and ¢ € Pylh, q],
(2) q(2) is univalent in U and ¢ € ®ylh,q,), for some p € (0,1), or

(3) q(2) is univalent in U and there exists py € (0,1) such that ¢ € ®ylh,,q,|, for

all p € (po,1).
If f € A, satisfies (3.4.9), then
Hy™[on] f(2) < (),

and q(z) is the best dominant.

PROOF. Following the same arguments as in the proof of [58, Theorem 2.3e, p.

31], from Theorems 3.4.2 and 3.4.3, it follows that ¢(z) is a dominant. Since ¢(z)
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satisfies (3.4.10), it is also a solution of (3.4.9) and therefore ¢(z) will be dominated by

all dominants. Hence ¢(z) is the best dominant. O

In the particular case q(z) = Mz, M > 0, and in view of Definition 3.4.1, the

class of admissible functions ® (€2, ¢|, denoted by ®4[2, M], is described below.

DEFINITION 3.4.2. Let 2 be a set in C and M > 0. The class of admissible

functions ® [, M| consists of those functions ¢ : C* x U — C such that

o K — o L — 1)(2k —p)Me?
(3411) ¢ Mele,MMeza, + (o —p+1)(2k +ay —p)Me ) ¢ 0
(%] Oél(Oél + 1)

whenever z € U, § € R, R(Le= %) > (k—1)kM for all real 0, a; € C (a; # 0, —1) and

k> p.
COROLLARY 3.4.2. Let ¢ € ®y[Q, M|. If f € A, satisfies

¢ (Hy"aa] f(2), Hy™[an + 1] f(2), Hy™[an + 2] f(2);2) € Q,

then

|HYaa £(2)] < M.

COROLLARY 3.4.3. Let ¢ € Py[M] := Oy, M| where Q2 = {w : |w| < M}. If

f € A, satisfies

6 (HE™oa f(2), HE™n +11£ (=), HY™[on + 21 (2); 2) | < M,

then
(HY™aa) £(2)] < M.
COROLLARY 3.4.4. If Ray > (p—k)/2, k> p and f € A, satisfies
[Hy™ [on + 1] f(2)] < M,
then
Hm o] (2)] < M.
PROOF. This follows from Corollary 3.4.3, by taking ¢(u, v, w;z) = v. OJ

By taking 2 = U and M =1 in Corollary 3.4.2, we have the following result:
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COROLLARY 3.4.5. [2, Theorem 1, p. 269] Let ¢ € Oy [U] := @yx[U,1]. If f € A,

satisfies

6 (HY™ an] £(2), HE™[n + 11 (=), Hy ™o +2)£(2): 2)| < 1,

then

HE™ o] f(2)] < 1
COROLLARY 3.4.6. [41, Theorem 1, p. 230] Let ¢ € ®y[U]. If f € A satisfies

[6/(D°f(2), D™ (2), D[ (2);2) | < 1,
then
Df(2) <1
where D f(z) is the Ruscheweyh derivative operator in U.

PROOF. The proof follows from Corollary 3.4.2, by taking Q = U, p =1, | = 2,
m=1a=a+1, as=1(a>-1),8,=1and M =1. O

By taking M = 1 in Corollary 3.4.4, we have the following result:

COROLLARY 3.4.7. [2, Corollary 3, p. 271] If Ray > (p — k)/2, k > p and

f € A, satisfies

[Hy " oa +1]f(2)] < 1,

then
o] ()] < 1.
COROLLARY 3.4.8. Let M >0 and 0 # a; € C. If f € A, satisfies
I,m l,m Mp
(3.4.12) [y o +1f() + (/e = DH" el F(2)] < 25,
then

[Hy™ o] f(2)] < M.
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PROOF. Let ¢(u,v,w;z) = v+(p/ag—1)uand Q = h(U) where h(z) = Mpz/|a4],
(M > 0). Since

—_ _ _ 6
'qﬁ(Me“’,ker pMew,L—'—(al p+1)(2k + ay p)Me‘>‘ KM _ Mp

2= — > —
aq ai(ar +1) 7 lan| e

zeU 0 €R, aqg €C (aqg #0,—1) and k > p, it follows that ¢ € ®y[2, M]. Hence

by Corollary 3.4.2, the required result is obtained. Il

The differential equation

Mp

2q'(2) + (p/ar — 1)q(z) = Tl

has a univalent solution ¢(z) = Mz. Theorem 3.4.4 shows that ¢(z) = Mz is the best

dominant of (3.4.12).

Note that

HPY(1L,11)f(z) = f(2),
HPD(2,1,1)f(2) = 2f(2) + (1 —p)f(2),

1

HPVELDf(2) = 5l2"(2) +22 - p)2f(2) + (1= p)2 = p)f(2)].

By taking [ =2, m =1, a; = ay = }; = 1, (3.4.12) shows that for f € A,, whenever

1—@1

z2f'(2) —I—p( ) f(z) < %, then f(z) < Mz.

o | |

DEFINITION 3.4.3. Let Q2 be a set in C and ¢(z) € Qy N Hy. The class of
admissible functions @y 1[Q, ¢| consists of those functions ¢ : C* x U — C that satisfy

the admissibility condition
o(u, v, w;yz) &

whenever
u=4q(), v=I[kq )+ (1 =1)g(Q)]/ar (a1 €C, oy #0,-1),

R { 0‘1[(0‘;; B?"ig;j‘l)“} b1 2&1} > kR { Cj(g) + 1} ,

2€U, (€0dU\ E(q) and k > 1.
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THEOREM 3.4.5. Let ¢ € Py 1[Q,q]. If f € A, satisfies
lm Im l,m
(3413) {¢ (Hp [Oéﬂf(Z) Hp [Oél—i_l]f(Z),Hp [a1+2]f(z)7z> = U} C 97

P~ 1 ’ zp— 1 zP— 1

then
Hy™Mon]f(2)

Zpil —< Q(z)

PROOF. Define the function p(z) in U by
_ H;la’m[al]f(z)

-1

(3.4.14) p(z) : po

By making use of (3.4.3), a simple computation from (3.4.14) yields

(3.4.15) Hy"lea + 1) 1 4 (ar — Dple).

-1
2P o

Further computations yield

Hb oy z
ate) B L) 4 a0 e) + anfn - ).

Define the transformations from C? to C by

(3417) u=r oo il tH2msd (o = Dr
a1 ai(a; +1)

Let

(3.4.18)

W(r, s, t;2) = ¢p(u,v,w;2) = ¢ (T’ s+ (o — 1)7"’ t+ 2018 + ag(ag — 1)7,; z)

ay aj(a; +1)
The proof shall make use of Theorem 3.1.1. Using equations (3.4.14), (3.4.15) and
(3.4.16), from (3.4.18), it follows that
(3.4.19)

U(p(2), 20’ (2), 2°p" (2);2) = ¢ (

Zp_l ! zp— 1 ’ Zp_l

Hy"[oalf(2) Hylon +11f(2) Hy"fon +2)f(2). ) |

Hence (3.4.13) becomes

U(p(2), 20/ (2), 2%p" (2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ €
Oy 1[€, q] is equivalent to the admissibility condition for ¢ as given in Definition 1.4.1.

Note that
apl(ag + Dw + (1 — aq)ul

1-2
vag + (1 — aq)u - a

t
41 =
5
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and hence ¢ € V[, ¢|. By Theorem 3.1.1, p(z) < ¢(z) or
Hy™ [on] f(2)

-1

< q(2). O

zp

We let @y 1[h, q] :== ®u1]h(U),q], for any conformal mapping h mapping U onto
Q, and Oy 4[Q,q] =: Py [Q, M] for the function ¢(z) = Mz (M > 0). Proceeding
similarly as in the previous section, the following result is an immediate consequence of

Theorem 3.4.5.

THEOREM 3.4.6. Let ¢ € Oy ,[h,q]. If f € A, satisfies

(3.4.20) ¢<Hé’m[a1]f(2) Hy" oy +1)f(2) H};m[a1+2]f(z),z> <h(2)
then
H},””[Ozﬂf(z){q(z).

DEFINITION 3.4.4. Let Q2 be a set in C and M > 0. The class of admissible
functions @ 1[2, M] consists of those functions ¢ : C3 x U — C such that

o ] o 0
(3421) ¢ (MeiQ’MM€z67 L+Oél(2k'+051 1)M€ ’Z) QQ
(%] 061(061 + 1)

whenever z € U, € R, R(Le™ %) > (k—1)kM for all real 0, a; € C (a; # 0, —1) and
k> 1.

COROLLARY 3.4.9. Let ¢ € [, M]. If f € A, satisfies
; <H;’m[a1} f(z) Hi™an +1]f(2) H:[aq +2] f(z);z> ca.

2P~ 1 ’ zP— 1 ’ zp— 1

then
H;la’m[al]f(z)

-1

< M.

zp

COROLLARY 3.4.10. Let ¢ € Oy [M] := Py 1[Q, M| where Q = {w : |w| < M}.
If f € A, satisfies

¢ <H1l;m2[jqf(2), H;z’m[a;ijl 1]f(z)’ Hll’?m[azlp+12]f(2/) ; Z> <M,
then
2Pl
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COROLLARY 3.4.11. If Ray > 0 and f € A, satisfies

e 0G|
zp—1
then
Hl,m
s
2Pl
PROOF. This follows from Corollary 3.4.10 by taking ¢(u, v, w; z) = v. O

COROLLARY 3.4.12. [41, Theorem 1, p. 230] Let ¢ € Oy 1[U] := Py 1[U, 1]. If

f € A satisfies
|6 (D f(2), D f(2), D** f(2);2)] < 1,
then

Df(=)l <1

where D“ is the Ruscheweyh derivative operator in U.

PROOF. The proof follows from Corollary 3.4.9, by taking Q@ = U, p =1, | = 2,
m=10=a+1, aa=1(a>-1), 8y =1and M = 1. O

Bytakingp=1, =2 m=1a=a+1, aga=1(a>-1), 51=1, M =1

and ¢(u,v,w; z) = v in Corollary 3.4.11, we have the following result:

COROLLARY 3.4.13. [41, Corollary 1, p. 231] If &« > —1 and f € A satisfies
D f(2)| < 1,

then

Df(2) <1

where D is the Ruscheweyh derivative operator in U.

COROLLARY 3.4.14. If ) > 0 and f € A satisfies

oum PRS- fS

<1, then |f(2)] <1
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PROOF. Let ¢(u,v,w;z) = 6(2w/v — 1) + (1 — d)v/u for all real § > 0, p = 1,
l=2,m=1,a1=1, aa=1,6 =1, M =1and Q = h(U) where h(z) = z. To use
Corollary 3.4.9, it must be verify that ¢ € ®y [, M] = g 1[U], or equivalently, that

the admissible condition (3.4.21) is satisfied. This follows since

5 (Mew k+a; — 1Mei0 L+ o2k + g — 1)Mei9‘z
’ o ’ ozl(oz1+1) ’

Le= d 0
=10 - +1)4+(1=90)k 25+(1—5)k+E§R(Le%)

25+(1—5)k+%k(k—1):k21,
zeU, 0 €R, R(Le ™) > k(k — 1) and k > 1. Hence by Corollary 3.4.9, the required

result is obtained. O

DEFINITION 3.4.5. Let 2 be a set in C and ¢(z) € Q; N'H. The class of admis-
sible functions @ 5[, q] consists of those functions ¢ : C* x U — C that satisfy the

admissibility condition ¢(u,v,w;z) & € whenever

u=a0) v = (14 00+ HHD) e e o012 4(0) 20

(a1 + 1) (w—v) +w—1]
x(1+ag)v
(I+a)v— (14 aqu)

R F(1+a)—(2uutl)y > m{cqﬂ(o +1},

q'(¢)
€U, ¢€dU\E(q) and k > 1.

THEOREM 3.4.7. Let ¢ € Opy»[Q,q. If f € A satisfies

(3.4.23)
t,m o z tm a7l z tm o z
{¢<Hp oo+ 1)/() Hy"lon +27(2) By +3]f();Z>ZZGU}CQ’
Hy"[oalf(2) " Hy™[oa + 1]f(2)" Hy"on +2)f (2)

then
HY oy +1]£(2)
Hy™ o] f(2)

=< q(2).

PROOF. Define the function p(z) in U by

_HEo + 17 (2)

(3.4.24) p(z) : o)
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Then a computation yields

() AR+ Q) H )

(3.4.25) = T - T
p(2) Hy™" [y +1]f(2) Hp" ] f(2)
Use of (3.4.3) in (3.4.25), shows that
Himay + 2] f(2 1 /
(3.4.26) Iljm[ 1+ 2A7(2) = <a1p(z) +1+ 2 (Z)> :
H™oq +1)f(2) o +1 p(z)
Further computations show that
H'may + 3] f(2
(3.4.27) ’l’m[ 1+ 317C)
Hy™" [y + 2] f(2)
zp'(2) 2 (2)\2 4 2P (2)
1 / arzp'(2) + 557 — ()" + 56
_ 2+ anp(z) + 2B O () + 56 (pu/) )
ap + 2 p(2) 1+ agp(z) + Zg(g)

Define the transformations from C? to C by

(3.4.28)
s+ 2 —(2)2 41
u=r, v= (1+a1r—|—5>,w: 2+alr+§—|— - e .
o +1 r oy +2 r 1+ogr+ 2
Let

(3.4.29) o(r,s,t;2) = Pp(u,v,w; z)

1 1 s+ 2 —(2)2 4L
=¢(r [aﬁ“%—l%—f}, b4 o (’")s r) ).
ap+1 rl o +2 r L+apr+2

The proof shall make use of Theorem 3.1.1. Using equations (3.4.24), (3.4.26) and
(3.4.27), from (3.4.29), it follows that

(3.4.30) (p(z), 20 (2), 2°p" (2); 2)

_ ¢<H]lg,m[a1+1]f(z) Hb o +2)f(2) H;;m[a1+3]f(z)_z>
Hy"[en]f(z)  Hy™lon +10f(2) Hy"oa +2)f(2)" )

Hence (3.4.23) becomes

V(p(2), 20/ (2), 2%p" (2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ €
Oy o[, q] is equivalent to the admissibility condition for ¢ as given in Definition 1.4.1.

Note that

(a1 + D) (w—2v)+w—1](1+ ay)v

Q+ao—(+am G Fav=@autl)

t
41 =
5
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and hence ¢ € V[, ¢|. By Theorem 3.1.1, p(z) < ¢(z) or

H;lo’m[al +1]f(2)
Hy™ on] f(2)

< q(z). O

For a simply connected domain €2 # C, let h : U — C be the conformal mapping of
U onto €. In this case, the class @y 3[h(U), ¢| is written as @y 5[k, g]. In the particular
case q(z) = 1+ Mz, M > 0, the class of admissible functions ®5[S2, ¢ is denoted by

Py 2[S2, M]. The following result is an immediate consequence of Theorem 3.4.7.

THEOREM 3.4.8. Let ¢ € Oyolh,q|. If f € A, satisfies

Hy™lon + 1 f(2) Hy™[on +2]f(2) Hy™[en +3]f(2)
Hy"[en]f(z) " Hp"[an +1]f(2) Hy™[on + 2)f(2)

(3.431) ¢ ( ;z) < h(z),

then
Hm o + 1] (2)

H,l,’m[al]f(z)

DEFINITION 3.4.6. Let 2 be a set in C and M > 0. The class of admissible

< q(2).

functions @ 5[, M] consists of those functions ¢ : C* x U — C such that

k+ o (1+ Me®?) Met® 14 ar(1+Me?) +k i0
(14 aq)(1+ Me®?) ’ (aq +2)(1+ Me®?)

(M 4+ e ) [Le ™ + kM (ay + 1) + an kM?e®] — k> M?
@h+2xM+e4%mﬂﬁaﬂ+u+agaw+ﬂﬂ1+mh+kﬂ“>¢Q

(3.4.32) ¢(1 + M 1+

whenever z € U, § € R, R(Le %) > (k —1)kM for all real §, a; € C (o # 0, —1,—2)
and £ > 1.

COROLLARY 3.4.15. Let ¢ € Oy 5[, M. If f € A, satisfies

(H?%n+ﬂﬂ@fﬁﬂmﬁﬂﬁw)ﬂyﬁn+ﬂﬂ@¢)eg
Hy"oalf(2) T Hy o +11f () H"len +2f(2) )

then
H™ o + 1] f(2)

Hy™ e f(2)

COROLLARY 3.4.16. Let ¢ € Oy o[M] := Oy o[, M| where Q2 = {w : |w—1| <

—1| < M.

M}, If f € A, satisfies

P(H#%n+ﬂﬂ@f%ﬂm+ﬂﬁﬁ)H#%n+ﬂﬂd%)_l
H"[oaf(z) " Hy"ow + ()" Hy™[on +2)f(2)°




then
Hglo’m[al +1]f(2)
Hy™[on] £(2)

COROLLARY 3.4.17. If M >0, oy € C (oq #0,—1) and f € A, satisfies

—1| < M.

