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KETAKSAMAAN BOHR DAN PELANJUTAN

ABSTRAK

Jika f (z) = ∑
∞
n=0 anzn merupakan peta diri analisis pada unit cakera U , maka

d(∑∞
n=0 |anzn|, |a0|)≤ d(a0,∂U) bagi |z| ≤ 1/3, dengan d menandakan jarak Euklidan

dan ∂U bulatan unit. Pernyataan ini disebut sebagai Teorem Bohr, yang dibuktikan

oleh Harald Bohr pada tahun 1914. Tesis ini memberi tumpuan kepada pengitlakan

Teorem Bohr. Andaikan h sebagai fungsi univalen yang tertakrif pada U . Andaikan ju-

ga R(α,γ,h) sebagai kelas fungsi f analisis dalam U dengan f (z)+αz f ′(z)+γz2 f ′′(z)

yang tersubordinasi kepada h(z). Teorem Bohr bagi kelas R(α,γ,h) diperoleh untuk

h suatu fungsi cembung dan fungsi berbintang terhadap h(0). Teorem Bohr untuk ke-

las fungsi analisis yang memeta U ke domain cekung dan juga ke domain cakera unit

berliang diperoleh dalam bab yang seterusnya. Jejari klasik Bohr 1/3 ditunjukkan tak

berubah apabila jarak Euclidean digantikan sama ada dengan jarak sentuhan sfera atau

dengan jarak model cakera Poincaré. Tambahan lagi, teorem Bohr untuk set cembung

Euklidan ditunjukkan mempunyai analog dalam model cakera Poincaré. Akhirnya,

Teorem Bohr diperoleh untuk beberapa subkelas pemetaan harmonik dan logharmonik

yang tertakrif pada unit cakera U .

xii



BOHR’S INEQUALITY AND ITS EXTENSIONS

ABSTRACT

If f (z) = ∑
∞
n=0 anzn is an analytic self-map defined on the unit disk U , then

d(∑∞
n=0 |anzn|, |a0|)≤ d(a0,∂U) for |z| ≤ 1/3, where d denote the Euclidean distance

and ∂U the unit circle. The result is known as the Bohr’s theorem which was proved

by Harald Bohr in 1914. This thesis focuses on generalizing the Bohr’s theorem. Let

h be a univalent function defined on U . Also, let R(α,γ,h) be the class of functions

f analytic in U such that the differential f (z)+αz f ′(z)+ γz2 f ′′(z) is subordinate to

h(z). The Bohr’s theorems for the class R(α,γ,h) are proved for h being a convex

function and a starlike function with respect to h(0). The Bohr’s theorems for the class

of analytic functions mapping U into concave wedges and punctured unit disk are next

obtained in the following chapter. The classical Bohr radius 1/3 is shown to be in-

variant by replacing the Euclidean distance d with either the spherical chordal distance

or the distance in Poincaré disk model. Also, the Bohr’s theorem for any Euclidean

convex set is shown to have its analogous version in the Poincaré disk model. Finally,

the Bohr’s theorems are obtained for some subclasses of harmonic and logharmonic

mappings defined on the unit disk U .

xiii



CHAPTER 1

INTRODUCTION

1.1 Analytic Functions

Let C be the complex plane and U := {z ∈ C : |z|< 1} be the unit disk. Let f be a

function on U and z0 ∈U . We say that f is differentiable at z0 if the derivative of f at

z0 given by

f ′(z0) = lim
h→0

f (z0 +h)− f (z0)

h

exists. If f is differentiable at every point of U , then f is said to be analytic in U

since U is an open set. Let H(U) denote the class of all analytic functions defined on

U . By using the Cauchy integral formula, it can be shown that if f ∈ H(U), then f is

represented by the power series

f (z) =
∞

∑
n=0

anzn, z ∈U, (1.1)

where

an =
f (n)(0)

n!
=

1
2πi

∮
|ζ |=r

f (ζ )
ζ n+1 dζ , n≥ 0,

for any fixed r, 0 < r < 1.

Write U = ∪∞
n=0Kn where K0 = {0} and Kn = {z : |z| ≤ rn < 1} for n ≥ 1 where

(rn)n≥1 is a strictly increasing sequence of positive real numbers such that rn→ 1 as

n→ ∞. The space H(U) can be made into a complete metric space by defining the

1



metric on H(U) as

ρ( f ,g) =
∞

∑
n=1

1
2n
‖ f −g‖n

1+‖ f −g‖n
, f ,g ∈ H(U),

where ‖ f − g‖n = supz∈Kn
| f (z)− g(z)|. The topology on H(U) given by the metric

ρ is then equivalent to the topology of uniform convergence on compact subsets of U

(see [14, p. 221]). Finally, it follows from theorems of Weiestrass and Montel that this

space is complete [76, p. 38].

1.2 Univalent Functions

An analytic function f is said to be univalent in a domain D if f (z) 6= f (w) when-

ever z 6= w for all z,w ∈ D. In particular, f is locally univalent at a point z0 ∈ D if it

is univalent in some neighborhood of z0. The existence of a unique analytic function

which maps U conformally onto any simply connected domain strictly contained in C

follows from the Riemann Mapping Theorem:

Theorem 1.1. [14, p. 230] (see also [69, p. 11]) Given any simply connected domain

D which is not the whole plane, and a point z0 ∈ D, there exists a unique analytic

function f in D, normalized by the conditions f (z0) = 0 and f ′(z0) > 0, such that f

defines a one-to-one mapping of D onto the unit disk U.

As a consequence of this theorem, the study of analytic univalent functions on a

simply connected domain D can now be reduced to the study of analytic univalent

functions on the unit disk U .

The post-composition of a univalent function with the affine map αz+β defined

2



on C, α,β ∈ C with α 6= 0, is again a univalent function. Thus, the study of analytic

univalent functions can be further restricted to the class S which consists of all analytic

univalent functions f (z) = z+∑
∞
n=2 anzn, z ∈U . The Koebe function

k(z) =
z

(1− z)2 = z+
∞

∑
n=2

nzn, z ∈U

is a function in S which maps U conformally onto C\(−∞,−1/4]. Indeed, the Koebe

function and its rotations e−itk(eitz), t ∈ R, appear as extremal functions for various

research problems arisen in exploring the class S.

One such problem is to determine the maximum value of |an| in S for n≥ 2. This is

a well-defined problem as S is a compact subset of H(U) (see [76, Theorem 4.1]) and

the function J( f )= an defined on S has a maximum modulus, that is, there exists a f0 ∈

S such that |J( f )| ≤ |J( f0)| for all f (see [76, Theorem 4.2]). In 1916, Bieberbarch[33]

obtained the estimate for a2:

Theorem 1.2. (Bieberbarch Theorem)[69, Theorem 2.2] If f ∈ S, then |a2| ≤ 2, with

equality if and only if f is a rotation of the Koebe function.

In the same paper, Bieberbarch made a conjecture:

Theorem 1.3. (Bieberbarch Conjecture)[69, p. 37] If f ∈ S, then |an| ≤ n, with equal-

ity if and only if f is a rotation of the Koebe function.

The Bieberbarch theorem is applied to prove theorems regarding the class S such

as the Koebe one-quater theorem [69, Theorem 2.3], the distortion theorem [69, The-

orem 2.5] and the growth theorem [69, Theorem 2.6]. Consequently, the researchers

3



reckoned that the Bieberbarch conjecture is true because of the extremal role played

by Koebe function (and its rotations) in those theorems. A proof of Bieberbarch con-

jecture was eventually given by Louis de Branges [48] in 1985.

1.2.1 Starlike and Convex Functions

In the effort of validating the Bieberbarch Conjecture, researchers considered cer-

tain subclasses of S which are determined by natural geometric conditions.

A domain D is called a starlike domain with respect to w0 ∈D if tw+(1−t)w0 ∈D

whenever w ∈ D for all 0 ≤ t ≤ 1. A univalent function f in U is called a starlike

function with respect to w0 ∈ f (U) if f (U) is a starlike domain with respect to w0. In

particular, if w0 = 0, then f is known as a starlike function. Let S∗ denote the subclass

of S which consists of starlike functions. An analytic characterization of S∗ is given

as follows.

Theorem 1.4. [76, Theorem 2.2] A function f ∈ S∗ if and only if f ∈ S and

Re
(

z f ′(z)
f (z)

)
> 0, z ∈U.