Hy™as +2]f(2)  Hy"os +1]£(2) M?
(34.33) H o+ 0f(z) Bl f(z) | L+ anl(L+ M)
then
Hymon 4+ 1] f(2) 1l <M

Hy™ o] f(2)

PRrROOF. This follows from Corollary 3.4.15 by taking ¢(u,v,w;z) = v — u and

Q= h(U) where

M?z
h(z) = .
() 11+ oq|(1+ M)
Since
: k 1+ Me® .
6 (v,wiz)| = |—1— e 414 FralE M)

(14 ap)(1+ Me®
M |k—1— Me?
1+aq] | 14+ Me®
M |\k-1-M
14+l 1+M
M 1
> —
T It |1+ M
M2
1+ oq|(1+ M)

11

zeU, 0 eR, ag€C (g #0,—-1), k# 1+ M and k > 1, it follows that ¢ €
Oy 5[€2, M]. Corollary 3.4.15 now yeilds the required result. O

By taking l =2, m =1, a; = ay = 1 = 1, (3.4.33) shows that for f € A,

whenever
2f'(2) [Zf”(Z) _ o) 4 } )
@) | 7 ;) TP M 2f'(z)
— h M :
Zf/(z)—p+1 < p+1+Mz, then 02) <Mz+p
f(z)
ExXAMPLE 3.4.1. If f € A, then
/ " / /
2'(2) (Zf/ () H_Zf(Z))’ PN EC .
fz) \ f(z) f(z) f(z)
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This follows from Corollary 3.4.15 by taking ¢(u, v, w;z) = u(2v — 1 —u), p =1,
[=2,m=1,a=1, aa=1, 6 =1, M =1and Q= h(U) where h(z) = z.

EXAMPLE 3.4.2. If M > 0 and f € A satisfies

2F(2)

e T
B
)

< M,

then
zf'(z)
f(2)

—1| < M.

This follows from Corollary 3.4.16 by taking ¢(u,v,w;z) = (2v — 1)/u, p = 1,
l:2,m:1,a1:1, agzlandﬂlzl.

3.5. SUPERORDINATION OF THE DZIOK-SRIVASTAVA LINEAR
OPERATOR

The dual problem of differential subordination, that is, differential superordination
of the Dziok-Srivastava linear operator is investigated in this section. For this purpose,

the class of admissible functions is given in the following definition.

DEFINITION 3.5.1. Let 2 be a set in C and ¢(z) € H[0, p] with z¢/(z) # 0. The
class of admissible functions ®’,[€2, ¢] consists of those functions ¢ : C3 x U — C that

satisfy the admissibility condition ¢(u, v, w; () € €2 whenever

w=q(), v= 24 () + m(en = p)a(2). (01 €C, a1 £0,—1)

maoy

ai(fon + Dw+(p—a)(es —p+Du W 1 [2¢"(2)
#{ vt (e =) 11 < SR { 5 .

ze U, (€dU and m > p.
THEOREM 3.5.1. Let ¢ € D}y [Q,q]. If f € Ay, Hy"[c1]f(2) € Qo and
¢ (Hy™[oa] f(2), Hy™[an + 1] £ (2), Hy™ [on + 2] f(2); 2)
is univalent in U, then
(35.1)  QcC{o(H,"oulf(2), H;™ o + 1] f(2), H,™[on + 2] f(2);2) : 2 € U}
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implies

a(2) < H,"[on]f(2).
PROOF. From (3.4.8) and (3.5.1), it follows that

QcC{v (p(z),20'(2), 2" (2);2) 2 € U}.

In view of (3.4.6), the admissibility condition for ¢ € ®/,[€2,¢] is equivalent to the
admissibility condition for ¢ as given in Definition 1.4.2. Hence v € W [Q,q], and by

Theorem 3.1.2, q(2) < p(z) or
q(2) < Hy™ o] f(2). 0

THEOREM 3.5.2. Let h(z) be analytic in U and ¢ € O [h, q] := &4 [h(U),q] . If
fe A, Hi™ o] f(2) € Qo and

¢ (Hy"[oa] f(2), Hy™[an + 1) f(2), Hy™[en + 2] f(2); 2)
is univalent in U, then
(3.5.2) h(z) < ¢ (Hzl;m[al]f(z), Hzl;m[al + 1] f(2), Hll;m[ozl +2]f(2); 2)
implies

q(2) < Hy™ o] f(2).

Theorems 3.5.1 and 3.5.2 are used to obtain subordinants of differential superordi-
nation of the form (3.5.1) or (3.5.2). The following theorem proves the existence of the

best subordinant of (3.5.2) for certain ¢.

THEOREM 3.5.3. Let h(z) be analytic in U and ¢ : C*> x U — C. Suppose that

the differential equation
¢(q(2), 24 (2), 2°4"(2); 2) = h(2)
has a solution q(z) € Qu. If ¢ € Dylh.q), f € Ay Him[0y] f(2) € Q and
¢ (Hy™"[on] f(2), Hy™[an + 1] £ (2), Hy™ [on + 2] f(2); 2)
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is univalent in U, then
h(z) < & (Hy™on] f(2), Hy™ o + 11 f(2), Hy™[an + 2] f(2); 2)
implies
q(2) < Hy"[aa] f(2)

and q(z) is the best subordinant.

PROOF. The result is similar to the proof of Theorem 3.4.4 and is therefore omitted.

g

Combining Theorems 3.4.2 and 3.5.2, the following sandwich-type theorem is ob-

tained.

COROLLARY 3.5.1. Let hy(2) and q1(z) be analytic functions in U, hs(2) be uni-
valent function in U, q2(2) € Qo with q1(0) = ¢2(0) = 0 and ¢ € P y[ha, g2] NPy [h1, ¢1].
If f € Ay, Hy™[an]f(2) € H[0,p] N Qo and

¢ (H,"aa] f(2), Hy™[an + 1] f(2), Hy™[an + 2] f(2); 2)
is univalent in U, then
hi(z) < ¢ (Hllj’m[al]f(z), Hzl;m[al + 1] f(2), H;;m[al +2]f(2);2) < ha(2)

implies

0 (2) < Hy" ] f(2) < ga(2).

DEFINITION 3.5.2. Let 2 be a set in C and ¢(z) € Hy with z¢/(z) # 0. The class
of admissible functions @/, (€2, g] consists of those functions ¢ : C* x U — C that satisfy

the admissibility condition ¢(u, v, w;() € €2 whenever

u=gq(z), v= 2q'(2) +mlar = Da(2) (v €C, ag #0,—1),
maoe

(Bl < (0}

zeU, (€dU and m > 1.

A dual result of Theorem 3.4.5 for the differential superordination is given below.
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THEOREM 3.5.4. Let ¢ € Py ,[Q,q]. If f € Ay, Hi[on]f(2)/2"~" € Qo and

; <H;m[a1] f(z) Hymon+1]f(z) HY™on +2)f (Z>.Z>

Zpil ’ ZP*I ’ Zpil

is univalent in U, then

(353) Oc { ’ (Hzm[almz)’ Hb™ oy 1) H};’m[a1+2]f(2);z) e U}

implies

PROOF. From (3.4.19) and (3.5.3), it follows that
QC {¢ (P(Z),Zp’(z),zQp”(z); z) c 2z € U} )

In view of (3.4.17), the admissibility condition for ¢ € @, ,[Q2,q] is equivalent to the
admissibility condition for i) as given in Definition 1.4.2. Hence ¢ € ¥'[Q, q], and by

Theorem 3.1.2, q(2) < p(z) or
q(2) < Hy™ o] f(2). 0

THEOREM 3.5.5. Let q(2) € Ho, h(z) is analytic on U and ¢ € @ [h,q] =
(I)}{,l[h(U)WJ]- lff € Ap: H;l;’m[al]f(z)/zpfl € 9y and

2Pl ’ zp—1 ’ zp—1

¢ (gz;m[aﬂm Hylon + 11(2) H"lon +21(2), )

is univalent in U, then

Zp—l ’ zp— 1 ’ Zp_l

(3.5.4) hz) < ¢ (Hzl;m[oél]f@) H;lo’m[oq +1]f(2) H]ﬁ;m[al +2]f(2) ; z)

implies

Combining Theorems 3.4.6 and 3.5.5, the following sandwich-type theorem is ob-

tained.
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COROLLARY 3.5.2. Let hy(z) and q,(z) be analytic functions in U, hs(z) be univa-
lent function in U, qo(2) € Qo with q1(0) = q2(0) = 0 and ¢ € Py 1[ha, go] NPy 1 [h1, 1.
If f e Ay, Hi™ a1 f(2)/2"" € HoN Qo and

2Pl ’ 2Pl ’ 2p—1

’ (H;,m[al] f(z) Hoaq +1]f(2) Hy[ag + 2] f(z)'z>

is univalent in U, then

}M@<¢(H#gﬂﬂafwwziuﬂ@fwwzimﬂam><%@)
implies
bmlog ) f(z
(o) < Tleali )

zp—1

DEFINITION 3.5.3. Let Q be asetin C, ¢q(z) #0, 2¢/(z) # 0 and ¢(z) € H. The
class of admissible functions ®%; ,[€2, | consists of those functions ¢ : C? x U — C that

satisfy the admissibility condition ¢(u, v, w; () € 2 whenever

_ _ 1 2¢'(2)
u=q(z2), v= P (1 + a1q(z) + mq(z)) , (el g #0,—-1,-2)

(a1 + 1) (w —v) +w — 1]
X(l —|—061)U
(14 ar)v—(1+ aqu)

e 1o f24"(2)
+ (1 +a)v— (2oqu + 1) gmé)%{ e +1},

ze€U,(€dU and m > 1.

l,m
THEOREM 3.5.6. Let ¢ € P}y,[Q,q]. If [ € Ay, "2t € Q) and
P [} z

¢<H?Wn+ﬂﬂ@J%WM+QV@)H?%n+ﬂﬂ@%)
Hy" ol f(2)  Hy™on +1]f(2)" Hy™[on +2]f(2)
is univalent in U, then

(3.5.5)
e (Bt e s e )

Hy"[oa]f(2) " Hp™an +1]£(2)" Hy™an + 2] ()

implies
Himon + 11(2)
Hy™ ] f(2)

q(z) <
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PROOF. From (3.4.30) and (3.5.5), it follows that

Q{6 (p(2),2p' (), 2°p"(2);2) 1 2 € U}

In view of (3.4.28), the admissibility condition for ¢ € ®;,[€2, q] is equivalent to the
admissibility condition for i) as given in Definition 1.4.2. Hence ¢ € W¥'[Q),¢|, and by
Theorem 3.1.2, q(2) < p(z) or
o(2) < H;l;ml[jl +1]£(2). -
Hy™ ] f(2)
THEOREM 3.5.7. Let q(z) € H, h(z) be analytic in U and ¢ € P ,[h,q] =

o [A(U), ). IF ] € Ay, PplrtlIC) ¢ @ and

5 (H;;m[al +1]f(z) Hymoa +2]f(2) H5™[on +3]f(2) Z)
HY™ gl f(z)  HY"on + 11f(2)" HY [or + 2)f(2)

is univalent in U, then

(35.6)  h(z) <o (Hzl?’m[o‘l +1)f(2) Hymao +2)f(2) He™ax +3]f(2) Z)

H
Hy"[on]f(2) " Hy™[on +10f(2) Hy"[an +2)f ()
implies
Hy o +1]f(2)
Hy™ o] f(2)

q(z) <

Combining Theorems 3.4.8 and 3.5.7, the following sandwich-type theorem is ob-

tained.

COROLLARY 3.5.3. Let hy(z) and qi(z) be analytic functions in U, hy(z) be
univalent in U, q(z) € Q1 with ¢:(0) = 2(0) = 1 and ¢ € Ppa[ha, g2] N Py ,lha, q1]-

Iffe A, Zlf[l—WEHﬂQland

s (Hé’m[al + 1/ (2)
Hy™[en] f(2)

is univalent in U, then

hi(2) < & H;;’m[(ll +1]f(2) H};’m[(ll + 2] f(2) H;lo’m[al +3]f(2).z < hy(2)
' " oalf(2)  HYM[on + 1f(2) H5™ o + 21f(2) i

HEon + 2/ () HElon + 3/ (2) )
Hy e +11(2) Hy o + 205 ()

implies
Him o + 1]/ (2)
Hp™ ] f(2)

Q(z) < < q2(2).
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3.6. SUBORDINATION RESULTS INVOLVING THE MULTIPLIER
TRANSFORMATION

Differential subordination of the multiplier transformation is investigated in this
section. For this purpose the class of admissible functions is given in the following

definition.

DEFINITION 3.6.1. Let © be a set in C and ¢(z) € Qy N H[0,p]. The class of
admissible functions @[, q] consists of those functions ¢ : C3 x U — C that satisfy the

admissibility condition ¢(u,v,w;z) & € whenever

y — RCa(Q) +Aa(¢)

u = Q<C)> \ Tp 5
(A +p)*w — Nu ¢q"(¢)
%{<A+mU—mL‘QA}zk%{¢«>+i}’

2 €U, €U\ E(q) and k > p.

THEOREM 3.6.1. Let ¢ € ®,[2,q|. If f € A, satisfies
(361) {6 NS Ln+ LNFE), Ln+ 20 f(2);2): 2 € Uy C O
then

Lp(n, A)f(2) < q(2).

PROOF. Define the analytic function p(z) in U by

(3.6.2) p(z) = Iy(n, \) f(2).

In view of the relation
(3.6.3) P+ N Lp(n+1,0) f(2) = 2[1(n, ) f(2)] + My(n, A) f(2),

and a simple computation from (3.6.2), yields

2p'(2) + Ap(z)

(3.6.4) Bn 1Nf() = =5

Further computations yield

_2P"(2) + A + D)zp/(2) + Mp(2)
(3.6.5) L(n+2,\)f(z) = Do .
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Define the transformations from C? to C by

2
(3.6.6) u:nU:s+)\r7w:t+(2/\—|—1)s+/\r
(A+p)?

Let

S+ Ar t+ 2N+ 1)s + A\?r
(3.6.7) W(r, s, t;2) = ¢(u,v,w; 2) = ¢ (r, N ( o +;)2 ;z) .
The proof shall make use of Theorem 3.1.1. Using equations (3.6.2), (3.6.4) and (3.6.5),
from (3.6.7), it follows that
(3.6.8)

V(p(2), 20 (2), 2%p"(2); 2) = ¢ (I(n, \) f(2), L(n + 1, \) f(2), L(n +2,\) f(2); 2) .

Hence (3.6.1) becomes
U(p(2), 20 (2), 22p" (2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ € @[, ¢]

is equivalent to the admissibility condition for i as given in Definition 1.4.1. Note that

t A+ p)?w — Nu
S4l= —2)
s+ (A+p)v—Au ’

and hence ¢ € V[, q]. By Theorem 3.1.1, p(z) < q(z) or
Ip(n, A)f(2) < q(2). O
THEOREM 3.6.2. Let ¢ € ®;[h,q] := @;[h(U),q]. If f € A, satisfies
(3.6.9) & (L(n, N f(2), L(n+ 1, N) f(2), L,(n+2,X) f(2); 2) < h(2),
then
Ip(n, A)f(2) < q(2).
The following result is an extension of Theorem 3.6.2 to the case where the behavior

of ¢(z) on AU is not known.

COROLLARY 3.6.1. Let Q2 C C and let q(z) be univalent in U, q(0) = 0. Let

¢ € P, q,) for some p € (0,1) where q,(z) = q(pz). If f € A, and
¢ (Ip(n, M) f(2), Ip(n + 1, ) f(2), L(n + 2,A) f(2); 2) € Q,
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then

Ip(n, A)f(2) < q(2).

PROOF. Theorem 3.6.1 yields I,,(n, \) f(2) < ¢,(2). The result is now deduced from
7,(2) < q(z2). O

THEOREM 3.6.3. Let h(z) and q(z) be univalent in U, with q(0) = 0 and set
4,(2) = q(pz) and h,(z) = h(pz). Let ¢ : C> x U — C satisfies one of the following

conditions:

(1) ¢ € ®;[h, q,] for some p € (0,1), or

(2) there exists py € (0,1) such that ¢ € ®;[h,,q,] for all p € (po,1).

If f € A, satisfies (3.6.9), then

Ly(n, A) f(2) < q(2).

PROOF. The proof is similar to the proof of Theorem 3.4.3 and is therefore omitted.

O

The next theorem yields the best dominant of the differential subordination (3.6.9).

THEOREM 3.6.4. Let h(z) be univalent in U. Let ¢ : C> x U — C. Suppose that

the differential equation

(3.6.10) ¢ (q(2), 2 (2), 2°¢"(2); 2) = h(z)

has a solution q(z) with q(0) = 0 and satisfies one of the following conditions:

(1) a(z) € Qo and ¢ € @,[h, q],
(2) q(#) is univalent in U and ¢ € ®ylh,q,], for some p € (0,1), or
(3) q(#) is univalent in U and there exists py € (0, 1) such that ¢ € ®;[h,,q,], for

all p € (po, 1).
If f € A, satisfies (3.6.9), then
Lp(n, A)f(2) < q(2),
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and q(z) is the best dominant.

PROOF. Following the same arguments as in the proof of [58, Theorem 2.3e, p.
31], from Theorems 3.6.2 and 3.6.3, it follows that ¢(z) is a dominant. Since ¢(z)
satisfies (3.6.10), it is also a solution of (3.6.9) and therefore ¢(z) will be dominated by

all dominants. Hence ¢(z) is the best dominant. O

DEFINITION 3.6.2. Let Q2 be a set in C and let ®;[Q2, M| := &;[Q, q] where
q(z) = Mz, M > 0. The class of admissible functions ®;[(2, M| consists of those

functions ¢ : C3 x U — C such that

2 10
(36.11) ¢(M 0 k+>\M 3 L+ (2 N+ 1)k + X*)Me ;Z> 20

A+ (A +p)?
whenever z € U, § € R, R(Le=?*) > (k — 1)kM for all real 6 and k > p.

COROLLARY 3.6.2. Let ¢ € &,[Q2, M]. If f € A, satisfies

¢ (Lp(n, A) f(2), Ip(n + 1, \) f(2), Lp(n + 2, M) f(2); 2) €

then

1, (n, \) f(2)] < M.

COROLLARY 3.6.3. Let ¢ € O;[M] := ®;[Q2, M] where Q2 = {w : |w| < M}. If

f € A, satisfies

|0 (L (n, A f(2), Lp(n + 1, \) f(2), Lp(n + 2, M) f(2); 2) | < M,

then
1, (n, \) f(2)] < M.
When Q = U and M =1, Corollary 3.6.2 reduces to the following result:
COROLLARY 3.6.4. [2, Theorem 2, p. 271] Let ¢ € O,[U] := &;[U,1]. If f € A,
satisfies
|6 (Ip(n, A) f(2), Ip(n + 1, M) f(2), L(n + 2,A) f(2); 2)] <1,
then

L(n N f(2)] < 1.
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When Q =U, A=a—1(a>0), p=1and M =1, Corollary 3.6.2 reduces to

the following result:
COROLLARY 3.6.5. [41, Theorem 2, p. 231] Let ¢ € ®;[U]. If f € A satisfies

6 (T2 f(2), T0 f(2). T2 f(2); 2) | < 1,

then

Iz f(2)] <1

where I is the Komatu integral operator in U.

When Q@ =U, A=1, p=1and M =1, Corollary 3.6.2 reduces to the following

result:
COROLLARY 3.6.6. [7, Theorem 1, p. 477] Let ¢ € ®;[U]. If f € A satisfies

¢ (Pf(2), PO f(2), P2 f(2);2)| < 1,
then
|Pf(2)] < 1.

COROLLARY 3.6.7. If M > 0 and f € A, satisfies

(3.6.12) |(A+p)*L(n+2,N)f(2) = A+ p)L(n+1 =N f(2) = NL(n,\) f(2)]

<[2p—1A+pp—1)] Mz, then |I,(n,\)f(z) <M.

PROOF. This follows from Corollary 3.6.2 by taking ¢(u, v, w; 2) = (A+p)?w — (A +
p)v — XNu and Q = h(U) where h(z) = AMz, M > 0. Since

’¢ (Mew k4 A L+((2A+1)k+A2)Mei9_Z>‘
"A+p ’ (A +p)? ’

=L+ (A + 1)k + A*)Me” — (k+ N)Me™” — X M|

= |L + (2k — 1)AMe”|
> (2k — 1)AM + R(Le™ ™)

> (2k — DAM + k(k—1)M > [(2p— DA +p(p — 1)| M
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zeU, 0 eR, R(Le ™) > k(k —1)M and k > p, it follows that ¢ € ®;[Q, M]. Hence

by Corollary 3.6.2, the required result is obtained. ]

The differential equation

(A+p)*2%¢"(z) = (A +p)zd'(z) = Nq(z) = [(2p — DA+ p(p — 1)] M =

has a univalent solution ¢(z) = Mz. Theorem 3.6.4 shows that ¢(z) = Mz is the best

dominant of (3.6.12).

DEFINITION 3.6.3. Let © be a set in C and ¢(z) € Qy N Hy. The class of
admissible functions ®; [, ] consists of those functions ¢ : C3 x U — C that satisfy

the admissibility condition ¢(u, v, w; z) & €2 whenever

Yy kCq'(¢) + (A +p—1)q(()
N A+p

A+p)Pw—(A+p—1% B ¢q"(©)
%{ G ip_Tu AP ”}Zm{q%o “}’

z€U, (€dU\ E(q) and k > 1.

u = q(¢),

)

THEOREM 3.6.5. Let ¢ € ©;1[Q,¢|. If f € A, satisfies

(3.6.13) {¢> (fp(n, MNf(z) L(n+1,M)[(z) fp(n+2,A)f(Z);Z) e U} ca,

zP— 1 ’ zPp— 1 ’ zp— 1

then

Lp(n, \) f(2)

Zp_l = Q(’Z)

PROOF. Define the function p(z) in U by

L(n N (2)

(3.6.14) p(z) ==

By making use of (3.6.3), a simple computation from (3.6.14) yields

(3.6.15) Iy(n ‘:j_al)\)f(z) _ 2p'(2) + (:\i]]?) — 1)p(z)‘

Further computations yield

3616 2 + f_,le(z) _ 2'(2) + 200+ p) _(A”f;/)(f) +(A+p—1)%p(z)
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Define the transformations from C? to C by

- — _ 2
(3.6.17) u=r, v= st(A+p 1)7“7 oo LT LROAHD) s+ (A +p—1)°r
A+p (A +p)?

Let

W(r, s, t;2) = ¢(u, v, w; z)

s+N+p—1r t+2M+p) —1s+N+p—1)*r )
Atp (A +p)? c)

(3.6.18) . (r,
The proof shall make use of Theorem 3.1.1. Using equations (3.6.14), (3.6.15) and
(3.6.16), from (3.6.18), it follows that

(3.6.19)

Be) /(2. 24 2)2) = o

7t 2Pl ’ 2p—1 c

I(n, N f(2) L(n+ 1N f(2) L(n+2,X)f(2) )

Hence (3.6.13) becomes

V(p(2), 2p'(2), 220" (2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ €
®;1[€2, ¢] is equivalent to the admissibility condition for i) as given in Definition 1.4.1.

Note that
f+1_ A+pPw—N+p—1)%u
s (A+pu—A+p—1u

and hence ¢ € V[, g]. By Theorem 3.1.1, p(z) < ¢(z) or

L(n, A)f(2) < q(2). O

THEOREM 3.6.6. Let ¢ € ®y[h,q] := ®11[R(U),q|. If f € A, satisfies
(3.6.20) ¢ (Ip(n’ D/e) Lint LIS Hnt 230, Z) < h(z)

2P 1 ! 2P— 1 ! 2P— 1 !

then

L(n, A) f(2)

Zp_l -< Q(z)

DEFINITION 3.6.4. Let €2 be a set in C and let ®;,[Q2, M| := ®;,[Q, q] where
q(z) = Mz, M > 0. The class of admissible functions ®;[S2, M| consists of those
functions ¢ : C3 x U — C such that
(3.6.21)

¢<M@i9 kratp-l

w0 LH[20+p) — Dk + (A +p—1)2Me?
Atp e (A +p)? ’Z)gQ
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whenever z € U, € R, R(Le ) > (k — 1)kM for all real 6 and k > 1.

COROLLARY 3.6.8. Let ¢ € ®;4[Q2, M]. If f € A, satisfies

5 (Ip(n, Nf(z) Lin+1,\)f(2) L(n+2, )\)f(z)z) Q.

Zp—l ! Zp—l ! Zp—l !

then

L(n, \) f(2)

zp—1

<M.

COROLLARY 3.6.9. Let ¢ € Oy 1[M] := ;[ M] where Q = {w : |w| < M}.

If f € A, satisfies

‘¢ ([p(n,)\)f(z) L(n+1,A)f(2) L(n+2,X)f(2) )

2=t zp—1 ’ 2Pl '

< M,

then

L(n, \) f(2)

zp—1

<M.

When Q =U, A=a—1(a >0), p=1and M = 1, Corollary 3.6.8 reduces to

the following result:
COROLLARY 3.6.10. [41, Theorem 2, p. 231] Let ¢ € ®;4[U]. If f € A satisfies

|0 (Z2f(2), T7 f(2), T2 f(2)i2)| < 1,

then
72 f(2)] < 1

where I is the Komatu integral operator in U.
When Q =U, A =1, p=1and M = 1, Corollary 3.6.8 reduces to the following
result:

COROLLARY 3.6.11. [7, Theorem 1, p. 477] Let ¢ € ®;,1[U]. If f € A satisfies

[0 (Pf(2), P f(2), P2 f (2);2) | < 1,

then

Pf(2)] < L.
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COROLLARY 3.6.12. If f € A, then,
L(n+1,\)f(2)

zp—1

Ip(n, \) f(2)

zp—1

<M= < M.

This follows from Corollary 3.6.9 by taking ¢(u, v, w;z) = v.

COROLLARY 3.6.13. If M > 0 and f € A, satisfies

S L(n+2,0)f(2) L(n+1,\)f(2)

'(A +p) g +(A+p) — 2 1p(n, M) f(2)

zp—1

—(A+p-1)
< [B(A+p) — 1M,

then

Lp(n, \) f(2)

zp—1

(3.6.22) < M.

PROOF. This follows from Corollary 3.6.8 by taking ¢(u, v, w; 2) = (A+p)?w+ (A +
p)v — (A +p—1)%u and Q = h(U) where h(z) = 3N\ +p) — 1)Mz, M > 0. To
use Corollary 3.6.8, it must verify that ¢ € & [, M], that is, the admissible condition

(3.6.21) is satisfied. This follows since

¢(Mei9 ktd+p—1, 5 L+[2O+p) = Dk+ A +p—1)°]Me”
) )\"—p ’ ()\ +p)2 3

=|L+ 2\ +p) — 1)kMe” + (k+ A +p — 1) Me"|
= |L+ [(2k + 1)(A +p) — 1] Me"|
> [(2k + 1)(A +p) — 1]M + R(Le™™)
>[2k+1)(A+p) — 1M+ k(k—1)M
> (BA+p) —-1)M
zeU 0eR, R(Le ™) > k(k—1)M and k > 1. Hence by Corollary 3.6.8, the required

result is obtained. O

DEFINITION 3.6.5. Let €2 be a set in C and ¢(z) € Q; NH. The class of ad-
missible functions ®; [, g consists of those functions ¢ : C* x U — C that satisfy the
admissibility condition ¢(u,v,w;z) & € whenever

kCq'(Q)
q(¢)

u=q((), v= L ((/\ +p)a(¢) +

- ) 2o,
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afe{(“i)i(;” —v) _ (/\+p)(2u—v)} > km{gj((f)) + 1},

€U, (€dU\ E(g) and k > 1.

THEOREM 3.6.7. Let ¢ € ®;5[Q2,q]. If f € A, satisfies

(3.6.23)
Ip(n + 1, f(2) Ip(n +2,0N)f(2) I,(n+ 3, A f(z) ).
{¢( @@Aﬁ@)’@@+LAV@V@@+ZAV@V)' EU}C”

then
Lin+1,)\)f(2)
I(n, M) f(2)

=< q(2).

PROOF. Define the function p(z) in U by

L(n+1,0)f(z)
]p(n’ /\)f(Z)
By making use of (3.6.3) and (3.6.24), a simple computation yields

Lin+2,N)f(z) 1
Lin+1,N)f(z)  A+p

(3.6.24) p(z) =

(3.6.25)

ﬂx+mma+i)

Further computations yield

(3.6.26)

, 2/ (2) 2\, 2p(z)
L(n+3,\)f(2) ()t 1 |2(z) A+ )+ - ( ) ) + 50
L(n+2,0)f(2) Atp | p(2) (A+p)p(z) + 2L

Define the transformations from C? to C by

1 /s 1 [s (A+ps+2-(2)P+1
627) u=rv—rt (D) wrs [ it}
(3.6.27) u=r, v T+/\+p o)w T+)\+p[7’+ o) e

Let

(3.6.28) o(r,s,t;2) = ¢(u,v,w; z)

(A+p)8+f_(§)2+’%} Z)

S
)\ _
[( ot Ot + 2

1 S
:¢(ﬁk+p“A+mr+;yX:5

The proof shall make use of Theorem 3.1.1. Using equations (3.6.24), (3.6.25) and
(3.6.26), from (3.6.28), it follows that

V(p(2), 20 (2), 29" (2); 2)

B L(n+ LA f(2) I(n+2,))f(2) ]p(n—|—3,)\)f(z)‘
(3.6.:29) ‘¢( @@AM@)’@@+LAH@V@@+2AH@V%'
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Hence (3.6.23) becomes

V(p(2), 2p'(2), 220" (2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ €
5[, q] is equivalent to the admissibility condition for i) as given in Definition 1.4.1.

Note that

E—l—lz (A +p)v(w —v)
s v—u

— (A +p)(2u —v),
and hence ¢ € V[, g]. By Theorem 3.1.1, p(z) < ¢(z) or

Lin+1,))f(2)
I(n, M) f(2)

THEOREM 3.6.8. Let ¢ € ®;5[h,q| := Pro[h(U),q]. If f € A, satisfies

< q(2). O

Ln+1L,AN)f(2) Li(n+2,N)f(2) L(n+3,X\f(z) z) < h(2)
L(n, N f(2) T L(n+1L,AN)f(2) L(n+2,0)f(2) ’

(36.30) & (

then
Ln+1,X)f(2)
Ip(”a N f(2)

DEFINITION 3.6.6. Let €2 be a set in C and let ®;5[Q2, M| := ®;5[, q] where

=< q(2).

q(z) =14 Mz, M > 0. The class of admissible functions ®;5[€2, M| consists of those

functions ¢ : C* x U — C such that

k+ (A +p)(L+Me?)
O+ p) L+ Me) ¢
(M 4 e Le™ + [N+ p+ 1]kM
E+ (A +p)(+Me?) +(A +p)kM?e”] — K*M?
(A+p)(1+ Me?) A+ p)(M + e ) [(A + p)e™
+(2(A+p) + k)M + (A + p) M?e"]

(3.6.31) o) (1 + Me"?, 1+

1+

2| €Q

zeU 0eR, R(Le ™) > (k— 1)kM for all real 6 and k > 1.

COROLLARY 3.6.14. Let ¢ € ©;5[Q2, M]. If f € A, satisfies

Ip(n + 1L, N f(2) Ip(n + 2,0 f(2) ]p(n + 3,0 f(2) .
’ ( LN L+ L) Ln 2 0f() ) €

then
Ln+1,\)f(2)
]p(nv N f(2)

<1+ Mz.
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COROLLARY 3.6.15. Let ¢ € @ro[M] := ®;4[2, M] where Q = {w : |w—1| <
M}, If f € A, satisfies

‘¢ (Ipn—i—l,)\)f(z) Lin+2,X)f(z) L(n+3,\)f(2) )_1

;2 <M,

(
L(n, N f(z) " Ln+1,N)f(z) L(n+2,\)f(2)

then
Lin+1,))f(2)
I(n, M) f(z)

COROLLARY 3.6.16. If M > 0 and f € A, satisfies

—1‘<M.

M
(A+p)(1+ M)’

Lin+2,N)f(z) Ln+1,Nf(z)
IL(n+1,\)f(2) L(n,\) f(2)

then
Ln+1,X)f(2)

LN

< M.

This follows from Corollary 3.6.14 by taking ¢(u, v, w;z) = v —u and Q = h(U)
where h(z) = Mz/(A+ p)(1+ M).

3.7. SUPERORDINATION OF THE MULTIPLIER TRANSFORMATION

The dual problem of differential subordination, that is, the differential superordina-
tion of the multiplier transformation is investigated in this section. For this purpose the

class of admissible functions is given in the following definition.

DEFINITION 3.7.1. Let 2 be a set in C and ¢(z) € HJ[0, p] with z¢'(z) # 0. The
class of admissible functions ®/[2, q] consists of those functions ¢ : C> x U — C that

satisfy the admissibility condition ¢(u, v, w; () € 2 whenever

N (CLORRYE)

A+p
A T FEa

zeU, (€dUand m > p
THEOREM 3.7.1. Let ¢ € ®}[Q,q]. If f € A,, I,(n,\)f(2) € Qp and

& (L(n, N f(2), Ly(n + 1L, N) f(2), L,(n 4+ 2,X) f(2); 2)
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is univalent in U, then
(3.7.1) QC{o(Ly(n, N f(2), L(n+ 1L, N f(2), [(n+2,\)f(2);2) : 2 € U}
implies

q(2) < Lp(n, M) f(2).

PROOF. From (3.6.8) and (3.7.1) , it follows that

QcC{v (p(z),20'(2), 2" (2);2) 2 € U}.

In view of (3.6.6), the admissibility condition for ¢ € @[S, ¢| is equivalent to the admis-
sibility condition for 1) as given in Definition 1.4.2. Hence ¢ € \IIZ’O[Q, q], and by Theorem
3.1.2, q(z) < p(z) or

q(2) < Lp(n, M) f(2). [

THEOREM 3.7.2. Let q(z) € HI[0,p|, h(z) is analytic on U and ¢ € ®}[h,q| :=
'/ [hU),q] . If f €A, I,(n,\)f(z) € Qy and

& (Ly(n, \) f(2), L(n + 1L, A) f(2), I,(n+2,\) f(2); 2)
is univalent in U, then
(3.7.2) h(z) < ¢ (Ip(n, A) f(2), Lp(n + L, A) f(2), I(n + 2,A) f(2); 2)
implies

q(2) < Ip(n, \) f(2).

Theorems 3.7.1 and 3.7.2 are used to obtain subordinants of differential superordi-
nation of the form (3.7.1) or (3.7.2). The following theorem proves the existence of the

best subordinant of (3.7.2) for certain ¢.