Since S∗ contains the Koebe function and it is a compact subset of H(U) (see

[76, Theorem 4.1]), it can be proved that the Bieberbarch’s Conjecture is true for the

subclass S∗ (see [76, Theorem 2.4]).

Another kind of function which is closely related to the starlike function is the

convex function. A univalent function f in U is called a convex function if f (U) is a

4



convex domain, that is, tw1+(1−t)w2 ∈ f (U) for all w1,w2 ∈ f (U) and 0≤ t ≤ 1. Let

K denote the subclass of S which consists of convex functions. Similarly, an analytic

characterization of K is given by

Theorem 1.5. [76, Theorem 2.6] A function f ∈ K if and only if f ∈ S and

Re
(

1+
z f ′′(z)
f ′(z)

)
> 0, z ∈U.

A close connection between classes S∗ and K is shown in Alexander’s theorem

[69, Theorem 2.12] which states that f ∈ K if and only if z f ′(z) ∈ S∗. The relation is

then applied to deduce the coefficient bounds from the previously known coefficient

bounds of S∗ giving |an| ≤ 1, n≥ 2 for all f ∈ K.

1.3 Differential Subordinations

The famous Noshiro-Warschawski theorem states that if f is analytic in a convex

domain D and

Re f ′(z)> 0, z ∈U,

then f is univalent in D (see [69, Theorem 2.16]). This theorem suggests the character-

ization of an analytic function through its derivative which is a type of the differential

implications [95, p. 1]. Another example is the lemma proved by Miller, Mocanu and

Reade [96]: if α is real and p ∈ H(U) such that

Re
[

p(z)+α
zp′(z)
p(z)

]
> 0 for all z ∈U ,
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then Re p(z) > 0. Let H = {z ∈ C : Rez > 0} denote the right half-plane. In other

words, if

p(z)+α
zp′(z)
p(z)

∈H for all z ∈U ,

then p(U)⊆H .

Let H(U,U) denote the class of of all analytic self-map on U . Before making any

further progress, recall that for functions f ,g ∈ H(U), g is said to be subordinate to

f , written g ≺ f , if g = f ◦ φ for some φ ∈ H(U,U) with φ(0) = 0. Further, if f is

univalent in U , then g≺ f if g(0) = f (0) and g(U) ⊆ f (U). Miller and Mocanu [95,

p. 3] introduced the notion of differential subordination, which is the complex ana-

logue of differential inequality by replacing the real variable concept with the theory

of subordination.

Let Ω and ∆ be sets in C, let p ∈H(U) with p(0) = a for some constant a ∈C and

let ψ(r,s, t;z) : C3×U → C. Then the following relation

{
ψ(p(z),zp′(z),z2 p′′(z);z) : z ∈U

}
⊂Ω ⇒ p(U)⊂ ∆, (1.2)

is a general formulation of function characterization. There are three problems that can

be stated based on the inclusion (1.2).

(i) Given Ω and ∆, find the condition on ψ so that (1.2) holds. Such a ψ is called

an admissible function.

(ii) Given ψ and Ω, find the smallest ∆ so that (1.2) holds.

(iii) Given ψ and ∆, find the largest Ω so that (1.2) holds.
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If Ω is a simply connected domain and Ω 6= C, then the Riemann mapping the-

orem ensures the existence of a unique conformal mapping h of U onto Ω such that

h(0) = ψ(a,0,0;0). Further, if ψ(p(z),zp′(z),z2 p′′(z);z) ∈ H(U), then in terms of

subordination, (1.2) can be rewritten as

ψ(p(z),zp′(z),z2 p′′(z);z)≺ h(z)⇒ p(U)⊂ ∆.

If p is analytic in U , then p is called a solution of the (second-order) differential subor-

dination. Further, if q is conformal mapping of U onto ∆ such that q(0) = a, then (1.2)

becomes

ψ(p(z),zp′(z),z2 p′′(z);z)≺ h(z)⇒ p(z)≺ q(z),

and the univalent function q is called a dominant if p ≺ q for all solutions p. Also,

the best dominant q̃ is the dominant such that q̃ ≺ q for all dominants q (see [95, p.

16]). The monograph [61] by Milller and Mocanu and references therein are excellent

resources for the study on differential subordination.

1.4 Harmonic Mappings

Recall that a real-valued function u(x,y) : R2→ R, with continuous second partial

derivatives, is (real) harmonic if it satisfies Laplace’s equation:

∆x,y u =
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0.

A complex-valued function f (x,y) = u(x,y)+ iv(x,y) is harmonic if both u and v are

(real) harmonic. Write z = x+ iy. The Wirtinger derivatives (differential operators) are
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defined as follows:

∂

∂ z
=

1
2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂ z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Then for a complex-valued function f , f is harmonic if

fzz̄ =
∂ 2 f
∂ z∂ z̄

=
1
4

∆x,y f = 0.

If f is a complex-valued harmonic function defined on a simply connected domain

D⊂ C, then f can be expressed as

f (z) = h(z)+g(z) = a0 +
∞

∑
n=1

anzn +
∞

∑
m=1

bmzm,

where h and g are analytic in D. If D is the unit disk U and h(0) = f (0), then the

representation is unique and is called the canonical representation of f (see [66, p.

7]). The Jacobian of f is given by

J f (z) = |h′(z)|2−|g′(z)|2.

It is well known that (see [66, p. 2] or [92]) a complex-valued harmonic function f

is locally one-to-one in D if and only if J f is nonvanishing in D. Further, if J f > 0

in D then f is said to be locally univalent in D, that is, locally one-to-one and sense

preserving in D. A complex-valued harmonic function f is said to be univalent in D if

f is one-to-one and sense preserving in D.
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A complex-valued harmonic function can also be viewed as a solution to a partial

differential equation as stated in the following result:

Theorem 1.6. ([81, Lemma 2.1]) A complex valued function f defined in a domain

D is open, harmonic and sense preserving in D if and only if there is an a ∈ H(U,U)

such that f is a non-constant solution of

(
∂ f
∂ z

)
= a

∂ f
∂ z

.

The theory of complex-valued harmonic functions serves as an active research area

which can be seen from [11, 46, 66, 67, 68, 80, 81] as such mappings are closely related

to the theory of minimal surfaces (see [99, 100]).

Throughout this thesis, we shall use the term harmonic function to indicate a

complex-valued harmonic function.

1.5 Logharmonic Mappings

A logharmonic mapping defined in U is a solution of the nonlinear elliptic partial

differential equation

fz

f
= a

fz

f
,

where a ∈ H(U,U) is called the second dilatation function. Thus the Jacobian

J f = | fz|2 (1−|a|2)
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is positive and all non-constant logharmonic mappings are therefore sense-preserving

and open in U . In [44], the class of locally univalent logharmonic mappings is shown to

play an instrumental role in validating the Iwaniec conjecture involving the Beurling-

Ahlfors operator.

When f is a nonvanishing logharmonic mapping in U , it is known that f can be

expressed as

f (z) = h(z)g(z), (1.3)

where h and g are in H(U). In [94], Mao et al. introduced the Schwarzian derivative

for these nonvanishing logharmonic mappings. They established the Schwarz lemma

for this class and obtained two versions of Landau’s theorem. Denote by PLH the class

consisting of logharmonic mappings f in U of the form (1.3) satisfying Re f (z) > 0

for all z ∈U . The subclass PLH(M) defined by

PLH(M) =

{
f : f = h(z)g(z) ∈PLH ,

∣∣∣∣h(z)g(z)
−M

∣∣∣∣< M, M ≥ 1
}

was recently investigated in [101].

If f is a non-constant logharmonic mapping of U which vanishes only at z = 0,

then [2] f admits the representation

f (z) = zm|z|2βmh(z)g(z), (1.4)

where m is a nonnegative integer, Reβ >−1/2, and h and g are analytic functions on

U satisfying g(0) = 1 and h(0) 6= 0. The exponent β in (1.4) depends only on a(0) and
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can be expressed by

β = a(0)
1+a(0)

1−|a(0)|2
.

Note that f (0) 6= 0 if and only if m = 0, and that a univalent logharmonic mapping in

U vanishes at the origin if and only if m = 1, that is, f has the form

f (z) = z|z|2β h(z)g(z), z ∈U,

where Reβ >−1/2, 0 /∈ (hg)(U) and g(0) = 1. This class has been widely studied in

the works of [1, 2, 3, 4, 5]. In this case, it follows that F(ζ ) = log f (eζ ) are univalent

harmonic mappings of the half-plane {ζ : Reζ < 0}.