THEOREM 3.7.3. Let h(z) be analytic in U and ¢ : C3 x U — C. Suppose that

the differential equation

(373) ¢(q(2), 24 (2), 2°q"(2); 2) = h(2)

has a solution q(z) € Qq. If ¢ € ®[h.q], f € Ay, I(n, \)f(2) € Q and
¢ (Ip(n, M) f(2), L(n + 1L, A) f(2), Iy(n + 2,A) f(2); 2)
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is univalent in U, then

hz) = ¢ (Lp(n, A) f(2), Ip(n + L, A) f(2), L(n + 2,A) f(2); 2)
implies
q(z) = I(n, M) f(2),

and q(z) is the best subordinant.

PROOF. The proof is similar to the proof of Theorem 3.6.4 and is therefore omitted.

H

Combining Theorems 3.6.2 and 3.7.2, the following sandwich-type theorem is ob-

tained.

COROLLARY 3.7.1. Let hy(z) and q1(z) be analytic functions in U, hs(z) be uni-
valent function in U, qz2(2) € Qg with q1(0) = ¢2(0) = 0 and ¢ € ®[ha, g2] N P} [h1, q1].
If f e A, I,(n,\)f(z) € H[0,p] N Qy and

¢ (L(n, ) f(2), I(n + 1, A) f(2), L (n + 2, A) f(2); 2)
is univalent in U, then
hi(z) < ¢ (Lp(n, A f (), Lp(n + 1, M) f(2), Lp(n + 2, \) f(2); 2) < ha(2),
implies
0i(2) < Lp(n, ) f(2) < g2(2).

DEFINITION 3.7.2. Let €2 be a set in C and ¢(z) € Hy with z¢'(z) # 0. The class
of admissible functions @/ [, g] consists of those functions ¢ : C* x U — C that satisfy

the admissibility condition ¢(u, v, w; () € €2 whenever

u=q(z), v= (z¢'(z)/m) —l/; i)\pjtp — 1)q(,z)7

A+pPw—A+p-—1)>%u B NS
%{ N Oip_tu TP ”}Sm%{qw “}’

zeU,(€dU and m > 1.
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THEOREM 3.7.4. Let ¢ € ®7,(Q,q]. If f € A, I,(n,\)f(2)/2P~" € Qo and

¢<@@Aﬁ@)@@+LAV@)@M+ZAVQ)>

Zp=t zp—1 ’ zp—1 '

is univalent in U, then

ara) o fo(HRAO HOFINIG) B2 NG ) )
implies

L Nf()

zp—1

q(2) <
PROOF. From (3.6.19) and (3.7.4), it follows that

Qc{v (p(z),20'(2), 2" (2);2) 2 € U}.

In view of (3.6.17), the admissibility condition for ¢ € ®} (€2, q] is equivalent to the
admissibility condition for 1) as given in Definition 1.4.2. Hence ¢ € ¥'[Q, q], and by
Theorem 3.1.2, q(2) < p(z) or

(0, \)f(2) -

zp—1

q(z) <

THEOREM 3.7.5. Let q(2) € Ho, h(z) is analytic on U and ¢ € ®,[h,q| =
7 [AU),ql- I f € Ay, Iy(n, M) f(2)/2"7 € Qo and

¢(@MAV@)@W+LAVQ)%W+ZAVQ))

z
zP— 1 ! zp— 1 ! zP— 1 !

is univalent in U, then

(3.7.5) h(z) < &

implies

Combining Theorems 3.6.6 and 3.7.5, the following sandwich-type theorem is ob-

tained.
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COROLLARY 3.7.2. Let hy(2) and qi(z) be analytic functions in U, hs(2) be uni-
valent in U, q2(z) € Qo with ¢1(0) = q2(0) = 0 and ¢ € Pp[ha, qo] N P [h1, q1]. If
feA, NG ¢ 1y N Qy and

zp—1

¢(Ip(n,A)f(z) Ln+1,M0f(z) Ln+2,))f(z) )

z
zp— 1 ! zp— 1 ’ zP— 1 !

is univalent in U, then

Ln, N f(z) L(n+ 1N f(2) L(n+2,)\)f(2)

Zp=l zp—1 ’ 2Pl

mis) <o +) < hala),

implies

L(n, A) ()

1 < QQ(Z).

@(z) <

DEFINITION 3.7.3. Let Q be asetin C, q(z) #0, 2¢/(z) # 0 and ¢(z) € H. The
class of admissible functions @/ ,[€2, ¢| consists of those functions ¢ : C* x U — C that

satisfy the admissibility condition ¢(u, v, w; () € 2 whenever

R[O0)oyh afO) )

V—Uu

zeU, (€dU and m > 1.

THEOREM 3.7.6. Let ¢ € ®7,[Q,q]. If f € A, % € Q; and

p (]p(n + LA f(2) L(n+2,7A)f(2) L(n+3,A)f(2) z)
L(n, N f(2) " L(n+1LA)f(2)" L(n+2,0)f(2)

is univalent in U, then

(376) QcC {¢ (Ip(n—{—l,)\)f(z) Lin+2,))f(2) Ip(n+3,)\)f(z)'z) :zEU}

Ln, N f(z) "Ln+1,N)f(z) L(n+2,\)f(z)
implies

L(n+1,\)f(2)
L(n, N f(2)

q(2) <
PROOF. From (3.6.29) and (3.7.6 ), it follows that

Qc{v (p(z),20'(2), 2" (2);2) 2 € U}.
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In view of (3.6.28), the admissibility condition for ¢ € @} ,[Q, q] is equivalent to the

admissibility condition for 1) as given in Definition 1.4.2. Hence v € ¥'[Q, q], and by

Theorem 3.1.2, ¢(z) < p(z) or

L(n+1,0/(2)
L(n, A f(z)

THEOREM 3.7.7. Let h(z) be analytic in U and ¢ € ) ,[h, q] := @7 ,[h(U),q]. If

fEA, —I‘}?Zi)’\ € Q; and

s ([p(n + LA f(2) Li(n4+2,A)f(2) L(n+3,X)f(2) Z)
L(n, N f(2) " L(n+1LAN)f(2) L(n+2,0)f(2)

is univalent in U, then

g

q(z) <

Lin+1,N)f(z) L(n+2,N)f(2) [p(n+3,/\)f(z)_
S ¢( LN Lt LN () fp<n+2,x>f<z>’z) ’
implies
() < I(n+1,\)f(2)
ST LN

Combining Theorems 3.6.8 and 3.7.7, the following sandwich-type theorem is ob-

tained.

COROLLARY 3.7.3. Let hy(z) and qi(z) be analytic functions in U, hs(z) be uni-
va/ent in U QQ(Z) € Ql Wlth ql(O) = QQ(O) =1 and ¢ - @[2[h2,(]2] N (I)ILQ[hl,ql]. /f

f €A, HERAIE € 140 Q) and

s ([p(n + LA f(2) L(n4+2,A)f(2) L(n+3,A)f(2) Z)
L(n, N f(2) T L(n+1LAN)f(2) L(n+2,0)f(2)

is univalent in U, then

Lin+ 1N f(z) L(n+2,N)f(2) L(n+3,X)f(2)
L(n,N)f(z) "Ln+1,A)f(z) L(n+2,\)f(z)

fm&<¢( m)<%@)

implies
Ln+1,X)f(2)
Ip(n, A) f(2)

q1(z) < < ga(2).
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CHAPTER 4

DIFFERENTIAL SUBORDINATION AND SUPERORDINATION
OF MEROMORPHIC FUNCTIONS

4.1. INTRODUCTION

Let 3, denotes the class of all p-valent functions of the form

(4.1.1)

f(Z)ZiJr ap?” (zeU:={z€C:0<|z| <1}, pe N :={1,2,---})

zp
k=1-p

and let ¥, := 3. For two functions f(z) given by (4.1.1) and g(z) = & + D 1y br2*,

the Hadamard product (or convolution) of f and ¢ is defined by

(4.1.2) (f*xg)(z) = % + Z arbrz® =: (g% f)(2).

k=1-p
Fora; €eC (j=1,2,...,0)and 3; € C\ {0,-1,-2,...} (j = 1,2,...m), the gen-
eralized hypergeometric function |F, (o, ..., 01, ..., Bm; 2) is defined by the infinite

series

: N (e ()i 2
Foloa, ... o001, By 2) = ; Bk - (B )i B!

0

I<m+1;l,meNy :={0,1,2,...})

where (a),, is the Pochhammer symbol defined by (1.2.2). Corresponding to the function

hp<041,---,Oél;ﬁl,-“,ﬁm;Z) =277 lFm(alw"ual;ﬁla'"76771;2)7

the Liu-Srivastava operator [52] HI(,l’m)(oq, coya By, Bm) 1 X, — 3, is defined by

the Hadamard product

H}glvm)(alw"ual;ﬁlu'"7ﬁm)f(z) = hp<a17~-'7al;ﬁl7"'7ﬁm;z)*f(z)
B l - () ksp - (Whgp  ar2"
(4.1.3) = o +k B)isp - - By (k+ Pl

zl—p
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For convenience, we write

H;’m[al]f(z) = Hzgl’m)(ozl, oo By B f(2).

Special cases of the Liu-Srivastava linear operator include the meromorphic analogue
of the Carlson-Shaffer linear operator L,(a,c) := H*V(1,a;c) studied by Liu [50],
the operator D" := L,(n + p, 1) investigated by Yang [114] (which is analogous to
the Ruscheweyh derivative operator), and the operator J., := L,(c,c + 1) studied by

Uralegaddi and Somanatha [110]. Note that

c
zetp

Jopf = /0 s f@®)dt (c>0).

Motivated by the operator studied by Aouf and Hossen [8] (see also [18, 50, 75]), define

the multiplier transformation 1,(n, \) on %, by the following infinite series

(4.1.4) L(n,\) f(z) = ; + Z (%) arz® (A >p).

In this chapter, differential subordination and superordination results are obtained
for meromorphic functions in the punctured unit disk that are associated with the Liu-
Srivastava linear operator and the multiplier transformation. These results are obtained
by investigating appropriate classes of admissible functions. Sandwich-type results are

also obtained.

4.2. SUBORDINATION INEQUALITIES ASSOCIATED WITH THE
LIU-SRIVASTAVA LINEAR OPERATOR

In this section, the differential subordination of the Liu-Srivastava linear operator is
investigated. For this purpose, the class of admissible functions is given in the following

definition.

DEFINITION 4.2.1. Let Q be a setin C and ¢(z) € Q1 N'H. The class of admissible
functions © (2, ¢] consists of those functions ¢ : C3x U — C that satisfy the admissibility

condition
(4.2.1) d(u, v, w; z) &
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whenever

u:q(g), v » , (041 €C, o #0,—1)
(D )

z€U, €U\ E(q) and k > 1.

THEOREM 4.2.1. Let ¢ € Oy[Q,q|. If f(z) € ¥, satisfies
(4.2.2)

{6 (2PH"[0n] f(2), 2P Hy ™ [on + 1] f(2), 2P H) ™ on + 2] f (2);2) 1 2 € U} C €,

then

P H™ o] f(2) < a(2).

PROOF. Define the analytic function p(z) in U by
(4.2.3) p(z) = 2" HY™[on] f(2).
In view of the relation
(4.2.4) ar Hy™ oy + 1]f(2) = 2[Hy™ [aa] f(2)) + (a1 + p) Hy " [en] £(2),
a simple computation from (4.2.3) yields

1

(42.5) Py +1]1(2) = — laap(2) + 25/(2)].
1

Further computations yield

(4.2.6)

PHL o0+ 20f(2) = S [F(2) 4 2000 + D2p(2) + o + ().

Define the transformations from C3 to C by

(4.2.7) wer p= T ES  _tFAmt Dstar(an + Dr
a1 (o + 1)

Let

(4.2.8)

I

ar+s t+2(a;+1)s+aq(oqg + D)r )
r, 8,1 2) = olu,v,w; z) = T, , ; .
00r5.62) = o, wi2) =0 (1 210 thin
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The proof shall make use of Theorem 3.1.1. Using equations (4.2.3), (4.2.5) and (4.2.6),

from (4.2.8), it follows that

(4.2.9) V(p(2), zp'(2), 220" (2); 2)
= ¢ (PH ™ en]f(2), 2P HY™ o + 1] (2), 2P HY ™ [on + 2] f(2); 2) -

Hence (4.2.2) becomes
b(p(2), 20 (2), 2°D" (2); 2) € Q.
The proof is completed if it can be shown that the admissibility condition for ¢ € © 5[, ¢|

is equivalent to the admissibility condition for ¢ as given in Definition 1.4.1. Note that

t (D=
S v—1u

- (20&1 -+ 1),
and hence ¢ € V[, q]. By Theorem 3.1.1, p(z) < ¢(z) or
PHY [an] f(2) < q(z). O

THEOREM 4.2.2. Let q(z) be an analytic function with q(0) = 1. Let ¢ €
Oulh,q| == Og[h(U),q]. If f(z) € ¥, satisfies

(4.2.10) ) (szIl;m[al]f(z), sz]lj’m[al +1]f(2), sz;;m[al +2]f(2); z) =< h(z),

then

L H" o] f(2) < q(2).

The following result is an extension of Theorem 4.2.1 to the case where the behavior

of ¢(z) on AU is not known.

COROLLARY 4.2.1. Let Q C C and let q(z) be univalent in U, q(0) = 1. Let

¢ € Oy[Q, g, for some p € (0,1) where q,(2) = q(pz). If f(z) € ¥, and
(4.2.11) ¢ (PH) " [on] f(2), 2P H ™ [on + 1] f(2), 2P HS ™ lon + 2] f(2); 2) € Q,
then

L H,™ ] f(2) < a(2)-

PROOF. Theorem 4.2.1 yields 2# H™[on]f(2) < q,(2). The result is now deduced

from q,(2) < q(2). O
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THEOREM 4.2.3. Let h(z) and q(z) be univalent in U, with q(0) = 1 and set
4,(2) = q(pz) and h,(z) = h(pz). Let ¢ : C®* x U — C satisfies one of the following

conditions:

(1) ¢ € ©glh,q,] for some p € (0,1), or
(2) there exists py € (0,1) such that ¢ € ©ylh,,q,] for all p € (po,1).

If f(2) € ¥, satisfies (4.2.10), then

L H™ o] f(2) < a(2).

PROOF. The result is similar to the proof of Theorem 3.4.3 and is therefore omitted.

OJ

The next theorem yields the best dominant of the differential subordination (4.2.10).

THEOREM 4.2.4. Let h(z) be univalent in U, and ¢ : C3 x U — C. Suppose the

differential equation

(4.2.12) ¢ (q(2), 2 (2), 2°¢"(2); 2) = h(z)

has a solution q(z) with q(0) = 1 and satisfies one of the following conditions:

(1) ¢(z) € Q and ¢ € Oylh, (]
(2) q(2) is univalent in U and ¢ € ©ylh, q,), for some p € (0,1), or
(3) q(2) is univalent in U and there exists py € (0,1) such that ¢ € Oylh,,q,], for

all p € (po,1).
If f(z) € ¥, satisfies (4.2.10), then
LH™oa] f(2) < a(2),

and q(z) is the best dominant.

PROOF. Following the same arguments as in the proof of [568, Theorem 2.3e, p. 31],

from Theorems 4.2.2 and 4.2.3, it follows that ¢(z) is a dominant. Since ¢(z) satisfies
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(4.2.12), it is also a solution of (4.2.10) and therefore ¢(z) will be dominated by all

dominants. Hence ¢(z) is the best dominant. O

DEFINITION 4.2.2. Let Q be a set in C and let ©y[Q, M| := Oy, q] where
q(z) =14+ Mz, M > 0. The class of admissible functions © (2, M| consists of those
functions ¢ : C® x U — C such that

o ’ (03] ’ a1(1+a1) ’

whenever z € U, 0 € R, R (Le™") > (k — 1)kM for all real 8, oy € C (o # 0,—1)
and k > 1.

COROLLARY 4.2.2. Let ¢ € Oy[Q, M]. If f(z) € X, satisfies
o) (szIf;m[al]f(z), sz;’m[al +1]f(2), 2" Hy ™ on + 2] f(2); 2) € Q,

then

|sz;’m[a1]f(z) — 1] < M.

COROLLARY 4.2.3. Let ¢ € Oy[M] := Oy[Q, M| where 2 = {w : |w—1| < M}.
If f(z) € ¥, satisfies

¢ (2P HL™ [on] f(2), 2" HY " o + 1) f(2), 2P HY ™ o + 2] f(2);2) — 1] < M,

then
|2PH ™ ou] f(2) — 1] < M.
COROLLARY 4.2.4. If Roy > —1/2 and f(z) € ¥, satisfies
2P HE™[0n + 1]f(2) — 1] < M,
then
|2PH ™ [oa] f(2) — 1] < M.
PROOF. This follows from Corollary 4.2.3 by taking ¢(u, v, w; z) = v. OJ
COROLLARY 4.2.5. Let M >0 and 0 # o € C. If f(z) € ¥, satisfies
(4.2.14)

M
—— then |szIl;m[a1]f(z) -1 < M.

|27 H ™ o + 1] f (2) — 2P HY o] f(2)| < o]
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PROOF. Let ¢(u,v,w;2) =v —u and Q = h(U) where h(z) = Mz/|ay|, M > 0.

Since

4 k .
6 (14 M 14T preio 14 :
o a1 (1+ aq)

L+(2k+041)(1+a1)]\/[6"9'z>‘ kM M
| ™ o
zeU 0#eR, ag €C (a1 #0,—1), and k > 1, it follows that ¢ € ©y[Q, M]. Hence

by Corollary 4.2.2, the required result is obtained. O

The differential equation

2q(2) —q(z) = Tl (lan| < M)

has a univalent solution ¢(z) = 1+ Mz. Theorem 4.2.4 shows that ¢(z) = 1+ Mz is
the best dominant of (4.2.14).

Note that

HPY(1,151)f(z) = f(2)

HEV@ L1)f(z) = 2f(2)+(1+p)(2)

1

HEVBLD)f(2) = S[21"(2) +20 +2)20'(2) + (0 + Do+ 2)f(2)].

By taking l = 2, m =1, a; = as = 1 = 1, (4.2.14) shows that for f(z) € X,
whenever

Plaf'(z) +pf(2)] < Mz, then 2Pf(z) <1+ Mz.

DEFINITION 4.2.3. Let €2 be a set in C and ¢(z) € Q1 N'H. The class of admis-
sible functions Oy [, g] consists of those functions ¢ : C3 x U — C that satisfy the

admissibility condition

o(u,v,w;z) &K
whenever
u=a(0) v =y (1 @+ B0 @i e e a2 01240 20)

[(1 +2)w —1— (14 a1)v)]
X(1+ar)v

R (I+a)v— (14 aqu)

+ (1 +a)v—(14+20qu) p > kR { Cj,/;g) + 1} :

2€U, (€0dU\ E(q) and k > 1.
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THEOREM 4.2.5. Let ¢ € Op1[Q,q]. If f(2) € ¥, satisfies

(4.2.15)
{ (H,’;m[aﬁl]f(Z) Hy" o +2)f(2) H};m[a1+3]f(2),z> %U} .
H" [ f(z) " Hy"ow + ()" Hy™[on +20f(2)° |

then
Hm g + 1] f(2)

ez

PROOF. Define the function p(z) in U by

(:210) ple) = H’}foaiféf)-

A simple computation using (4.2.16), yields

2 (2) A H" e + 1] f(2)] Z[Hé”"[oq]f(Z)]"

(4.2.17) p(z)  HY a4 1f(2)  HEaa)f(2)
Use of (4.2.4) in (4.2.17) yields

Himon +2)f(2) 1 (%)
(4.2.18) B+ 11f(a)  ar 1 (alp(z) +1+ 02 > :

Differentiating logarithmically (4.2.18), and further computations show that
Him oy + 31 (2)

(42.19) 2
Hy™ [on +2]f(2)
(2) 4 ) ey )
= L a2 2 @ +5 —Ga) + 56
a +2 p(2) 1+ aip(z) + 22

Define the transformations from C3 to C by

(4.2.20)
1 s 1 s a13+§_(§)2+z
u=r v= <1+Ot17’+—>,w: 24+ aqr+ -+ - L =l
o + 1 r o + 2 r 1+ar+2
Let

(4.2.21) o(r,s,t;2) = Pp(u,v,w; 2)

5 1 [ +1+3} 1 54 +s+a13+§—(§)2+§
=o¢|r apr - ar 4+~ 2.
a1 0 rl’ag +2 Uy L+ayr+2 ’

Using the equations (4.2.16), (4.2.18) and (4.2.19), from (4.2.21), it follows that

(4.2.22) U(p(z), 20 (2), 2°p" (2); 2)

. gb(ﬂgm[alﬂmz) Himon +2f(2) H,avm[a1+3]f<z>.z>
H ] f(z) " HE"[on +117(2) HE™lon +207(2) )
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Hence (4.2.15) implies ¢(p(2), 2p/(2), 2%p"(2); z) € Q. The proof is completed if it can be
shown that the admissibility condition for ¢ € ©x1[€2, ¢ is equivalent to the admissibility

condition for v as given in Definition 1.4.1. For this purpose, note that

= (a1 + 1)v— (14 ayr),

= (1+a)of(or + 2w —1—(1+a))] — ; {(1 +an)o — i—s] :

S|+ S|»

(a1 +2)w—1— (1 + aq)v]
X(l +O./1)U
(14 ar)v— (1 + aqu)

t
and thus - +1= + (14 a1)v — (14 20qu).
s

Hence ¢ € V[, ¢] and by Theorem 3.1.1, p(z) < ¢(z) or
H o + 1]/ (:)

Hy™ o] f(2)
THEOREM 4.2.6. Let ¢ € O,1[h, q] := O 1[h(U),q] withq(0) = 1. If f(2) € &,

q(2). O

satisfies
Hy"[aa]f(2)  Hpy™[on +1]f(2) Hp™[an +2]f(2)
then

HL s + 11£(2)
Hy™ o] f(2)
DEFINITION 4.2.4. Let Q2 be a set in C and let ©y1[Q, M| := Oy 1[Q, ¢ where

=< q(2).

q(z) =14+ Mz, M > 0. The class of admissible functions © 1[€2, M| consists of those
functions ¢ : C* x U — C such that
k+ai(1+ Mew') Mo”1+ k+ai(1+ Meié) Mo
(14 aq)(1+ Me®) (24 aq)(1+ Me®)
(M + e ) [Le ™ + kM (1 + ay + ay Me®)] — k2 M? > 20

‘ . ‘ ;2
(g +2)(M + e ) [(M + ) (1 4+ oy + acy Me?) + kM|

whenever z € U, 0 € R, R(Le ) > kM (k —1) for all real §, a; € C (a; # 0, —1,—2)

gb(l + Me* 1+
(4.2.24)

and £ > 1.

COROLLARY 4.2.6. Let ¢ € Oy 1[Q, M]. If f(z) € X, satisfies

<H;;m[a1 FUSE) Hmlon +2)f() Hymloa+31/(2) ) .
i) H e+ U5G) B e+ 20 )

then
H™ o + 1]f(2)

l —1
Hy™[on] f(2)

< M.
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COROLLARY 4.2.7. Let ¢ € Oy [M] := Op1[Q, M] where Q@ = {w : |w — 1| <
M} If f(2) € X, satisfies

H};’m[al +1]f(2) Hé’m[al +2]f(2) H;l{m[al + 3] f(2)
l,m ’ I,m ) l,m 2 1< M’
Hp"|on]f(z)  Hpy"loaa +1]f(2) Hp"lea +2]f(2)
then
I,m
H,; l[jl"’l]f(z) 1l <
Hp™ [on]f(2)
COROLLARY 4.2.8. Let M >0, aq € C (a7 #0,—1), and f(z) € X, satisfies
Hymon +2]f(2)  Hy™[on + 1]£(2) M?
Hy"lor +10f(2)  Hy"[ea]f(2) 1+ an|(1+ M)’
then

— 1| < M.

‘H;;m[al FUAE)
H,l,’m[al]f(z)

PROOF. This follows from Corollary 4.2.6 by taking ¢(u,v,w;z) = v —u and Q =
h(U) where
B M2z
1+ o |(1+ M)

h(z) (M > 0).

Indeed, since

k+a(1+ Me?)
(14 aq)(1 4+ Me?)
M E—1— Me"
1+ oq|| 1+ Me?
M |k-1-M
1+l 1+M
M| 1 _1‘
1+ |1+M

M2
11+ a|(1+ M)’

Me? — 1 — Me®

|6(u, v, w; 2)]

z€U, 0 eR, an €C (a1 #0,-1), k #1+M and k > 1, it follows that ¢ € Oy 1[M].

Hence by Corollary 4.2.6, the required result is obtained. O

Fori =2 m=1 ag =ay = =1, Corollary 4.2.8 reduces to:
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EXAMPLE 4.2.1. If f(2) € X, then

2'(2) [Zf”(Z) 92f'(2)

z (z o z _p M2 Z/Z
T e,

f(2)

4.3. SUPERORDINATION OF THE LIU-SRIVASTAVA LINEAR OPERATOR

The dual problem of differential subordination, that is, the differential superordina-
tion of the Liu-Srivastava linear operator is investigated in this section. For this purpose

the class of admissible functions is given in the following definition.

DEFINITION 4.3.1. Let 2 be a set in C, q(z) € H with z¢'(z) # 0. The class of
admissible functions ©’;[€, q] consists of those functions ¢ : C> x U — C that satisfy

the admissibility condition

o(u,v,w;C) € Q
whenever
u=q(z), v= () + malq(z)7 (v €C, ay #0,-1)
mao
Rt D00 g0, yp) < Lnfo0E) )
v— U m q(2)

zeU,(€dU and m > 1.

THEOREM 4.3.1. Let ¢ € O[Q,q]. If f(2) € ¥, 2PH™[a1]f(2) € Q1 and
¢ (2P Hy™ [an] f(2), 2P Hy™on + 1] f(2), 2P Hy ™ [an + 2] f(2); 2)

is univalent in U, then
(4.3.1)
Q C {6 (PH,™ou]f (2), 2PH o + 1) f(2), 2PHY ™ [an + 2] f(2);2) 1 2 € U}

implies

q(2) < 2" H,™ o] f(2).

PROOF. Let p(z) be defined by (4.2.3) and 1) by (4.2.8). Since ¢ € ©’4[€2, ¢, from
(4.2.9) and (4.3.1), it follows that

Qc{v (p(z),20'(2), 2" (2);2) 2 € U}.
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In view of (4.2.7), the admissibility condition for ¢ € ©’;[€,¢q| is equivalent to the
admissibility condition for 1) as given in Definition 1.4.2. Hence v € ¥'[Q, q], and by
Theorem 3.1.2, ¢(z) < p(z) or

q(z) < 2PH"[0q] f(2). O

THEOREM 4.3.2. Let q(z) € H, h(z) be analytic in U and ¢ € Oy[h,q] :=
Oy hU),q). If f(z) € 8, 2PH™ (1] f(2) € Q1 and

¢ (ZPHY™ on] f(2), 2P H ™ [on 4+ 1) f (2), 2P HL ™ [on + 2] f(2); 2)
is univalent in U, then
(4.3.2) h(z) < ¢ (szIlJ’m[al]f(z), szIl)’m[al +1]f(2), sz]l;m[ozl +2]f(2); 2)

implies

q(z) < szIl;m[ozl]f(z).

Theorems 4.3.1 and 4.3.2 can only be used to obtain subordinants of differential
superordination of the form (4.3.1) or (4.3.2). The following theorem proves the existence

of the best subordinant of (4.3.2) for an appropriate ¢.

THEOREM 4.3.3. Let h(z) be analytic in U and ¢ : C> x U — C. Suppose that

the differential equation
$(q(2), 24'(2), 24" (2); 2) = h(2)
has a solution q(z) € Q1. If g € Oylh,ql, f(z) € By, 2P H)™[0n]f(2) € Q1 and
¢ (ZPHY oa] f(2), 2P Hy ™ [on + 1) f(2), 2P H ™ [on + 2] f(2); 2)
is univalent in U, then
h(z) < ¢ (2PHYon] f(2), 2P HY ™ o + 1] f(2), 2P Hy ™ oo + 2] f(2); 2)

implies
q(2) < 2PH," 1] f(2)

and q(z) is the best subordinant.
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PROOF. The proof is similar to the proof of Theorem 4.2.4 and is therefore omitted.

g

Combining Theorems 4.2.2 and 4.3.2, the following sandwich-type theorem is ob-

tained.

COROLLARY 4.3.1. Let hy(z) and q,(z) be analytic functions in U, hy(z) be
univalent in U and q2(z) € Qy with ¢:(0) = ¢2(0) = 1 and ¢ € Oglha, ¢2] N Oy lh1, ¢1].
If f(z) € By, 2P H)™[0n]f(2) € HN Qy and

¢ (ZPHY oa] f(2), 2P H ™ o + 1] f(2), 2P H ™ [on + 2] f(2); 2)
is univalent in U, then
hi(z) < ¢ (2PH ™ on)f(2), 2P HY ™ [ + 1] f (2), 2P H) ™ o + 2] f(2); 2) < ha(2)

implies
q(2) < 2PH™ [on] f(2) < a2(2).
DEFINITION 4.3.2. Let Q be a set in C and ¢(z) € H with z¢'(z) # 0. The class

of admissible functions ©7; [, ¢ consists of those functions ¢ : C* x U — C that satisfy

the admissibility condition

o(u,v,w; () € Q
whenever
u=q(z), v= 0411+ | (1 + aiq(z) + ::q((z))) (g €C, a1 #0,-1,-2, q(z) #0)

(a1 +2)w —1— (14 aq)v)]
X(l +O./1)U
(1+aq)v— (14 aju)

s b e L f2(2)
+ (1 +a)v — (14 20qu) Sm%{ q,(z)+1},

zeU,(€dU and m > 1.

l,m
THEOREM 4.3.4. Let ¢ € O ,[Q,q]. If f(2) € Z,, W € Q; and
) p aq z

é (H;l;’m[al +1]f(2) H;)’m[al +2]f(2) H;l;’m[al +3]f(2) ) 2)
Hy" o] f(z) " Hy™oa +11f(2) Hy™oa +2)f(2)
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is univalent in U, then

(4.3.3)
oc { ’ (Hp’";[sl 1/ Byl +2/(:) Hy"lon + 3]f(Z);Z) . U}
Hy Ml f(2) " Hyfon + Uf () Hy o+ 211(2)

implies

HY" o + 11/ (2)

1) < = )

PROOF. Let p(z) be defined by (4.2.16) and ¢ by (4.2.21). Since ¢ € ©%,[Q2,q],
from (4.2.22) and (4.3.3), it follows that

Q c {v (p(2),20'(2),2p"(2);2) 1z € U} .

In view of (4.2.20), the admissibility condition for ¢ € ©Y;,[Q2,q] is equivalent to the

admissibility condition for i) as given in Definition 1.4.2. Hence ¢ € V'[Q, ¢|, and by

Theorem 3.1.2, q(2) < p(z) or

Him oy +1)1(2)
Hy" ] f(2)

THEOREM 4.3.5. Let q(2) € H, h(z) be analytic in U and ¢ € Oy ,[h,q] :=

lym a1 2
Oy lhU),q. If f(2) €5y, % € Q; and

g

q(z) <

; <H;;m[a1 L) Hymloa+20() Hloa +3)/(2) )
H ]S (2) H o+ USE) Hy lon + 1)

is univalent in U, then

(434)  h(z) <o (Hzl)’i[gl + 1]f(2)7 H]%’:[Oq + Q]f(z), H%’:[al +3]/(2) ; z)
Hp"[on]f(z)  Hy™loa +1]f(2) Hp"[on + 2] f(2)

implies

H;;’m[al + 1] f(2)

1) < = )

Combining Theorems 4.2.6 and 4.3.5, the following sandwich-type theorem is ob-

tained.

COROLLARY 4.3.2. Let hy(z) and qi(z) be analytic functions in U, hy(z) be

univalent in U and gx(z) € Q1 with ¢1(0) = ¢2(0) = 1 and ¢ € O 1[ha, ¢2] O 1[I, q1]-
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bm o z
If §(2) €5y, Hr s € HN Qi and

P (Hfo’m[&l +1]f(2) H]ﬁ:’m[@l + 2] f(2) H;lg’m[al + 3] f(2) ] z)
Hy™oa]f(z)  Hy™[on +1]f(2) Hy™[oq +2)£(2)

is univalent in U, then

hi(2) < & Hgf;’m[al +1]f(2) Hé’m[@l +2]f(2) Hé’m[al + 3] f(2)
' Bl f(z)  HY oo + 1] £(2) HE[on + 2] £(2)

;z) =< ha(2)

implies
H;la’m[@l +1]f(2)
Hy™[on] f ()

@(z) <

=< q2(2).

4.4. SUBORDINATION INEQUALITIES ASSOCIATED WITH THE
MULTIPLIER TRANSFORMATION

Differential subordination of the multiplier transformation is investigated in this

section. For this purpose the class of admissible functions is given in the following

definition.

DEFINITION 4.4.1. Let Q2 be asetin C, q(2) € Q1 N'H. The class of admissible

functions ©;[€2, ¢| consists of those functions ¢ : C3x U — C that satisfy the admissibility

condition
(4.4.1) é(u, v, w; 2) & O
whenever
w=alQ), v =1 [ = p)alQ) + ¢y (),

(22l )

z€ U, (€dU\ E(q) and k > 1.
THEOREM 4.4.1. Let ¢ € O;[Q, ¢q|. If f(2) € ¥, satisfies
(4.4.2) {o(ZPL,(n,\)f(2),2PL,(n+ 1,\) f(2), 2P I,(n +2,\) f(2);2) : 2 € U} C Q,

then

2PL,(n, N) f(2) < q(2).
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PROOF. Define the analytic function p(z) in U by

(4.4.3) p(z) = 2PL,(n, A) f(2).