1.6 Spherical Chordal Distance

Let S denote the unit sphere {Z = (Z1,Z2,Z3) ∈ R3 : |Z|2 = 1} and N = (0,0,1)

be its north pole. Then every point in the complex plane C corresponds to an unique

point on S\{N} via stereographic projection from N. Let Lz(t) = (tx, ty,1− t) be the

line segment connecting N and z = x+ iy ∈ C with coordinate (x,y) in the xy-plane.

Note that Lz intersects S at a unique point Z indicating t satisfies the equation

(tx)2 +(ty)2 +(1− t)2 = 1.

Thus t = 2/(1+ |z|2) giving

Z =

(
2x

1+ |z|2
,

2y
1+ |z|2

,
|z|2−1
1+ |z|2

)
=

(
z+ z

1+ |z|2
,

z− z
i(1+ |z|2)

,
|z|2−1
1+ |z|2

)
.
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Discussions on conformality and circles preserving properties of the stereographic pro-

jection can be found in [64, Problem 75]. The Euclidean distance between points Z

and W on S is known as the spherical chordal distance between z and w, denoted by

λ (w,z), where

λ
2(Z,W ) = (Z1−W1)

2 +(Z2−W2)
2 +(Z3−W3)

2 = 2−2(Z1W1 +Z2W2 +Z3W3).

If Z and W are the stereographic projections of z and w in C respectively, then

Z1W1 +Z2W2 +Z3W3 =
(z+ z)(w+w)− (z− z)(w−w)+(|z|2−1)(|w|2−1)

(1+ |z|2)(1+ |w|2)

=
2(zw+ zw)+ |zw|2−|z|2−|w|2 +1

(1+ |z|2)(1+ |w|2)

=
2(zw+ zw)+(1+ |z|2)(1+ |w|2)−2|z|2−2|w|2

(1+ |z|2)(1+ |w|2)

=
(1+ |z|2)(1+ |w|2)−2|z−w|2

(1+ |z|2)(1+ |w|2)
.

Thus

λ (z,w) =
2|z−w|√

(1+ |z|2)(1+ |w|2)
.

1.7 Poincaré Disk Model

Recall the classical Schwarz’s Lemma:

Theorem 1.7. [60, p. 4](see also [85, Theorem 2.1]) Let f be an analytic self-map of

U. If f (0) = 0, then | f (z)| ≤ |z| for all z ∈U and | f ′(0)| ≤ 1. Further, if | f (z0)|= |z0|

for some z0 ∈U\{0}, or if | f ′(0)|= 1, then f (z) = eiθ z for some constant θ ∈ R.

A generalization of Schwarz’s Lemma was presented by Pick [106], which is
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known as the Schwarz-Pick Lemma:

Theorem 1.8. [60, p. 5](see also [85, Theorem 2.3]) If f is an analytic self-map of U,

then

(i) ∣∣∣∣∣ f (z)− f (w)

1− f (z) f (w)

∣∣∣∣∣≤
∣∣∣∣ z−w
1− zw

∣∣∣∣ for all z,w ∈U ;

(ii)

| f ′(z)|
1−| f (z)|2

≤ 1
1−|z|2

for all z,w ∈U .

Equality occurs in both (i) and (ii) if f is an conformal automorphism of U. If equality

holds in (i) for one pair of points z 6= w or if equality holds in (ii) at one point z, then

f is a conformal automorphism of U.

The unit disk U with the hyperbolic metric (see [31])

λU(z)|dz|= 2|dz|
1−|z|2

,

is known as the Poincaré disk model. By (ii), the metric λU(z)|dz| is invariant under

conformal automorphism of U and induces a distance function dU on U by

dU(z,w) = inf
γ

∫
γ

λU(z) |dz|

over all smooth curves γ in U joining z to w. Similar to the invariance of Euclidean

distance under rotation and translation in C, dU is invariant under conformal automor-
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phism of U . It was shown in [31, Theorem 2.2] that

dU(z,w) = log
1+ pU(z,w)
1− pU(z,w)

= 2tanh−1 pU(z,w),

where the pseudo-hyperbolic distance pU(z,w) is given by

pU(z,w) =
∣∣∣∣ z−w
1− zw

∣∣∣∣ .

1.8 Bohr’s inequality

A series of the form ∑
∞
n=1 ann−s is an ordinary Dirichlet series, where an,s ∈ C.

Now, if the series converges for some s0 = σ0 + it0, then it is convergent for all s =

σ + it with σ > σ0 (see [79, Theorem 1]). Thus, the maximal domain of convergence

is exactly the half-plane {s ∈ C : Res > σc} where

σc = infs∈C

{
Res :

∞

∑
n=1

an

ns < ∞

}
.

The term σc is then known as the the abscissa of convergence for ∑
∞
n=1 ann−s. Simi-

larly, the quantity

σa = inf
σ

{
σ is real :

∞

∑
n=1

|an|
nσ

< ∞

}
,

is called the the abscissa of absolute convergence for ∑
∞
n=1 ann−s. Finally, the abscissa

of uniform convergence for ∑
∞
n=1 ann−s is defined to be the unique real number σu such

that the Dirichlet series converges uniformly in the half-plane {s ∈ C : Res > σu}.

In 1913, Harald Bohr published the absolute convergence problem [39] which
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asked for the value of

S0 := sup(σa−σu),

where the supremum is taken over all ordinary Dirichlet series. In fact, this problem

can be reduced to a problem on power series in an infinite number of complex variables

[39, 38], which allowed Bohr to obtain the inequality S0 ≤ 1/2 [39, Satz X]. While

attempting the absolute convergence problem, Bohr returned to the one dimensional

case and proved the Bohr’s inequality (or Bohr’s theorem):

Theorem 1.9. ([40]) If f (z) = ∑
∞
n=0 anzn ∈ H(U,U), then

∞

∑
n=0
|anzn| ≤ 1 (1.5)

for |z| ≤ 1/6.

The value 1/6 is further improved independently by Riesz, Schur and Wiener to

1/3 which is optimal. Other proofs can also be found in [102, 112, 115]. Thus 1/3 is

then known as the Bohr radius of H(U,U), and the class H(U,U) is said to have Bohr

phenomenon. The notion of the Bohr phenomenon was first introduced by Bénéteau,

Dahlner and Khavinson [32] for a Banach space X of analytic functions on the disk U .

The Bohr’s inequality (1.5) can also be put in the form

d

(
∞

∑
n=0
|anzn| , | f (0)|

)
≤ d( f (0),∂U), (1.6)

where d is the Euclidean distance and ∂U the unit circle. Further, the Bohr’s inequality
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can be paraphrased in terms of the supremum norm, ‖ f‖∞:

∞

∑
n=0
|anzn| ≤ ‖ f‖∞ = sup

|z|<1
| f (z)|. (1.7)

1.9 About the thesis

1.9.1 Background - Bohr and distances

For an analytic function f defined in U of the form (1.1), define its associated

majorant function [36] by

M f (z) :=
∞

∑
n=0
|an|zn.

If g(z) = ∑
∞
n=0 bnzn is another analytic function on U , then

M( f +g)(|z|)≤M f (|z|)+Mg(|z|);

M( f g)(|z|)≤M f (|z|)Mg(|z|).
(1.8)

Recall the classical Bohr’s theorem with Bohr’s inequality of the form in (1.6):

Theorem 1.10. If f ∈ H(U,U), then

d (M f (|z|), | f (0)|)≤ d( f (0),∂U)

for |z| ≤ 1/3, where d is the Euclidean distance, and ∂U is the boundary of U. The

radius 1/3 is sharp.

The research on investigating the Bohr’s theorem in distance form was initiated by

Aizenberg. He proved that
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Theorem 1.11. [17, Theorem 2.1] Let f be an analytic function from U into a domain

G⊂ C. Further suppose the convex hull G̃ of G satisfies G̃ 6= C. Then

d(M f (|z|), | f (0)|)≤ d( f (0),∂ G̃)

for |z| ≤ 1/3. The value 1/3 is the best, provided there exists a point p ∈ C satisfying

p ∈ ∂ G̃∩∂G∩∂D for some disk D⊂ G.