In view of the relation

(4.4.4) (A =p)p(n+ LN f(2) = 2L (n, A) f(2)]" + Ap(n, A) f(2),

a simple computation from (4.4.3) yields

1

(4.4.5) Fln+1L,AN)[f(z) = A—p {(A=pp(z) + 2P'(2)} -

Further computations show that

(4.4.6)

Ph(n+2,0)f(z) = ﬁ {(A=p)°p(2) + 2\ = p) + Dzp/(2) + 2°p"(2)} -

Define the transformations from C3 to C by

A—p)r+s A=p)2r+2AN—p)+1)s+t
(447)u=r, U:/\—_p, w = O :
Let
(4.4.8)

W(r, s, t;2) = d(u,v,w;z) = ¢ (,{,7 A=p)r+s (A=p)*r+ 20\ —p) +1)8+t'z) |

A=p (A —p)? ’

Using equations (4.4.3), (4.4.5) and (4.4.6), from (4.4.8), it follows that

(4.4.9) V(p(2), 20 (2), 220" (2); 2)

= ¢ (ZPL(n,N)f(2),2PL,(n+ 1, \) f(2), 2P L,(n 4+ 2, \) f(2); ) -

Hence (4.4.2) becomes
U(p(2), 20/ (2), 2°p"(2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ € ©;]h, ¢

is equivalent to the admissibility condition for i as given in Definition 1.4.1. Note that

- —2
P Qopwtu—2v)
S V—Uu

Hence ¢ € W[Q, q]. By Theorem 3.1.1, p(z) < ¢(z) or
2PL,(n, N) f(2) < q(2). O
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THEOREM 4.4.2. Let q(z) be an analytic function with q(0) = 1. Let ¢ €
Oglh,q] == O[h(U),q]. If f(2) € ¥, satisfies

(4.4.10) ¢ (ZPL,(n, A) f(2), 2P L,(n+ 1, N) f(2), 2P L,(n + 2, \) f(2); 2) < h(z),

then

21, (n, N) f(2) < q(2).

Our next result is an extension of Theorem 4.4.1 to the case where the behavior of

q(z) on U is not known.

COROLLARY 4.4.1. Let Q C C and let q(z) be univalent in U, q(0) = 1. Let

¢ € ©1[82, q,] for some p € (0,1) where q,(2) = q(pz). If f(2) € £, satisfies
(4411) 6 (PL A F(2), L0+ 1N F(2), 2P (0 + 2, ) (2): 2) € 9,
then

2PL,(n, N) f(2) < q(2).

PROOF. Theorem 4.4.1 yields 2P1,(n,\)f(z) < ¢,(z). The result is now deduced

from ¢,(2) < q(2). O

THEOREM 4.4.3. Let h(z) and q(z) be univalent in U, with ¢q(0) = 1 and set
4,(2) = q(pz) and h,(z) = h(pz). Let ¢ : C®> x U — C satisfies one of the following

conditions:

(1) ¢ € Orlh,q,] for some p € (0,1), or
(2) there exists py € (0, 1) such that ¢ € ©y[h,, q,| for all p € (po,1).

If f(z) € £, satisfies (4.4.10), then

21, (n, N) f(2) < q(2).

PROOF. The result is similar to the proof of Theorem 3.4.3 and is therefore omitted.

O
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The following theorem yields the best dominant of the differential subordination

(4.4.10).

THEOREM 4.4.4. Let h(z) be univalent in U. Let ¢ : C*> x U — C. Suppose that

the differential equation

(4.4.12) ¢ (q(2), 2¢'(2),2%q"(2); z) = h(z)

has a solution q(z) with ¢q(0) = 1 and satisfies one of the following conditions:
(1) q(z) € Qi and ¢ € O©4[h, ],
(2) q(=) is univalent in U and ¢ € Oylh,q,| for some p € (0,1), or

(3) q(2) is univalent in U and there exists py € (0,1) such that ¢ € O[h,,q,] for

all p € (po, 1).
If f(z) € £, satisfies (4.4.10), then

2L, N f(2) < q(2)

and q(z) is the best dominant.

PROOF. The proof is similar to the proof of Theorem 4.2.4 and is therefore omitted.

g

DEFINITION 4.4.2. Let Q be a set in C and let ©;[Q, M] := ©/[Q, q] where
q(z) =1+ Mz, M > 0. The class of admissible functions ©;[(2, M| consists of those
functions ¢ : C3 x U — C such that

(4.4.13)

v

) (1 + Me? 14+ Me"® + ——Me? 1+ Me® +
A—=p (A —p)?

whenever 2 € U, § € R, R(Le ) > kM (k — 1) for all real § and k& > 1.

L+ [2(A—p) +1]EMe™ )gg

COROLLARY 4.4.2. Let ¢ € O;[Q2, M]. If f(2) € ¥, satisfies
0PI N F(2), P+ LN F(2), P Tyn+2, M) [(2); 2) € 2,

then

2PL,(n,A)f(z) < 1+ Mz.
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COROLLARY 4.4.3. Let ¢ € O;[M] := O;[Q, M| where Q@ ={w : |w — 1| < M}.
If f(z) € ¥, satisfies

16 (L (n, N F(2), 2 L(n + 1L, F(2), 2L (n+ 2, A) f(2): 2) — 1] < M,

then
|2P1,(n, \) f(z) — 1| < M.
EXAMPLE 4.4.1. If f(z) € X, satisfies
|2PL,(n+ 1,\) f(2) — 1] < M,
then

|2PL,(n, \) f(2) — 1| < M.

This follows from Corollary 4.4.3, by taking ¢(u, v, w; z) = v.
COROLLARY 4.4.4. If f(z) € 3, 2P1,(n, ) f(2) € H, then

(4.4.14) |2 1,(n+ 1, \)f(2) — 2P L,(n, \) f(2)] < )\—]\j[p = [PL,(n, \) f(2) — 1] < M.

PROOF. Let ¢(u,v,w;z) =v—wuand Q = h(U) where h(z) = Mz/(A—p), (M >
0). Since

, R

’gb (1 + Me? 14+ Me"? + ——Me? 1+ Me" +

L+ [2(A—p) +1]kMe™ )
A—Dp (A—p)?

_ k > M7
A—p T A—p

z€U, 0 €Rand k> 1, it follows that ¢ € O;[Q2, M]. Hence by Corollary 4.4.2, the

required result is obtained. O

The differential equation

M=z

() —az) = 3

(A=p< M)

has a univalent solution ¢(z) = 1+ Mz. Theorem 4.4.4, shows that ¢(z) =1+ Mz is
the best dominant of (4.4.14).
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EXAMPLE 4.4.2. Let M > 0, and 2P1,(n, \) f(2) € H. If f(2) € ¥, satisfies

M\—=p+1)z
A=p3?

PL(n+2,N)f(2) = 2PL,(n+ 1, f(2) <

then

|2P1,(n, \) f(2) — 1| < M.

This follows from Corollary 4.4.2, by taking ¢(u,v, w;2) = w — v and Q = h(U)
where
MX—-p+1)

h(z) = Wz (M > 0).

DEFINITION 4.4.3. Let 2 be a set in C and ¢(z) € Q1 NH. The class of admis-
sible functions ©7[Q, g] consists of those functions ¢ : C3 x U — C that satisfy the

admissibility condition

P(u, v, w; 2) & Q
whenever
u=q((), v= )\%p <()\ —p)q(¢) + kf;{g()o) (q(¢) #0),
e S kAl

ze U, (e€dU\ E(q) and k > 1.

THEOREM 4.4.5. Let ¢ € ©1,1(Q,q]. If f(2) € &, satisfies

(4.4.15)
Ln+1,\)f(z) L(n+2,\)f(2) Ip(n+3,)\)f(z)_z -,
{¢( %WAV@)’%W+LAN@Y%W+ZAVQV>' GU}C”

then
L(n+1,\)f(2)
I(n, A) f(2)

< q(2).

PROOF. Define the function p(z) in U by

(+4.16) W=

By making use of (4.4.4) and (4.4.16), a simple computation yields

Lin+2,N)f(z) 1 2p'(z)
(4417 ACES VB R v L sy
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Further computations show that

L(n+3,)\)f(2)
L(n+2,)\)f(2)

zp'(z zp'(z 22p" (2
1 |z | Q- () + 55 - (R8P + 5

418 = e (A —p)p(=2) + 2L
Define the transformations from C? to C by
u=r, v=r-+ L <f>
; o )
1 [s (A=ps+2—(2)?2+1
(4.4.19) w=rty— [; ( %_pr)rf; ]
Let

(4.4.20) o(r,s,t;2) = ¢(u,v,w; z)
:gb(w;(;), HLFM—W*?—(?) +?];Z).

A—p A—p|r (A=p)r+2

Using equations (4.4.16), (4.4.17) and (4.4.18), from (4.4.20), it follows that

(4.4.21) V(p(2), 20 (2),

B »(n+ 1N f
- ¢( IRCRVIE

Hence (4.4.15) becomes

p'(2);2)

(2) L(n+2,\)f(2) [(n+3,)\)f(z)‘z>
) T L(n+1L,Nf(2) Ln+2,\)f(z) ")

V(p(z), 2 (2), 2°p"(2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ is equiv-
alent to the admissibility condition for ¢ as given in Definition 1.4.1. For this purpose,

note that

= (A=p)lo—r),

S|+ S| »

= G0 -2 oo 2],

v(w —v)

and thus §+1 - ()\—p){ —(Zu—v)}.

v—u
Hence ¢ € W[, q] and by Theorem 3.1.1, p(z) < ¢(z) or

Ln+1,X)f(2)
I(n, A) f(2)

< q(2). O
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THEOREM 4.4.6. Let ¢ € O11]h,q] := O11[h(U),q] with ¢(0) = 1. If f(z) € %,
satisfies

Lin+ 1N f(2) L(n+2,N)f(2) I(n+3,X\)f(2) .
(4.422) ¢( LN Lt LG Lnt 20 f)

z) < h(z),

then
L(n+1,\)f(2)
Iy(n, M) f(2)

DEFINITION 4.4.4. Let Q2 be a set in C and let ©;1[Q, M| := O;,[, q] where

=< q(2).

q(z) =1+ Mz, M > 0. The class of admissible functions ©; (€2, M] consists of those

functions ¢ : C® x U — C such that

(4.4.23)
i E+ (A —p(l+ M), B+ A —p(+ M),
o(1+Me?, 1+ S e M e e
(M+e ) [(A=p) A+ Me?) +1) kM + Le ] — k> M?> 0
(A =p)(L+ Me?)[(A = p)(M + )2 + kMe™"] z> g

whenever z € U, 0 € R, R{Le ™} > kM(k — 1) for all real § and k > 1.

COROLLARY 4.4.5. Let ¢ € O1,[Q2, M]. If f(z) € ¥, satisfies

Lin+1,XN)f(2) L(n+2,))f(2) ]p(n+3,)\)f(z)'z
¢( %MAV@)’%W+LAM@V%m+lMﬂ@’)EQ

then
Ln+1,\)f(2)
I(n, A) f(2)

COROLLARY 4.4.6. Let ¢ € O 1[M] := O1,[Q, M] where Q) = {w : |w—1| < M}.
If f(2) € ¥, satisfies

p (]p(n—f— LNf(z) Liin+2,X)f(z) I,(n+3, /\)f(z)'z) 4
L(n, N f(z) " Ln+1,\)f(z) L(n+2,\)f(z)

<1+ Mz.

< M,

then
Lin+1,)\)f(2)
Iy(n, A) f(2)

COROLLARY 4.4.7. If f(z) € &, satisfies

Lin+2,N)f(2) IL(n+1,N)f(2) M
(4.424) Lt LG LN O—pi

—1‘<M.

then
Ln+1,\)f(2)

L NF(2) <1+ Mz
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This follows from Corollary 4.4.5, by taking ¢(u,v,w;z) = v —wu and Q = h(U)
where h(z) = Mz/(A —p)(1 + M).

By taking M =1, Corollary 4.4.7 reduces to:

EXAMPLE 4.4.3. If f(z) € £, satisfies

Ln+20f()  Ln+1L0f(2)
L(n+1,)\)f(2) L(n,\) f(2)

_ 1
2(A—p)’

then
IL(n+1,\)f(z2)

Lp(n, A) f(2)

-1 <1

4.5. SUPERORDINATION OF THE MULTIPLIER TRANSFORMATION

The dual problem of differential subordination, that is, differential superordination
of the multiplier transformation is investigated in this section. For this purpose the class

of admissible functions is given in the following definition.

DEFINITION 4.5.1. Let Q2 be a set in C, ¢(2) € H and z¢'(z) # 0. The class of
admissible functions ©/[(2, ] consists of those functions ¢ : C> x U — C that satisfy the
admissibility condition

o(u,v,w;¢) € Q

whenever

u=q(z), v : {(A —p)a(z) + Zq/<z)] ,

)l

z€eU,(€dU and m > 1.
THEOREM 4.5.1. Let ¢ € ©7[Q, q. If f(2) € Xy, 2PL,(n,\)f(2) € Q1 and
¢ (2P 1p(n, A) f(2), 2L (n + 1, A) f(2), 2P Ip(n + 2, M) f(2); 2)
is univalent in U, then
(45.1) QC {6 ("L(n, N f(2), 2" Ly(n + 1, ) f(2), 2" L(n + 2, \) f(2): 2) : z € U}

implies

q(z) < 2PL,(n, N) f(2).
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PROOF. From (4.4.9) and (4.5.1), it follows that

QcC{v (p(z),20'(2), 2" (2);2) 2 € U}.

In view of (4.4.7), the admissibility condition for ¢ € ©[€2,¢q|, is equivalent to the
admissibility condition for ¢ as given in Definition 1.4.2. Hence ¢ € ¥'[Q, ¢], and by

Theorem 3.1.2, ¢(z) < p(2) or
q(z) < 2PL,(n, N) f(2). O

THEOREM 4.5.2. Let q(z) € H, h(z) be analytic in U and ¢ € ©O)[h,q] :=
O4[hU),q]. If f(z) € £, 22 1,(n,\)f(z) € Oy and

¢ (2P 1p(n, A) f(2), 27 Lp(n + 1, ) f(2), 27 Ip(n + 2, A) f(2); 2)
is univalent in U, then
452)  h(2) < & (PL(n, N f(2), 2 L(n + 1, N f(2), 2L, (n + 2, \) f(2); 2)
implies

q(z) < 2P L,(n, \) f(2).

Theorems 4.5.1 and 4.5.2 are used to obtain subordinants of differential superordi-
nation of the form (4.5.1) or (4.5.2). The following theorem proves the existence of the

best subordinant of (4.5.2) for appropriate ¢.

THEOREM 4.5.3. Let h(z) be analytic in U and ¢ : C3> x U — C. Suppose that

the differential equation
#(q(2), 24 (2), 224" (2); 2) = h(2)
has a solution q(z) € Qy. If ¢ € ©}[h,q], f(2) € Sy, 271,(n, \) f(2) € Oy and
¢ (P1y(n, A f(2), 2P Ip(n + 1, A f(2), 2 Lp(n + 2, A) f(2); 2)
is univalent in U, then
h(z) < & (2" 1p(n, M) f(2), 2Py (n + 1, M) f(2), 2" 1y (n + 2, A) f(2); )

implies

q(z) < 2P Lp(n, A) f(2),
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and q(z) is the best subordinant.

PROOF. The proof is similar to the proof of Theorem 4.4.4 and is therefore omitted.

g

Combining Theorems 4.4.2 and 4.5.2, the following sandwich-type theorem is ob-

tained.

COROLLARY 4.5.1. Let hy(z) and qi(z) be analytic functions in U, hy(z) be
univalent function in U, and q3(z) € Q1 with ¢;(0) = ¢2(0) = 1 and ¢ € Or[ha, g2] N
O [h, qu]. If f(2) € 3,, 2P1,(n,\)f(z) € HN Qy and

6 (PL(n N f(2), L0 + 1N f(2), (0 + 2,0 £(2); 2)
is univalent in U, then
mn(2) < 6 (L (n, A f(2), 2T+ LA F(2), 22T, (0 + 2, N £(2); 2) < ha(2)

implies
@1(2) < 2PL,(n, A\) f(2) < ga(2).

DEFINITION 4.5.2. Let 2 be asetinC, q(z) #0, z¢'(2) # 0 and ¢(2) € H. The
class of admissible functions ©7 ,[2, q] consists of those functions ¢ : C* x U — C that

satisfy the admissibility condition

o(u,v,w;C) € Q
whenever
u=a(:) v =5 (= o) + 225,
%{M _i)% —%) (3 - p)(2u - v)} < %%{Zj(f)) + 1} ,

zeU, (€U and m > 1.

A dual result of Theorem 4.4.5 for the differential superordination is given below.

106



THEOREM 4.5.4. Let ¢ € ©7,(Q,q] and q(z) € H. If f(2) € %, Bl ¢
er and

s (Ip(n + LA f(2) Li(n+2,A)f(2) L(n+3,X)f(2) z)
L(n, N f(2) T L(n+1LAN)f(2) L(n+2,0)f(2)

is univalent in U, then

Lin+1,N)f(z) L(n+2,\)f(2) ]p(n+3,)\)f(z)‘z .
(4.53) QC{¢< LNIG) Lt L) T+ 20/ () ) GU}

implies

IL(n+1,\)f(z2)
) = wNfe)

PROOF. From (4.4.21) and (4.5.3), it follows that

QC {0 (p(2),20'(2), 2%"(2); 2) - 2 € U}

In view of (4.4.19), the admissibility condition for ¢ is equivalent to the admissibility

condition for ¢ as given in Definition 1.4.2. Hence ¢ € W'[(2, ¢|, and by Theorem 3.1.2,
q(z) < p(z) or

Ip(n—i-l,)\)f(z)
1) = NI

THEOREM 4.5.5. Let q(2) € H, h(z) be analytic in U and ¢ € ©},[h,q] :=
O [M(U). ). If f(z) € %y, 2550 € Qi and

s ([p(n + LA f(2) L(n+2,A)f(2) L(n+3,A)f(2) Z)
L(n, N f(2) T L(n+1LAN)f(2) L(n+2,0)f(2)

is univalent in U, then

Lin+1,N)f(z) L(n+2,N)f(2) [p(n—i-?),)\)f(z)_
(4.54) h(””( L NI ) ’1p<n+1,A>f<z>’fp<n+2,x>f<z>’z)

implies

s IL(n+1,\)f(2)
W) = Ne)

Combining Theorems 4.4.6 and 4.5.5, the following sandwich-type theorem is ob-

tained.
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COROLLARY 4.5.2. Let hy(z) and q(z) be analytic functions in U, hy(z) be
univalent in U, and q2(2) € Q1 with q1(0) = ¢2(0) = 1 and ¢ € Oy 1[ha, 2] NO7 [h1, q1].

If f(2) € Ty, BRI € 1N Q,, and

i (1p<n+ LAF(2) Ln+2,Nf(2) Ln+3, A)f(z).z)
L(n, N f(z) "L+ LA f(2) L(n+2,0)f(2)

is univalent in U, then

Lin+1,XN)f(2) L(n+2,N)f(2) Ip(n+3,)\)f(z)'z B
’“(Z)”( LNIG) LA LNIG) Lt 2N ) )”2”

implies

Ln+1,\)f(2)
I(n, A) f(2)

q(z) < =< qa2(2).
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CHAPTER 5

SUBORDINATION BY CONVEX FUNCTIONS

5.1. INTRODUCTION

Let f(z) be given by (1.1.1) and a fixed function g(z) be given by

(5.1.1) g(2) =2+ gaz",
n=2

with g, > g2 >0 (n>2), v <1, and let

Ty(y) = {f(z) €AY Jangal <1 —7}-

n=2
The class T,(7) includes as its special cases, various other classes that were considered
in several earlier works. In particular, for y = a and ¢,, = n —«, the class T,(y) becomes
T'S*(«) of starlike functions of order o with negative coefficients introduced by Silverman
[98]. For v = a and g, = n(n — «), the class T,(y) reduces to T'C'(«) introduced by
Silverman [98]. For these classes, Silverman [98] proved that 7'S*(a) C S*(«) and

TC(a) C Cla).

By using convolution, Ruscheweyh [92] defined the operator

z

Df(z) == =)ot

x f(2), (a>-—1).

Let R, (/) denote the class of functions f(z) in A that satisfy the inequality

Dt f(z)  a+28
Def(z) ~ 2(a+1)

(a>0,0<B<1, z€U).

Al-Amiri [3] called the functions in this class as prestarlike functions of order o and type
B. Let H,(() denote the class of functions f(z) given by (1.1.1) whose coefficients

satisfy the condition

[e.9]

(5.1.2) > @n+a-28)Cla,n)an] <2+ a—28, (@>0,0<B<1),

n=2
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where
n

(k+a—1)
H O (n=2,3,---).
Al-Amiri [3] proved that H,(3) C Ra(ﬁ). By taking ¢, = (2n + o — 25)C(«, n) and

v=20—1—a, we see that H,(3) := T,(v).
For functions in the class H,(/3), Attiya [9] proved the following:

THEOREM 5.1.1. [9, Theorem 2.1, p. 3] If f(z) € H.(B) and h(z) € C, then

A4+ a—-20)1+«)

(5.1.3) 2[a+(2+o¢)(3+a—26)](f*h)(z) < h(z)
and
(5.1.4) R(2) > _a+ 2+a)(34+a—20))

Ad+a—-20)1+a)
The constant factor

4+ a—-206)(1+ «)
2+ 24+ a)(3+ a —20)]

(5.1.5)

in the subordination result (5.1.3) cannot be replaced by a larger number.

Owa and Srivastava [72] as well as Owa and Nishiwaki [68] studied the subclasses

M*(a) and N*(«) consisting of functions f € A satisfying

Z[n—)\+|n—|—/\—2a|}|an|§2(oz—1), (a>1,0<A<1)
n=2
and

Zn[n—/\—l—|n—|—)\—2a|]|an|§2(a—1), (a>1,0<A<1)
n=2

respectively. These are special cases of T,(7y), with g, = n—A+[n+A—2a|, v = 3—2q,
and g, =n(n— X+ |n+ X —2a]), v = 3—2q, respectively. For the class M*(«a), and
N*(«), Srivastava and Attiya [102] proved the following:

THEOREM b5.1.2. [102, Theorem 1, p. 3] Let f(z) € M*(«). Then for any

function h(z) € C and z € U, we have

2—- A+ 24+ X —2¢

1.
(5.1.6) 20— A+ 2+ h—2a]]

(f +h)(2) < h(z)
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and

20 = A+ 2+ X\ — 20|

(5.1.7) R(f() > 5 By A= 2all

The constant factor

2— A+ 24+ X —2¢

1.
(5.18) 2o — A+ 2+ A= 2a]]

in the subordination result (5.1.6) cannot be replaced by a larger number.

THEOREM 5.1.3. [102, Theorem 2, p. 5] Let f(z) € N*(«). Then for any

function h(z) € C and z € U, we have

2—A+124+ X —2q]
20+ 1 =X+ 24+ X —2q]]

(5.1.9) (f xh)(2) < h(2)
and

at+1—XA+[2+)—2q]
2= NF2+4r—2a]]

R(f(2) >

The constant factor
2—A+124+ X —2q
20+ 1 - A+ ]2+ X — 2]

in the subordination result (5.1.9) cannot be replaced by a larger number.
In this chapter, Theorems 5.1.1 and 5.1.2 are unified for the class 7,(y). Relevant
connections of these results with several earlier investigations are also indicated.

A sequence (b,,)7° of complex numbers is said to be a subordinating factor sequence,

if for every convex univalent function f(z) given by (1.1.1), then
Z anbn2" < f(2).
n=1
The following result on subordinating factor sequence is needed to obtain the main result.

THEOREM 5.1.4. [112, Theorem 2, p. 690] A sequence (b,,)5° of complex numbers

is a subordinating factor sequence if and only if
R (1 + 2anz"> > 0.
n=1
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5.2. SUBORDINATION WITH CONVEX FUNCTIONS

THEOREM 5.2.1. If f(2) € Ty(v) and h(z) € C, then

(5.2.1) ﬁ(f s h)(2) < h(z2)
and
(5.2.2) R(f(2)) > —gﬁg% (z € ),

The constant factor

g2
2(g2+1—17)

in the subordination result (5.2.1) cannot be replaced by a larger number.

PROOF. Let G(2) = z + > ", g22". Since T,(y) € T(7), it is enough to prove

the result for the class T (7). Let f(2) € Ti(7y) and suppose that
h(z)=z+ chz" cC.
n=2
In this case,

P2 -2 z Oocaz" )
2(gz+1—v)(f*h)(z)_Q(gﬁl—v)( +; o )

Observe that the subordination result (5.2.1) holds true if

( g2 a)oo
2(92"‘1_7) " 1

is a subordinating factor sequence (with of course, a; = 1). In view of Theorem 5.1.4,

this is equivalent to the condition that

- g2
5.2.3 RS1+ —a,z" p > 0.
( ) { ; g2 +1—7 }
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Since g, > g» > 0 forn > 2,
R 1+L§:anz”
g2 +1—7~

= R1+ 92 z+ L f:gaz”

- 2Un
Gtl=7  gt+l-7907

> 1-— 92 r+ ! i\gZan\r”
gpt+l-=—7  g+tl-74

1—
> 1—{ 92 r+ 2 r}
gtl-9  g+l-v

> 0 (]z2|=r<1).

Thus (5.2.3) holds true in U, and proves (5.2.1). The inequality (5.2.2) follows by taking
h(z) =z/(1 —=z)in (5.2.1).

Now consider the function

1—
F(z):z——vz2 (v <1).
92

Clearly F(z) € T,(vy). For this function F'(z), (5.2.1) becomes

g2 A
—  F < .
P g LG g

It is easily verified that

min {?R (ﬁﬁ’(@)} - —% (z D).

Therefore the constant

g2
2(go+1—17)

cannot be replaced by any larger one. U

COROLLARY 5.2.1. If f(z) € TS*(«) and h(z) € C, then

(5.2.4) ﬁ(f x h)(2) < h(z)
and
R(f(2) >~ 5 (z€U).
The constant factor
2—«
2(3 — 2a)
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in the subordination result (5.2.4) cannot be replaced by a larger number.
REMARK 5.2.1. The case @ = 0 in Corollary 5.2.1 was obtained by Singh [100].

COROLLARY 5.2.2. If f(z) € TC(«) and h(z) € C, then

(5.2.5) 52_‘30;( £ h)(2) < h(2)
and
5 — 3«
R(f(2)) > 3@ a) (z € U).
The constant factor
2 —«
5 — 3«

in the subordination result (5.2.5) cannot be replaced by a larger one.

REMARK 5.2.2. Theorem 5.1.1 is obtained by taking v =23 — 1 — « and

(k+a—1)
(n—1)!

n

gn:(2n+a—2ﬂ)H

k=2

n=23---, a>0, 0<p<1)),

in Theorem 5.2.1. Similarly by putting v = 3 — 2a and
gn=n—A+n+A—-2a] (n=2,3---, a>1 0<A<1),

in Theorem 5.2.1 yields Theorem 5.1.2. By taking v = 3 — 2« and
gn=nn—=A+n+AX=2a]) n=2,3---, a>1, 0<A<1),

in Theorem 5.2.1 yields Theorem 5.1.3.
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CHAPTER 6

COEFFICIENT BOUNDS FOR p-VALENT FUNCTIONS

6.1. INTRODUCTION

Let ¢ be an analytic function with positive real part in the unit disk U with p(0) = 1
and ¢'(0) > 0, and maps U onto a region starlike with respect to 1 and symmetric with
respect to the real axis. Define the class Sy () to be the subclass of A, consisting of
functions f(z) satisfying

1 (1zf'(2)
v (7

—1)4(,0(2) (zeU and beC\{0}).

As special cases, let

Sp(p) == ST,(0),  Splp) :=551(),  S™(v) :== ST1(p).

For a fixed analytic function g € A, with positive coefficients, define the class S; , (¢)
to be the class of all functions f € A, satisfying f * g € S; (). This class includes as
special cases several other classes studied in the literature. For example, when g(z) =
2 D 2", the class S, (i) reduces to the class C}, () consisting of functions

f € A, satisfying

(S

b bp
The classes S*(¢) and C(p) := C}1(p) were introduced and studied by Ma and Minda
[54].

)<g0(z) (z€eU and beC\{0}).

Define the class Ry, (¢) to be the class of all functions f € A, satisfying

_|_1(f,<z)_1>—<gp(z) (zeU and beC\{0}),

b \ pzr—1

and for a fixed function g with positive coefficients, let Ry, ,(¢) be the class of all

functions f € A, satisfying f x g € Ry ,(¢).
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Several authors [36, 45, 73, 87, 84, 83| have studied the classes of analytic

functions defined by using the expression Z}cég) + azif(/;()z). We shall also consider a class
defined by the corresponding quantity for p-valent functions. Define the class S;(a, ¢)

to be the class of all functions f € A, satisfying

L+a(l=p)zf'(z) | az’f"(2)
p fz) p f(2)

Note that S5 (0, ¢) is the class S} () and S*(a, ) := Si(a, p). Let S (a, ) be the

<p(z) (€U and a>0).

class of all functions f € A, for which fx g € S»(a, ). Also let Sy () := S ,(0,¢).

Let M, (v, ) be the class of p-valent a-convex functions with respect to ¢ satisfying

l—azf'(z)  « zf"(2)
r 1) T p (” )

Let M(c,p) := Mi(a, ). Further, let L) (a, ) be the class of functions f € A,

)%gp(z) (zeU and «>0).

satisfying

% (Z}c;ij))a (1 + Zﬂ;iz)))la <p(z) (€U and «a>0).

Functions in this class are called logarithmic p-valent a-convex functions with respect to

®.

In this chapter, Fekete-Szego inequalities and bounds for the coefficient a3 for
the classes S; (i) and S () are obtained. These results are then extended to the other

classes defined earlier.
Let T be the class of analytic functions of the form
(6.1.1) w(z) = w1z + wez® + - -

in the unit disk U satisfying the condition |w(z)| < 1. For the proof of the main results,
the following lemmas are needed.
LEmMMA 6.1.1. Ifw € Y, then

—t ift<-—1
jwo —twi| << 1 if-1<t<1

t ift>1
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When t < —1 ort > 1, equality holds if and only if w(z) = z or one of its rotations. If

—1 < t < 1, then equality holds if and only if w(z) = 2% or one of its rotations. Equality

holds fort = —1 if and only if w(z) = zl’\:; (0 < X < 1) or one of its rotations while for
t =1, equality holds if and only if w(z) = —z7%% (0 < A < 1) or one of its rotations.

Also the sharp upper bound above can be improved as follows when —1 <t < 1:
lwy — twi] + (t+ D|wi]* <1 (-1 <t<0)

and
lwy — tw?| + (1 —=t)u > <1 (0<t<1).

Lemma 6.1.1 is a reformulation of a lemma by Ma and Minda [54].

LEMMA 6.1.2. [39, inequality 7, p. 10] Ifw € Y, then for any complex number t,
lwy — tw?] < max{1; [t[}.
The result is sharp for the functions w(z) = z* or w(z) = z.

LEMMA 6.1.3. [82] If w € Y then for any real numbers g, and ¢, the following

sharp estimate holds:
(6.1.2) w3 + qrwiws + gwi| < H(q, ¢2)

where
1 for (q1,q2) € D1 U Dy

g2 for (q1, q2 GUkngk

H(q,¢2) =  3(las| + 1) (ﬁ)

g ai—4 gi—4
392 \ Z—4¢> ) \ 3(g2—1)
1

Nl =) (5iey) " for (@n2) € Do

1
2

N|=
o
<

(91, 42)
(91, 42)
for (q1,q2) € Ds U Dy
(91, 42)
(91, 42)

lg1]—1—g2)

The extremal functions, up to rotations, are of the form

2([(1 = A)eg + Aeq] — e1622)

w(z) =22, wz) ==z w(z)=w(z)= 1—[(1 = Ney + Aeg)z
w(z) = wy(2) Zl(tl_;z), (2) = wa(2) = Zl<t_2|_——t:j)



—i60p —16,

el =leof =1, er=to—e 2z (aFD), 82:—eTO(z'aj:b),

0 b+
a:tocosé), b= 1—t%sm§0 A= 2ba

1 1

t_[QQQ(Q%‘FQ)—?’Q%r t—( | +1 )2

0 — ) 1 — )
3(q2 — 1)(qf — 4¢2) 3(|lqu] + 1+ q2)

1 \? 6 21 8)—2q2+2
tz:( ( |91 ) o o_@[@(ql +8) —2(¢f + )]

ol —1—q)) 2 2| 2(@+2) -3¢

The sets Dy, k=1,2,---,12, are defined as follows
1
Di = {(q1,¢) : ] < 5 2| < 1},

1 4
Dy = {(q1,¢): 5 < @ < 2, 2—7(\q1\ + 12 = (|| +1) < g2 < 1},

1
D3 = {(q1,¢) || < 5 2 < -1},
1 2
Dy = {lq, @) : ol = 5022 < —§(|CI1| + 1},

Ds = {(¢1,¢2) : o] <2,¢2 > 1},
1
D = {(g,0):2< |l <40 > 5o +8)}
2
D: = {(¢1,¢2) : |¢1| > 4,92 > g(’fh| -1},
1 2 4 ,
Ds = {(¢1,¢2): 3 <lal £2, —§(|Q1’ +1) < ¢ < §(|Q1| +1)° = (|| + 1)},

2 2|1 |(Jgu| + 1
Do = {lanae) sl 2 22l + 1) < g < 221021 Dy

T+ 2q| +47
2|q1|(lq| + 1) 1
Dy = , 12 < <4, << —(2+38

2l |(Jqu| + 1) < g < 2l |(Jgu] = 1)

Dy = {(qg): g >4, 20llai+ D Zlaflial = 1y
I B TP e e PR
2|Q1|(|Q1| 1) 2
Dy = (g, ) |l >4 ———— <@ <=(lal—-1}
Q1 2|q |+4 3

6.2. COEFFICIENT BOUNDS

By making use of the Lemmas 6.1.1-6.1.3, the following bounds for the class S (¢)

is obtained.
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THEOREM 6.2.1. Let p(z) =1+ Bz + Byz®> + B32® + -+, and

. BQ — Bl -+ pr
- pBf

R By + B + pBj - By + pB?
2 2pB? R 2pB?

(O

If f(z) given by (1.1.2) belongs to S;(p), then

VIS

B+ (1—2u)pBY)  if p<o,

J551

S

(6.2.1) |ap+2 - ,ua12)+1| < if o1 <p<oy,

l\D|

—8(By+ (1 —2u)pB3) if p>oo.