The result covered the case where G is a convex domain and so extended the clas-

sical Bohr’s theorem where G = U . The domain G was further extended by Abu-

Muhanna [6] by using the technique of subordination. He applied both the Koebe

one-quarter theorem and de Branges’s theorem, or the Bieberbarch’s conjecture, to

prove

Theorem 1.12. [6, Theorem 1] Let f be a univalent (analytic and injective) function

on U. If g≺ f , then

d (Mg(|z|), |g(0)|)≤ d( f (0),∂ f (U))

for |z| ≤ 3− 2
√

2 ≈ 0.17157. The sharp radius 3− 2
√

2 is attained by the Koebe

function z/(1− z)2.

Recently, Abu-Muhanna and Ali [7] studied the class H(U,Ω) where Ω is a domain

exterior to a compact convex set and proved

Theorem 1.13. Suppose that the universal covering map from U into Ω has a univalent

logarithmic branch that maps U into the complement of a convex set. If 0 /∈Ω, 1 ∈ ∂Ω

17



and f ∈ H(U,Ω) with f (0)> 1, then for |z|< 3−2
√

2≈ 0.17157,

λ (M f (|z|), | f (0)|)≤ λ ( f (0),∂Ω) ,

where λ is the spherical chordal distance. In particular, if G is the closed unit disk,

then the sharp radius 1/3 is obtained.

Meanwhile, a link was established between the Bohr’s inequality for classes of

analytic functions H(U,G) and the hyperbolic metric done by Abu-Muhanna and Ali

[8] in the following year. That paper discussed the case where G is the right half-plane,

the slit region and the exterior of U .

We end this subsection by stating the Bohr’s inequality for bounded harmonic map-

pings as proved by Abu-Muhanna [6].

Theorem 1.14. [6, Theorem 2] Let f (z) = h(z)+ g(z) = ∑
∞
n=0 anzn +∑

∞
n=1 bnzn be a

complex-valued harmonic function on U. If | f (z)|< 1 for all z ∈U, then

∞

∑
n=1
|eiµan + e−iµbn||z|n ≤ d(|Reeiµa0|,∂U), for any µ ∈ R,

for |z| ≤ 1/3. The radius 1/3 is sharp.

1.9.2 Scope of thesis

The aim of the research work is to extend Theorem 1.10 by

(a) establishing the Bohr’s theorem for the class of analytic functions mapping U

into some non-convex domain D,
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(b) replacing the Euclidean distance with other distances, and

(c) extending the Bohr’s theorem to some subclasses of analytic functions as well as

classes of non-analytic functions.

The thesis is divided into six chapters. Briefly, Chapter 2 discusses the Bohr’s

theorem for the class R(α,γ,h) consisting of functions f which are analytic in U and

satisfying the differential subordination relation

f (z)+αz f ′(z)+ γz2 f ′′(z)≺ h(z), z ∈U, α ≥ γ ≥ 0.

The Bohr’s theorems are developed for the case when h is a convex function in U as

well as the case when h is starlike with respect to h(0). The results are proved by

applying the Koebe one-quarter theorem and the theory of differential subordination.

Simply note that if α = γ = 0, then the Bohr radii 1/3 (convex h) and 3−
√

2 (starlike

h) are the known radii in Theorem 1.11 and Theorem 1.12, respectively.

Chapter 3 consists of two sections. The first section studies the Bohr’s theorem for

the class of analytic functions mapping the unit disk U to concave-wedge domains

Wα =
{

w ∈ C : |argw|< απ

2

}
, 1≤ α ≤ 2.

The Bohr radius is obtained by using the technique of subordination and has the value

(2
1
α − 1)/(2

1
α + 1). In particular, if α = 1, then the Bohr radius is 1/3 as stated in

Theorem 1.11 and 3− 2
√

2 for α = 2 as stated in Theorem 1.12. The next section

focuses on the class of analytic functions f that maps the unit disk U to the punctured
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unit disk U0 = U\{0}. The development of the Bohr’s theorem depends heavily on

the coefficient estimate obtained by Koepf and Schmersau [86, p. 248] as well as the

Herglotz representation theorem for analytic functions [76, Corollary 3.6].

Chapter 4 focuses on developing the Bohr’s theorem in non-Euclidean geometry.

The classical Bohr’s theorem with respect to the spherical chordal distance λ defined

by

λ (z1,z2) =
|z1− z2|√

1+ |z1|2
√

1+ |z2|2
, z1,z2 ∈U,

is shown to have value 1/3. The first section also shows that by replacing the Eu-

clidean distance d with λ , it is possible to slightly improve the constraint in a Bohr’s

theorem obtained in earlier chapter. The hyperbolic Bohr’s theorem is presented in the

following section. By defining the hyperbolic unit disk Uh in the Poincaré disk model,

an analogous Bohr’s theorem for the class of analytic self-maps of Uh is obtained and

the (hyperbolic) Bohr radius has the value tanh(1/2)/3. Further, Theorem 1.11 has

its hyperbolic version in the Poincaré disk model and the Bohr radius is shown to be

tanh(1/2)/3, implying the invariance of Bohr radius in hyperbolic geometry. Addition-

ally, the main theorem is applied to obtain the Bohr-type theorem for other hyperbolic

regions.

Chapter 5 is devoted to studying the Bohr’s theorem in the class of non-analytic

functions. The Bohr’s theorem for the class of harmonic functions mapping U into a

bounded domain in C can be found in the first section. In particular, if the bounded

domain is taken to be U itself, then the Bohr’s theorem is reduced to Theorem 2 in

[6]. The Bohr’s theorem for the class of univalent, harmonic, orientation-preserving
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mappings of U into the convex wedge

W = {w ∈ C : |argw|< π/4}.

is established as well. Both the Bohr’s theorems are shown to have the same Bohr

radius 1/3. The final section deals with the construction of Bohr-type inequality for

the class of univalent logharmonic functions f of the form f (z) = zh(z)g(z) mapping

U onto a domain which is starlike with respect to the origin. The distortion theorem

for this class of functions can also be found in this section.

Chapter 6 serves as a survey of the work on developing Bohr’s theorem. There are

several directions in extending the classical Bohr’s theorem. Among those researches,

the n-dimensional Bohr radii study is very much well developed and the first Bohr

radius (see Chapter 6, Section 6.1) has its asymptotic value proved to be
√

logn/n in

[30] recently.

21



CHAPTER 2

BOHR AND DIFFERENTIAL SUBORDINATIONS

In this chapter, we shall investigate a special class of differential subordination

R(α,γ,h). For α ≥ γ ≥ 0, and for a given univalent function h ∈ H(U), let

R(α,γ,h) :=
{

f ∈ H(U) : f (z)+αz f ′(z)+ γz2 f ′′(z)≺ h(z), z ∈U
}
.

The investigation of such functions f can be seen as an extension to the study of the

class

R(α,h) =
{

f ∈ H(U) : f ′(z)+αz f ′′(z)≺ h(z), z ∈U
}

or its variations for an appropriate function h. This class has been investigated in

several works, and more recently in [114, 116]. It was shown in Ali et. al [23] that

f (z) ≺ h(z) whenever f ∈ R(α,γ,h). The notion of convolution will be needed to

deduce the latter assertion.

For two functions f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
n=0 bnzn in H(U), the Hadamard

product (or convolution) of f and g is the function f ∗g defined by

( f ∗g)(z) =
∞

∑
n=0

anbnzn.
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The following auxiliary function will be useful: let

φλ (z) =
∫ 1

0

dt
1− ztλ

=
∞

∑
n=0

zn

1+λn
.

From [110] it is known that φλ is convex in U provided Reλ ≥ 0.

Now for α ≥ γ ≥ 0, let

ν +µ = α− γ, µν = γ,

and

q(z) =
∫ 1

0

∫ 1

0
h(ztµsν)dtds = (φν ∗φµ)∗h(z) ∈ R(α,γ,h). (2.1)

Let S(h) := { f ∈H(U) : f ≺ h} denote the class of analytic functions on U subordinate

to h. In [23], Ali et. al showed that

f (z)≺ q(z)≺ h(z)

for every f ∈ R(α,γ,h). Thus R(α,γ,h)⊂ S(h).

2.1 R(α,γ,h) with convex h

The following result gives the Bohr radius for R(α,γ,h) with convex function h.