Further, if o1 < u < o3, then

1 By pB
(6.2.2) |apyo — pag, | + B, (1 -5t (2p - 1)P31) |apa|? < -
If o3 < pu < o9, then
1 B B
2 2 2 _ DPD1
(6.2.3) |apio — pag,,| + B, (1 tB - (2p — 1)1931) lapr]” < ==
For any complex number i,
B B
(6.2.4) |apyo — pas | < %max{l;’§2+(1—2,u)p31 }
1
Further,
pB
(6.2.5) lapis] < TIH<Q1aCI2)

where H(q1, o) is as defined in Lemma 6.1.3,

¢ = ———— and ¢ := .

2B1 . 2Bl

These results are sharp.

PROOF. If f(2) € S;(), then there is an analytic function

w(z) = wiz +we? +--- €T

such that

)
Since
2f'(2)

pf(2)

2 3
a a 2a 3a 3 a
=1+ 1:12+(—p—+1+ﬂ)22+( p+3—];ap+1ap+2+ 1;1)23+--',



the equation (6.2.6) yields

(627) Qpy1 = pBlwl,
(6.2.8) Apro = = {pBlwg + p(By + pB)wi }
and

B 4B 3pB? 2B 3pBB 2B3
pl{w3+ 2‘|‘p1 + 3+ opb1Dy +p 111)3}.

6.2.9 = —
(62.9)  apys =" 2B, Wi 5B 1

The equations (6.2.7) and (6.2.8) yields

pB
(6.2.10) (pya — P02 = =1 {w2 —vwi}

where

By
By(2u —1) — =2
= |pBi1(2pn — 1) B

The results (6.2.1)—(6.2.3) are established by an application of Lemma 6.1.1, while in-
equality (6.2.4) follows from Lemma 6.1.2 while (6.2.5) from Lemma 6.1.3.

To show that the bounds in (6.2.1)—(6.2.3) are sharp, let the functions K, (n =
2,3,...) be defined by

zl(;n(z)
PKon(2)

and the functions F) and G, (0 < X\ < 1) be defined by

2Fy(z)  [z2(z+N)
pFi(z) —v ( 1+ Az

=@(z"),  Ken(0) = 0= K] (0) -1

), FA(0) =0=F,0)—1

and

2Gh\(2) z2(z 4+ A)
pGA(z) 7 <_ 1+ Az

Clearly the functions K, Fx, G € S;(¢). We write K, 1= K.

) . GA(0) = 0=G4(0) — 1.

If 4 < o1 or ;1 > 09, then equality holds if and only if f is K, or one of its rotations.
When o, < ji < 09, then equality holds if and only if f is K3 or one of its rotations. If
it = oy then equality holds if and only if f is F or one of its rotations. Equality holds

for 1 = o9 if and only if f is G or one of its rotations. U
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COROLLARY 6.2.1. Let ¢(2) =1+ Byz + By2z®> + B3z® + -+ -, and let

_ 9;2>+1 By, — By + pB;} P 9§+1 By + By +pB;} P 9;2z+1 By + pB;}
= ;02 1= ;  031= -
gpr2  2pDB} gpt2 2B} gp+2 20D}

If f(z) given by (1.1.2) belongs to S; ,(¢), then

o1 .

P — 99p+2 2 ;
29p+2 <B2 + (1 29§+1'u> Bl) it o,
2 .
|apss = pag | < 4 £E- if o1 <p< oy,
(o (o)) o azen

Further, if o1 < u < o3, then

2
9p+1 By Gp+2 pB
e i G ) B S
D

IN

If o3 < pu < oy, then

2
Ipt1 By Gp+2 pB1
(pa — fiay, | + m (1 + = - (2 5 — 1) Bl) |ap 1| s

IN

For any complex number i,

pB B, Gp+2
‘ap+2—ua§+1‘§2g +2maX{17‘§1+<1—2 ng Iu) Bl
D

Further,

B,

p+3

(6.2.11) |apts] < 3p H(q1, ¢2)

where H(q1,q2) is as defined in Lemma 6.1.3,

= ————= and g = .
2B, 2B,

q1 -

These results are sharp.

THEOREM 6.2.2. Let ¢ be as in Theorem 6.2.1. If f(z) given by (1.1.2) belongs

b

to S)

50.g(0), then for any complex number 11, we have

2
2 p|b| B | B2 Ip+1
|ap 12— pagy,| < 2912 max § 1; B, +bp|1-— 29p+2u By

The result is sharp.

PROOF. The proof is similar to the proof of Theorem 6.2.1. U

For the class Ry, (), the following result is obtained.
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THEOREM 6.2.3. Let p(z) = 1 + Byz + Byz? + Bsz® + ---. If f(2) given by

(1.1.2) belongs to Ry, (), then for any complex number (i,

(6:212) Jayer — o] < |yl max {1:[o]}.
where
Further,
|b|PBl
6.2.13 < H
( ) |ap+3| =31 (QLQQ)

where H(q1,q2) is as defined in Lemma 6.1.3,

2B, By
= —= an =,
) 2= g

These results are sharp.

PROOF. A computation shows that

1/ fl(= +1 +2 +3
1+—(f( ) —1) :1—|—p—apﬂz—l—p—ap+222+%ap+3z3+-~

b \ pzp—1 bp bp
Thus
bpB
(6.2.14) (pyo — JUs, ) = ]T; {wy —vwi} =5 {wy —vwi}
where v := l’piﬁ—(f)jp) — g—f] and v := lff;. The result now follows from Lemma 6.1.2
and Lemma 6.1.3. O

REMARK 6.2.1. When p =1 and

(-1<B<A<1),

inequality (6.2.12) reduces to the inequality [23, Theorem 4, p. 894]

b

b|B 4B + 3buB
|ap+2 —M%zaﬂ‘ < | |3 - HlaX{l; ’Tl

For the class Ry, ,(¢), the following result is obtained.
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THEOREM 6.2.4. Let p(z) = 1+ Byz + Byz? + Bsz® + ---. If f(2) given by

(1.1.2) belongs to Ry, (), then for any complex number (i,

|apra — pag | < |yl max {1; |v]}

where
S 119541 pbBi (p +22) B and = bpB1 '
gpr2  (P+1) By gp+2(2+p)
Further,
|blp B,
6.2.15 apys| < o —~——H(q1,q
(6215) sl < G5y oy H (@12
where H(q1,q2) is as defined in Lemma 6.1.3,
2B, d B3
= —= an =
q1 2 q2 B,

These results are sharp.

For the class S (a, ¢), the following coefficient bounds are obtained.

THEOREM 6.2.5. Let ¢(z) =1+ Byz + Boz? + B3z + ---. Further let

1+ a(p+1)[(1+alp+1))(By — By) + pBi]
2pB? ’

01 =

(1+al(p+1)[(1+alp+1))(By+ By) + pBi]
2pB? ’

(I+a(p+1)[A+alp+1))B + pBi)
2pB? ’

09 =

O3 =
_ 2upBi(pa+2a+1) pBy B
(1+a(p+1))? l+a(p+1) B’

If f(z) given by (1.1.2) belongs to S;(«, ), then

and v :=

.
—yv  ifp <oy,

(6.2.16) (po — fias ] < 4 5 ifoy < p < o,

v if 4 > os.
Further, if o1 < u < o3, then

1+a(p+1))3%y
p*B}

gy — 2] + (v + Dlapal? < 7.
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If o3 < pu < oy, then

1+ alp+1))%y

(
|apyo — pas | + (1= v)lapn]* <.

p*Bf
For any complex number i,
(6.2.17) |apyo — pas, | < ymax{1;|v|}.
Further,
pB
6.2.18 < H
( ) |ap+3| = a(5_p_p2)+3 (91792)

where H(q1,q2) is as defined in Lemma 6.1.3,

2B, B?p(a(3p +5) + 3)
= {Bl +2(a<p+1)+1)(a(p+2>+1)}’

and

. {% Byp(a(3p +5) 4 3) + p?B(pa + o + 1)]
B By 20a(p+ 1)+ D(alp+2)+1) '

These results are sharp.

PROOF. If f(2) € Si(a, ). It is easily shown that

L+a(l=p)zfi(z)  az’f'(z)
p flz) p f(2)

l+alp+1 l1+alp+2 l+ap+1
LS P (L IR L (LN E
3+ab5—p—7p° 3+alB3p+5 1+alp+1
S (BraGopop),  BraBpis) o (rarD) s )
p p p g

The proof can now be completed using similar arguments as in the proof of Theorem 6.2.1.

g

For the class S}  (a, ¢), the following coefficient bounds are obtained.

THEOREM 6.2.6. Let ¢(z) =1+ Byz + Byz®> + B3z® + -+ -, and let

G +alp+ D)1 +alp+1))(B2 — Bi) + pBi]
B QPB%QP—FZ

o1 .

Y

_ Gy +alp+1)[(1+alp+1))(Ba + Bi) + pBY|
2pBi gp+2

g9 )
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_ Gl +alp+D)[(A+a(p+1))B; + pBi]

03 .

2p3%gp+2 ’
_ 2gproppBi(pa+ 2a 4 1) pB1 By - pBi
= 5 T — — —, and v := :
gp+1<1+04(p+ 1)) l+ap+1) B 29p+2(1 +a(p+2))

If f(z) given by 1.1.2 belongs to S;(«, ), then

—yv if p <oy,
2 )
Qpyo — Map+1| <9 7 if o1 <p <oy,
YU if > o
Further, if o1 < u < o3, then

1+a(p+1))29§+w(v+1)|a L <n
il? < 7.

|apr2 — pag | + :

p*B}
If o3 < pu < oy, then
(I+alp+1)%g1y
(p+2 — lmiﬂ‘ + 2B = (1= v)|apl* <7
1

For any complex number ,

(apsa — pay,| < ymax{1; o]},

Further,
pB1
6.2.19 a < H(q,
( ) apeal < gp+3la(5 —p—p?) + 3] @)
where H(q1,qo) is as defined in Lemma 6.1.3,
{232 Bip(a(3p+5) +3) ]
Q1 =
B ' 2(alp+ 1)+ Dalp+2)+ 1)

and

_ {% | Bep(a(3p+5) +3) + P2 B2(pa + o + 1)}
B 2alp+ D+ Dialp+2)+ 1)

These results are sharp.

When p =1 and
14+ 2(1-20
oo = ) g ooy
—z
(6.2.16) and (6.2.17) of Theorem 6.2.5 reduces to the following result:
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COROLLARY 6.2.2. [36, Theorem 4 and 3, p. 95] Let o(z) = =120

1—2

B <1). If f(z) given by (1.1.1) belongs to S*(«, @), then

—yv  ifp <oy,

(6.2.20) (p2 — fias ] < 4 5 ifoy < p < oo,

YU if > o9,

and for any complex number i,
(6.2.21) |apso — pa | < ymax{1;|v]}
where

op:=2(14+a(p+1)),
I+ap+1)I1+a+p(dl+a-—7F)]

09 =

2p(1 - 3) ’
oo Italp+ D)L +alp+1) +2p(1 - F)]
° 4p(1 - ) ’
and oo 2P0~ B)2u(a(p+2) +1) = (1+alp+1))]
' (1+alp+1))? ’
. p(1=p)
T 14+ alp+2)

For the class L)) (cv, ¢), the following coefficient bounds are obtained.

THEOREM 6.2.7. Let p(z) =1+ Biz+ Boz® + B3z* +---. Let

— v3(By — B1) + 72 B}

o Y
' 7B}

L ’73(32 + Bl) + ’}/QB%

09 = 3 s
1 Bi
R Y3 By + 2B}
3= 5o

1B}

= 4p*(p + 2 — 20),

Yo = (1 —a)[2p(p + 1)* + a] + 2ap?,

126

(0 <



73 =2(p+1—a)?

v M2 g B
73 By
T (1= a)[Bp(p +1)(p +2) + 4a] + 3ap®
1= — p4 )
and
1 -« @
T, = ((p+1)°[6p(p + @) + ala + 1)] = pa[6p® + p*(19 + ) + 3p(3 + @) + 3a])+—.

6p° D
If f(z) given by (1.1.2) belongs to L)' (e, ), then

—pQBNJ

spro—nay T S0

(6-2-22) ’ap+2 - NG?H-J < % if o1 <p <oy,
2 .

Terssm M0

Further, if o1 < u < o3, then
2

73 2 p°B
6.2.23 — pa? —(1 < —
( ) &p+2 /Lap-i-l‘ _'_ Blf)/1< +U>’ap+1‘ — 2(p+ 2 _ 20{)
If o3 < p < oy, then

2

73 2 p°B
6.2.24 — pa? 1-— <——m.
( ) aer? /’Lap+l| + Blf)/l( /U)‘aerl’ — 2<p+ 2 _ 20{)

For any complex number i,
2
2 p~Bi )
(6225) ‘ap+2 — ,LLCLP+1‘ S m max{l, |’U|} .
Further,
2
p°By
< —  __H
’aerS‘ = 3(p—3a+3) (71, 92)

where H(q1,q2) is as defined in Lemma 6.1.3,

2B Tip*By
= Bi 2(p—a+1)(p—20+2)
B Tip* (3B B? Topb B?
and qu——?’— 10" (v3B2 + 12 BY) B 2p" Dy

B 2plp-a+l(p—2a+2) (p-a+1)¥

These results are sharp.

PROOF. The proof is similar to the proof of Theorem 6.2.1. U

The final result is on the coefficient bounds for functions in M, (v, ¢).
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THEOREM 6.2.8. Let p(z) =1+ Byz + Byz? + B323 +---. Let

p(1+ pa)?(By — By) + (o + p(p + 2a)) B?

o 2p(p + 2a) B? ’
5y = PP’ (By 1 By) + (ot p(p +20)) B}
2p(p + 2a) B} ’
by = PUOF pa)?By + (o + p(p + 20)) B}
2p(p + 20) B? ’
and p(p+20)2u—1) —a]B _ By
2p(p + 2a) B

If f(z) given by (1.1.2) belongs to M,(«, ), then

—p?Byv

2(p+2a) it p <oy,
(6.2.26) |aps2 — pag,| < 253?21&) if o1 < p< oy,

21(7;32) it >0,
Further, if o1 < u < o3, then
(6.2.27) i — iy + =P g < PP

re p+2 p+1 2(]7 n 20()B1 p+1| = 2(p + 20[) .
If o3 < pu < oy, then
1+ pa)? P’By
6.2.28 — pa? 1 +pa) 1— IR i S
( ) p+2 Map+1| + 2<p i 20&)Bl< ’U)’aerl‘ = 2(]9 + 2(1/)
For any complex number 1,
2 p231
(6.2.29) Apyo — /mpﬂ{ < 3100 max {1; |v|} .
Further,
2
p° By
’%+3| < mH<q17Q2)a

where H(q1,q2) is as defined in Lemma 6.1.3,

2By, 3(p? + 3pa + 2a)

DB T 20+ pay(p+ 20) Y

and

(p* + 5ap® + 3p?a(2a + 1) + pa(9a — 2) + 2a?)

B3 3(p? + 3pa + 2a)
. 2p(1+ pa)?(p + 20)

== B}
By 2(14 pa)(p+ 2a)

By+

These results are sharp.
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PROOF. For f(z) € M,(a, ¢), a computation shows that

L) a () S
p

p f(z) f'(2)

1 ?+2pa + a)a, 2(p +2

=14+ ( +pa)ap+1z + (_ (p p - ) p+1 + (p+ QO‘)ap-ﬂ) ZQ
p p p
3(p + 3a 3(p? + 3pa + 2 p® + 3p*a + 3pa + «
+ ((T)CLP+3 — ( p3 )ap+1ap+2 + p4 CL2+1 23
NI
The remaining part of the proof is similar to the proof of Theorem 6.2.1. U

When p =1 and p(z) = (1+2)/(1—2))" (a>0,0<3<1),(6.2.26) and
(6.2.29) of Theorem 6.2.8 reduce to the following result:

COROLLARY 6.2.3. [21, Theorem 2.1and 2.2, p. 23] Let p(z) = ((1+ 2)/(1 — 2))”
(a>0,0<p<1). Let

1+a)*)(B-1)+2(1+43a)3

01 =

4(1+2a)3 ’

T+ ?(B+1)+2(1+30)p

o2 = A(1 + 2a)3 ’
nd v 2042000 = 1) — o]
' 1+ 2« '

If f(z) given by (1.1.1) belongs to M («, ), then

—Bv

Hea I H<on,
‘&3_/’“1%‘ < 1—5204 if 01 S,USO—%
1f;a it H Z 02-
For any complex number ,
as — ua%! < 20 max {1; |v|}.

These results are sharp.

When p =1 and o = 1, (6.2.26)—(6.2.28) of Theorem 6.2.8 reduce to the following

result:
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COROLLARY 6.2.4. [54, Theorem 3 and Remark, p. 7] If f(z) given by (1.1.1)
belongs to C(yp), then

“GumABERB e 32 < 9(B, — By + BY),
a3 — paz| < § B if 2(By — Bi + BY) <3B{u <2(By + Bi + BY),
GuBBI2B2 e 3B2 > 2(By + By + BY).

Further, if 2(By — By + B}) < 3Biu < 2(By + B}), then

3”82 - 2<BQ - B1 + B2) Bl
2 1 1 2
a5 = ] + 3B asf” < 75
If 2(By + B?) < 3B?1u < 2(By + By + B?), then
2(By + By + B?) — 3uB? B
|a3—,ua§‘+ (B2 1 21) H 1\a2|2§—1.
357 6

These results are sharp.
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