Theorem 2.1. Let f (z) = ∑
∞
n=0 anzn ∈ R(α,γ,h), and h ∈ S be convex. Then

d(M f (|z|), | f (0)|) =
∞

∑
n=1
|anzn| ≤ d(h(0),∂h(U))
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for all |z| ≤ rCV (α,γ), where rCV (α,γ) is the smallest positive root of the equation

(φµ ∗φν)(r)−1 =
∞

∑
n=1

1
(1+µn)(1+νn)

rn =
1
2
.

Further, this bound is sharp. An extremal case occurs when f (z) := q(z) as defined in

(2.1) and h(z) := z/(1− z).

Proof. Let F(z) = f (z)+αz f ′(z)+ γz2 f ′′(z)≺ h(z). Then

F(z) =
∞

∑
n=0

[1+αn+ γn(n−1)]anzn,

and

1
h′(0)

∞

∑
n=1

[1+αn+ γn(n−1)]anzn =
F(z)−F(0)

h′(0)
≺ h(z)−h(0)

h′(0)
.

It follows from [69, Theorem 6.4(i)] that

∣∣∣∣1+αn+ γn(n−1)
h′(0)

∣∣∣∣ |an| ≤ 1, n≥ 1.

Hence

|an| ≤
|h′(0)|

1+(µ +ν)n+µνn2 , n≥ 1,

which readily yields

∞

∑
n=1
|an|rn ≤

∞

∑
n=1

|h′(0)|
1+(µ +ν)n+µνn2 rn.

Since H(z) = h(z)−h(0)
h′(0) is a normalized convex function on U , it follows from [69,
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Theorem 2.15] that

d(0,∂Ω)≥ 1/2 where Ω = H(U),

implying

d(h(0),∂h(U)) = inf
ζ∈∂U

|h(ζ )−h(0)| ≥ |h
′(0)|
2

, z ∈U.

Thus
∞

∑
n=1
|an|rn ≤ 2d(h(0),∂h(U))

(
∞

∑
n=1

1
(1+µn)(1+νn)

rn

)
,

and the Bohr radius rCV (α,γ) is the smallest positive root of the equation

∞

∑
n=1

1
(1+µn)(1+νn)

rn =
1
2
. (2.2)

If h is convex, then q as given in (2.1) is convex (see [111, (0.1)]). Figure 2.1 describes

the extremal case. With h(z) := l(z) = z/(1− z), then d(h(0),∂h(U)) = 1/2, and

q(z) = (φµ ∗φν) ∗ l(z) maps the Bohr circle of radius rCV into {w : |w| ≤ 1/2}. Here

the image of the Bohr circle is depicted by a bold closed curve.

Figure 2.1: Image of the Bohr circle under q(z) = (φµ ∗φν)∗ z
1−z for α = 3,γ = 1.
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Remark 2.1. The Bohr radius rCV (0,0) = 1/3 was obtained in [17, Theorem 2.1].

From (2.2), it is known that for any f ∈ R(α,γ,h) and h convex, the Bohr radius

rCV (α,γ) can be found by solving the equation

∞

∑
n=1

1
1+αn+ γn(n−1)

rn =
∞

∑
n=1

1
(1+µn)(1+νn)

rn =
1
2

for the smallest positive root. Table 2.1 gives the values of the Bohr radius for different

choices of the parameters α and γ . Note that rCV (α,γ) approaches 1 for increasing α

and γ .

Table 2.1: The Bohr radius rCV (α,γ) for different α and γ

α rCV (α,0)
0 0.333333

0.1 0.365245
1 0.582812
10 0.994200
20 0.999958
28 0.999999

α γ rCV (α,γ)

0 0 0.333333
1 0.5 0.649755
1 0.9 0.684027
4 0.9 0.981325
4 1 0.986793
4 4/3 0.999999

2.2 R(α,γ,h) with starlike h

The following theorem deals with subordination to a starlike function with respect

to certain fixed point.

Theorem 2.2. Let f (z) = ∑
∞
n=0 anzn ∈ R(α,γ,h), and h ∈ S be starlike with respect to

h(0). Then

d(M f (|z|), | f (0)|) =
∞

∑
n=1
|anzn| ≤ d(h(0),∂h(U))
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for all |z| ≤ rST (α,γ), where rST (α,γ) is the smallest positive root of the equation

(φµ ∗φν)(r)−1 =
∞

∑
n=1

n
(1+µn)(1+νn)

rn =
1
4
.

This bound is sharp. An extremal case occurs when f (z) := q(z) as defined in (2.1)

and h(z) := k(z) = z/(1− z)2.

Proof. Since

F(z) = f (z)+αz f ′(z)+ γz2 f ′′(z) =
∞

∑
n=0

[1+αn+ γn(n−1)]anzn ≺ h(z),

it follows that

1
h′(0)

∞

∑
n=1

[1+αn+ γn(n−1)]anzn =
F(z)−F(0)

h′(0)
≺ h(z)−h(0)

h′(0)
= H(z).

Note that H is starlike with respect to the origin. Thus [69, Theorem 6.4(ii)]

∣∣∣∣1+αn+ γn(n−1)
h′(0)

∣∣∣∣ |an| ≤ n, n≥ 1,

which yields
∞

∑
n=1
|an|rn ≤

∞

∑
n=1

n|h′(0)|
1+(µ +ν)n+µνn2 rn.

Since H(z) is a normalized starlike function on U , it follows from Koebe one-quater

theorem that

|H(z)| ≥ 1/4, z ∈ ∂U,
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implying

d(h(0),∂h(U)) = inf
ζ∈∂U

|h(ζ )−h(0)| ≥ |h
′(0)|
4

, z ∈U.

Thus
∞

∑
n=1
|an|rn ≤ 4d(h(0),∂h(U))

(
∞

∑
n=1

n
(1+µn)(1+νn)

rn

)
,

and the Bohr radius rST (α,γ) is the smallest positive root of the equation

∞

∑
n=1

n
(1+µn)(1+νn)

rn =
1
4
. (2.3)

If h is starlike, then q as given in (2.1) is starlike (see [111, (0.1)]). Figure 2.2 describes

an extremal case. Here d(h(0),∂h(U)) = 1/4 for h(z) := k(z) = z/(1−z)2, and q(z) =

(φµ ∗φν)∗k(z) maps the Bohr circle, depicted as the bold closed curve, into {w : |w| ≤

1/4}.

Figure 2.2: Image of the Bohr circle under q(z) = (φµ ∗φν)∗ z
(1−z)2 for α = 3,γ = 1.

Remark 2.2. The Bohr radius rST (0,0) = 3−2
√

2 is equal to the Bohr radius for the

class of analytic functions subordinated to a univalent function, see [6, Theorem 1].
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From (2.3), the Bohr radius rST can be found by solving the equation

∞

∑
n=1

n
1+αn+ γn(n−1)

rn =
∞

∑
n=1

n
(1+µn)(1+νn)

rn =
1
4

for a positive real root. Several values of rST (α,γ) are listed in Table 2.2.

Table 2.2: The Bohr radius rST (α,γ) for various α and γ

α rST (α,0)
0 0.171573

0.1 0.188154
1 0.308210

10 0.723763
100 0.961586

1000000 0.999996

α γ rST (α,γ)

0 0 0.171573
1 0.1 0.315797
2 1 0.459619
10 1 0.765923

100 10 0.994215
100 35 0.999963
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CHAPTER 3

BOHR AND CODOMAINS

3.1 Unit disk to concave wedges

A link to the earlier results of Aizenberg [17] and Abu Muhanna [6] could be

established by considering the concave-wedge domains

Wα :=
{

w ∈ C : |argw|< απ

2

}
, 1≤ α ≤ 2. (3.1)

In this instance, the conformal map of U onto Wα is given by

Fα,t(z) = t
(

1+ z
1− z

)α

= t

(
1+

∞

∑
n=1

An,αzn

)
, t > 0. (3.2)

When α = 1, the domain reduces to a convex half-plane, while the case α = 2 yields a

slit domain. Denote by H(U,Wα) the class consisting of analytic functions f mapping

the unit disk U into the wedge domain Wα given by (3.1).

The following result of [10] will be needed.

Proposition 3.1. If F is an analytic univalent function mapping U onto Ω⊆ C, where

the complement of Ω is convex and F(z) 6= 0, then any analytic function f subordinate

to Fn,n = 1,2, . . ., can be expressed as

f (z) =
∫
|x|=1

Fn(xz) dµ(x)
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for some probability measure µ on the unit circle |x|= 1. In particular, if f subordinate

to Fn for all n, then

f (z) =
∫
|x|=1

exp(F(xz)) dµ(x)

for every f subordinate to exp(F).

The following result will also be helpful.

Lemma 3.1. Let Fα,t(z) = t ((1+ z)/(1− z))α = t (1+∑
∞
n=1 An,αzn) be given by (3.2),

α ∈ [1,2]. Then An,α > 0 for n = 1,2, . . ..

Proof. Evidently

F ′α,t(z) =
2α

1− z2 Fα,t(z). (3.3)

Expanding (3.3) leads to

∞

∑
n=1

nAn,αzn−1 =2α

(
1+

∞

∑
n=1

z2n

)(
1+

∞

∑
n=1

An,αzn

)

=2α

(
1+

∞

∑
n=1

z2n +
∞

∑
n=1

An,αzn

+z2
∞

∑
n=1

An,αzn + · · ·+ z2m
∞

∑
n=1

An,αzn + · · ·

)

=2α
(
1+A1,αz+(1+A2,α)z2 +(A3,α +A1,α)z3

+(1+A4,α +A2,α)z4 +(A5,α +A3,α +A1,α)z5 + · · ·
)
.

Thus, by defining A0,α = 1, it follows that

An+1,α =
2α

n+1

b n
2c

∑
k=0

An−2k,α (3.4)
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for all n≥ 1, where b c is the greatest integer function.

It follows by induction that

An,α = pn(α), n = 1,2, . . . (3.5)

is a polynomial of degree n with positive coefficients. Indeed it holds for n = 1 since

A1,α = 2α > 0. Assuming that (3.5) holds for n = m, then (3.4) yields

Am+1,α =
2α

m+1

bm
2 c

∑
k=0

Am−2k,α =
2α

m+1

bm
2 c

∑
k=0

pm−2k(α) = pm+1(α)

where

pm+1(α) =
2α

m+1

bm
2 c

∑
k=0

pm−2k(α).

Since pm+1 is a polynomial of degree m+ 1 with positive coefficient in each term,

evidently (3.5) is true for all n≥ 1. Consequently, An,α = pn(α)> 0 for all n≥ 1.

The following are the main results for this section.

Theorem 3.1. Let α ∈ [1,2]. If f (z) = ∑
∞
n=0 anzn ∈ H(U,Wα) with a0 > 0, then

d(M f (|z|), f (0)) =
∞

∑
n=1
|anzn| ≤ d( f (0),∂Wα)

for |z| ≤ rα = (21/α − 1)/(21/α + 1). The function f = Fα,a0 in (3.2) shows that the

Bohr radius rα is sharp.
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Proof. Since f is subordinate to Fα,a0 , it follows from Proposition 3.1 and (3.2) that

∞

∑
n=0

anzn =
∫
|x|=1

a0

(
1+

∞

∑
n=1

An,αxnzn

)
dµ(x)

for some probability measure µ on the unit circle |x|= 1. Note that the uniqueness of

Taylor series gives

an =
∫
|x|=1

a0 An,αxn dµ(x),

which then implies

|an| ≤
∫
|x|=1

a0 |An,α | |xn| dµ(x) = |An|.

Hence, by Lemma 3.1,

M f (r)−a0 ≤a0

∞

∑
n=1

Anrn = a0

[(
1+ r
1− r

)α

−1
]

=d(a0,∂Wα)

[(
1+ r
1− r

)α

−1
]
≤ d(a0,∂Wα)

for |z|= r ≤ rα , where rα is the smallest positive root of the equation

(
1+ r
1− r

)α

−1 = 1.

Thus rα = (2
1
α −1)/(2

1
α +1).

Theorem 3.2. Let α ∈ [1,2]. If f (z) = ∑
∞
n=0 anzn ∈ H(U,Wα), then

∞

∑
n=0
|anzn|− |a0|∗ ≤ d(|a0|∗,∂Wα)
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for |z| ≤ rα = c0(21/α − 1)/(21/α + 1), where |a0|∗ = Fα,1

(∣∣∣F−1
α,1(a0)

∣∣∣), c0 = 1−

2
∣∣∣F−1

α,1(a0)
∣∣∣/3 and Fα,1 is given by (3.2). The function f = Fα,1 shows that the Bohr

radius rα is sharp.

Proof. Since f ∈ H(U,Wα), there exists b ∈U such that Fα,1(b) = a0. Let

ϕ(z) =
∞

∑
n=0

bnzn =
z+b

1+ b̄z
= b+

(
1−|b|2

) ∞

∑
n=1

(−b̄)n−1zn.

Then (Fα,1 ◦ϕ)(0) = Fα,1(ϕ(0)) = a0 = f (0) and the fact that Fα,1 ◦ϕ maps U con-

formally onto Wα yield

f ≺ Fα,1 ◦ϕ. (3.6)

Next, let |a0|∗ = Fα,1(|b|). Then

|a0|∗ = Fα,1

(∣∣∣F−1
α,1(a0)

∣∣∣)≥ ∣∣∣Fα,1(F−1
α,1(a0))

∣∣∣= |a0|.

Now the function

Mϕ(z) =
∞

∑
n=0
|bn|zn =

|b|+(1−2|b|2)z
1−|b|z

maps the disk |z|< 1/3 into U . Let G = Fα,1 ◦Mϕ and write |z|= r. Then G(z) ∈Wα

for |z|< 1/3 and

G(r)≤ |a0|∗
(

1+ r/c0

1− r/c0

)α

= Fα,1

(
|b|+ r/c0

1+ |b|r/c0

)
, (3.7)

for r < 1/3 where c0 = 1− 2|b|/3, and equality holds when r = 1/3. Further (1.8)
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gives

M(Fα,1 ◦ϕ)(r)≤ G(r). (3.8)

Hence using (3.6), (3.7) and (3.8), it follows that

M f (r)≤M(Fα,1 ◦ϕ)(r)≤ G(r)≤ |a0|∗
(

1+ r/c0

1− r/c0

)α

for r ≤ 1/3. Consequently, M f (r)−|a0|∗ ≤ |a0|∗ = d(|a0|∗,∂Wα) provided r ≤ rα ,

where rα is the smallest positive root of

(
1+ r/c0

1− r/c0

)α

−1 = 1,

that is, rα = c0(2
1
α −1)/(2

1
α +1).

Remark 3.1. Since α ∈ [1,2], it follows that 0.17157≈ 3−2
√

2≤ rα/c0 ≤ 1/3.

Remark 3.2. If a0 ≥ 1, then |a0|∗ = a0 and Theorem 3.2 is equivalent to Theorem 3.1.

However the case 0 < a0 < 1 gives |a0|∗ = 1/a0. A generalization of Theorem 3.2 and

Theorem 3.1 can be found in [24].

Remark 3.3. The Bohr radius for the half-plane is r1 = 1/3, and r2 = 3−2
√

2 for the

slit-map. Since every convex domain lies in a half-plane, it readily follows from The-

orem 3.1 that the Bohr radius for convex domains is 1/3. When the class of functions

is subordinate to an analytic univalent function, it follows from de Brange’s Theorem

[72] that the moduli of its Taylor’s coefficients are bounded by the coefficients of the

slit-map, which from Theorem 3.1, readily yields the Bohr radius 3−2
√

2 for this class

[6].
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3.2 Unit disk to punctured unit disk

This section is devoted to the development of Bohr’s theorem for the class of ana-

lytic functions mapping U to the simplest doubly connected domain, that is, the punc-

tured unit disk. Denote by U0 the unit disk punctured at the origin, and U r the closed

disk {z : |z| ≤ r}.

The following theorem shows that the Bohr radius 1/3 also holds for the subclass

H(U,U0) of H(U,U).

Theorem 3.3. If f ∈ H(U,U0), then

M f (U1/3)⊆U, (3.9)

or equivalently,

d (M f (|z|), | f (0)|)≤ d( f (0),∂U) (3.10)

for |z| ≤ 1/3. The radius 1/3 is the best.

Proof. Since f ∈ H(U,U0) ⊂ H(U,U), the inclusion (3.9) follows immediately from

the classical Bohr’s theorem. To show the value 1/3 is the best, consider the function

ft(z) = exp
(
−t

1+ z
1− z

)
, t > 0, z ∈U. (3.11)
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Note that

exp
(
−t

1+ z
1− z

)
= exp

(
−t−2t

∞

∑
n=1

zn

)
=

1
et exp

(
−2t

∞

∑
n=1

zn

)

=
1
et +

1
et

∞

∑
m=1

(−2t)m

m!

(
∞

∑
n=1

zn

)m

=
1
et +

1
et

∞

∑
m=1

(−2t)m

m!

∞

∑
n=m

cnzn

=
1
et +

1
et

∞

∑
m=1

∞

∑
n=m

(−2t)m

m!
cnzn

=
1
et +

1
et

∞

∑
n=1

n

∑
m=1

(−2t)m

m!
cnzn,

where

cn = ∑
p1+···+pm=n

1 =

(
n−1
m−1

)

and the summation is taken over all m-tuple (p1, . . . , pm) of positive integers satisfying

p1 + · · ·+ pm = n. Thus the Taylor series expansion of ft(z) about the origin is given

by

ft(z) =
1
et +

1
et

∞

∑
n=1

[
n

∑
m=1

(−2t)m

m!

(
n−1
m−1

)]
zn.

Since ∣∣∣∣∣ n

∑
m=1

(−2t)m

m!

(
n−1
m−1

)∣∣∣∣∣≥− n

∑
m=1

(−2t)m

m!

(
n−1
m−1

)
,

it follows that

M ft(|z|)≥
1
et −

1
et

∞

∑
n=1

[
n

∑
m=1

(−2t)m

m!

(
n−1
m−1

)]
|z|n

=
2
et − ft(|z|). (3.12)
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Let a0 = ft(0). Since t =− loga0 =− log |a0|, ft can be written as

ft(z) = exp
(

log |a0|
1+ z
1− z

)
= |a0|exp

(
log |a0|

2z
1− z

)
= |a0||a0|

2z
1−z . (3.13)

Hence, by letting |z|= r, (3.12) and (3.13) imply

M ft(|z|)≥ 2|a0|− ft(|z|) = |a0|(2−|a0|
2r

1−r )> 1 (3.14)

as a0 −→ 1 and r > 1/3. To be precise, consider the real-valued function

g(x) =− log(1− x)
log(1+ x)

, x ∈ (0,1).

Then

g′(x) =
log(1+x)

1−x + log(1−x)
1+x

(log(1+ x))2 =
(1+ x) log(1+ x)+(1− x) log(1− x)

(1− x2)(log(1+ x))2

=
[log(1+ x)+ log(1− x)]+ x[log(1+ x)− log(1− x)]

(1− x2)(log(1+ x))2

=
2
[(

1− 1
2

)
x2 +

(1
3 −

1
4

)
x4 +

(1
5 −

1
6

)
x6 + · · ·+

]
(1− x2)(log(1+ x))2 > 0,

indicates that g is continuous and strictly increasing in (0,1). Further, limx→0 g(x) = 1

and limx→1 g(x) = ∞ implies that for any r0 > 1/3, there exists x0 ∈ (0,1) such that

1 <− log(1− x0)

log(1+ x0)
<

2r0

1− r0
.
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Equivalently,

1− x0 > (1+ x0)
− 2r0

1−r0 .

Hence by selecting a function ft with |a0|= 1/(1+ x0), it follows that

|a0|(2−|a0|
2r0

1−r0 )> 1,

which givesM ft(r0)> 1. On the other hand, the inequality

|a0|(2−|a0|
2r

1−r )≤ 2|a0|− |a0|2 ≤ 1

holds for all functions ft with |a0| < 1 and 0 ≤ r ≤ 1/3. Hence the radius 1/3 is the

best.

Since f (U)⊆U0, the Bohr’s theorem for the class H(U,U0) suggests replacing the

domain U in both (3.9) and (3.10) by U0. To this end, we first examine the case for

functions ft ∈ H(U,U0) given by (3.11). For such functions ft , Koepf and Schmersau

[86, p. 248] obtained the estimate

∣∣∣∣∣ 1
et

n

∑
m=1

(−2t)m

m!

(
n−1
m−1

)∣∣∣∣∣<
√

2t
n
, t ∈ (0,2n), n > 0. (3.15)

Also, it would soon become evident that the number

α0 :=
1
3e
− 1

9
√

6
≈ 0.07727

plays a prominent role in the sequel.
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Lemma 3.2. Let ft be given by (3.11) with 0 < t ≤ 1. ThenM ft(U1/3)⊆U0 and

∣∣∣∣M ft(z)−
1
et

∣∣∣∣< 1
et −α0, z ∈U1/3.

In particular,

M ft(|z|)−
1
et <

1
et −α0, |z| ≤ 1/3.

Proof. Write

ft(z) =exp
(
−t

1+ z
1− z

)
= exp

(
−t−2t

∞

∑
n=1

zn

)

=
1
et +

∞

∑
m=1

1
etm!

(
−2t

∞

∑
n=1

zn

)m

=
1
et −

2t
et z− 2t(1− t)

et z2 +a3z3 + · · · .

Thus for |z| ≤ 1/3, (3.15) gives

∣∣∣∣M ft(z)−
1
et

∣∣∣∣< 2t
3et +

2t(1− t)
9et +

∞

∑
n=3

√
2t

3n√n

<
2t
3et +

2t(1− t)
9et +

√
2t
3

∞

∑
n=3

1
3n

=
2t
3et +

2t(1− t)
9et +

1
9

√
t
6

(3.16)

=
1
et − y1(t)<

1
et −α0,

where

y1(t) :=
1
et −

2t
3et −

2t(1− t)
9et − 1

9

√
t
6

is strictly decreasing in [0,1]. Thus y1(t) > α0 in [0,1) and y1(1) = α0 as shown
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in Figure 3.1. It follows that |M ft(z)| > 0, which along with Theorem 3.3 give

M ft(U1/3)⊆U0.

Figure 3.1: Graph of function y1(t) over the interval [0,1]

Remark 3.4. Equation y1 in Lemma 3.2 has a root at t0 ≈ 1.35299, and indeed y1

is strictly decreasing in [0, t0]. We shall however be only interested in the interval t ∈

(0,1].

Lemma 3.3. Let fa,N ∈ H(U,U0) be of the form

fa,N(z) = exp

(
−

N

∑
k=1

tka
1+ xkz
1− xkz

)
, z ∈U, (3.17)

with 0< a≤ 1, |xk|= 1 for each k, and tk > 0 satisfies
N
∑

k=1
tk = 1. ThenM fa,N(U1/3)⊆

U0 and ∣∣∣∣M fa,N(z)−
1
ea

∣∣∣∣< 1
ea −α0, z ∈U1/3.
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Proof. Since fa,N is analytic in U , it can be expressed in its Taylor series

exp

(
−

N

∑
k=1

tka
1+ xkz
1− xkz

)
=exp

(
−a−2a

∞

∑
n=1

(
N

∑
k=1

tkxn
k

)
zn

)

=
1
ea exp

(
−2a

∞

∑
n=1

(
N

∑
k=1

tkxn
k

)
zn

)

=
1
ea +

1
ea

∞

∑
m=1

(−2a)m

m!

(
∞

∑
n=1

(
N

∑
k=1

tkxn
k

)
zn

)m

=
1
ea +

1
ea

∞

∑
m=1

(−2a)m

m!

∞

∑
n=m

dnzn

=
1
ea +

1
ea

∞

∑
m=1

∞

∑
n=m

(−2a)m

m!
dnzn

=
1
ea +

1
ea

∞

∑
n=1

n

∑
m=1

(−2a)m

m!
dnzn,

where

dn = ∑
s1+···+sm=n

(
N

∑
k=1

tkxs1
k

)
· · ·

(
N

∑
k=1

tkxsm
k

)

and the outer sum is taken over all m-tuples (s1, . . . ,sm) of positive integers satisfying

s1 + · · ·+ sm = n. Note that

|dn| ≤ ∑
s1+···+sm=n

(
N

∑
k=1

tk

)
· · ·

(
N

∑
k=1

tk

)
= ∑

s1+···+sm=n
1 =

(
n−1
m−1

)
.

Next let

fa(z) = exp
(
−a

1+ z
1− z

)
=

1
ea +

1
ea

∞

∑
n=1

n

∑
m=1

(−2a)m

m!

(
n−1
m−1

)
zn.
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Thus for |z| ≤ 1/3,

∣∣∣∣M fa,N(z)−
1
ea

∣∣∣∣≤ 1
ea

∞

∑
n=1

∣∣∣∣∣ n

∑
m=1

(−2a)m

m!

∣∣∣∣∣ |dn||z|n

≤M fa(|z|)−
1
ea <

1
ea −α0, (3.18)

where the last inequality follows from Lemma 3.2. Hence |M fa,N(z)| > 0 on U1/3,

which together with Theorem 3.3 yieldM fa,N(U1/3)⊆U0.

Theorem 3.4. Let f ∈ H(U,U0) with 1/e≤ | f (0)|< 1. ThenM f (U1/3)⊆U0 and

|M f (z)−M f (0)|<M f (0), z ∈U1/3.

In particular,

M f (|z|)−| f (0)|< | f (0)|, |z| ≤ 1/3.

Proof. It suffices to consider the case f (0) > 0. Since 0 < | f (z)| < 1, it follows that

−Relog f (z)> 0 in U . Thus,

log f (z) = log f (0)
∫
|x|=1

1+ xz
1− xz

dµ(x),

or

f (z) = exp
(
−
∫
|x|=1

a
1+ xz
1− xz

dµ(x)
)

for some probability measure µ on ∂U, and 0 < a =− log f (0)≤ 1. If f has the form

(3.17), then the results evidently follow from Lemma 3.3.

Consider the compact disk Uρ with 1/3 < ρ < 1. By Corollary 3.7 in [76], if f
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does not have the form (3.17), then there exists a sequence of functions {gn} of the

form (3.17) satisfying gn(0) = f (0) for each n, and gn converges uniformly to f on

Uρ . Thus for a given ε > 0, there exists a positive integer N such that

|gn(z)− f (z)|< ε

M
for all z ∈Uρ ,

and n > N, where M = maxz∈U1/3
{|z|/(ρ−|z|)}. The Cauchy Integral formula yields

∣∣∣g(k)n (0)− f (k)(0)
∣∣∣= ∣∣∣∣ k!

2πi

∮
∂Uρ

gn(ζ )− f (ζ )
ζ k+1 dζ

∣∣∣∣
≤ k!

2π

∫ 2π

0

|gn(ζ (t))− f (ζ (t))|
ρk dt <

εk!
Mρk .

Hence, for all |z| ≤ 1/3 and n > N,

∣∣Mgn(z)−M f (z)
∣∣≤ ∣∣M(gn− f )(|z|)

∣∣
=

∞

∑
k=1

∣∣∣∣∣g(k)n (0)− f (k)(0)
k!

∣∣∣∣∣ |z|k
<

ε

M

∞

∑
k=1

(
|z|
ρ

)k

=
ε|z|

M(ρ−|z|)
≤ ε,

implyingMgn→M f uniformly on U1/3.

Now, for any ε > 0, there exists a corresponding positive integer N such that

sup
z∈U1/3

|Mgn(z)−M f (z)|< ε for all n > N.
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Lemma 3.3 and the inequality above imply that

sup
z∈U1/3

|M f (z)− f (0)| ≤ sup
z∈U1/3

|Mgn(z)− f (0)|+ sup
z∈U1/3

|Mgn(z)−M f (z)|

< f (0)−α0 + ε.

Hence |M f (z)− f (0)| ≤ f (0)−α0 < f (0) for all z ∈U1/3, and so |M f (z)| > 0 on

U1/3. Further Theorem 3.3 givesM f (U1/3)⊆U0.

The following result yields the Bohr radius for the class { f ∈ H(U,U0) : 1/e ≤

| f (0)|< 1}.

Theorem 3.5. If f ∈ H(U,U0) with 1/e≤ | f (0)|< 1, then

M f (U1/3)⊆U0 (3.19)

and

d(M f (|z|), | f (0)|)≤ d( f (0),∂U0) (3.20)

for |z| ≤ 1/3. The radius 1/3 is best possible.

Proof. The inclusion (3.19) follows from Theorem 3.4. Now, assume that r = |z| ≤

1/3. The inequality in Theorem 3.4 implies that

d(M f (r), | f (0)|) =M f (r)−| f (0)|< | f (0)|.
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On the other hand, since f ∈ H(U,U0), Theorem 3.3 givesM f (r)< 1 and so

d(M f (r), | f (0)|) =M f (r)−| f (0)|< 1−| f (0)|.

Then the inclusion (3.20) follows from the two inequalities above since

d( f (0),∂U0) = min{| f (0)|,1−| f (0)|}.

That the value 1/3 is the best follows from the proof of Theorem 3.3.

Remark 3.5. Relations (3.9) and (3.10) in Theorem 3.3 are equivalent. However

(3.19) and (3.20) in Theorem 3.5 are not since d( f (0),∂U0) = | f (0)| 6= 1− | f (0)|

for | f (0)|< 1/2.

Next, we look at removing the constraint on | f (0)| in Theorem 3.5. Denote by d e

the least integer function, that is, dae is the smallest integer greater than or equal to a.

Lemma 3.4. Suppose a > 0, and

fa,N(z) = exp

(
−

N

∑
k=1

tka
1+ xkz
1− xkz

)
∈ H(U,U0), (3.21)

where |xk|= 1 for each k, and tk > 0 satisfies
N
∑

k=1
tk = 1. Then

(
M fa,N(|z|)

)1/dae− 1
ea/dae <

1
ea/dae −α0, |z| ≤ 1/3.

Proof. If a ∈ (0,1], then dae= 1 and the result follows from Lemma 3.3. Assume now
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that a > 1. It follows from the proof of Lemma 3.3 that

∣∣∣∣M fa,N(z)−
1
ea

∣∣∣∣≤M fa(|z|)−
1
ea ,

which gives

|M fa,N(z)| ≤M fa(|z|). (3.22)

SinceM( f g)(|z|)≤M( f )(|z|)M(g)(|z|), Lemma 3.2 yields

M fa(|z|) =M
(

fa/dae
)dae

(|z|)≤
(
M fa/dae(|z|)

)dae
<

(
2

ea/dae −α0

)dae
(3.23)

for |z| ≤ 1/3. Thus

(
M fa,N(|z|)

)1/dae− 1
ea/dae <

1
ea/dae −α0.

Theorem 3.6. Let f ∈ H(U,U0) and a =− log | f (0)|. Then

(M f (|z|))1/dae−| f (0)|1/dae < | f (0)|1/dae, |z| ≤ 1/3.

Proof. It suffices to consider the case f (0)> 0. Let a =− log f (0). Then

f (z) = exp
(
−
∫
|x|=1

a
1+ xz
1− xz

dµ(x)
)

for some probability measure µ on ∂U . If f has the form (3.21), then the result follows

from Lemma 3.4.
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Consider the compact disk Uρ with 1/3 < ρ < 1. If f does not have the form

(3.21), then there exists a sequence of functions {gn} of the form (3.21) satisfying

gn(0) = f (0) for each n, and gn converges uniformly to f on Uρ . Applying the same

argument as in the proof of Theorem 3.4, it can be shown thatMgn converges toM f

uniformly on U1/3.

Thus, for any ε > 0, there exists a corresponding positive integer N such that for

all n≥ N and z ∈U1/3,

|Mgn(z)−M f (z)|< ε,

and thus

|M f (z)|< |Mgn(z)|+ ε.

Further (3.22) and (3.23) imply that

|M f (z)|<
(

2( f (0))1/dae−α0

)dae
+ ε.

Since ε is arbitrary, it follows that

|M f (z)| ≤
(

2( f (0))1/dae−α0

)dae
<
(

2( f (0))1/dae
)dae

,

and consequently

(M f (|z|))1/dae− ( f (0))1/dae < ( f (0))1/dae
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for |z| ≤ 1/3.

Theorem 3.7. If f ∈ H(U,U0) and a =− log | f (0)|, then

d
(
(M f (|z|))1/dae , | f (0)|1/dae

)
≤ d

(
( f (0))1/dae ,∂U0

)
(3.24)

for |z| ≤ 1/3. The radius 1/3 is best possible.

Proof. The inclusion (3.24) follows from Theorem 3.6. Now, assume that r = |z| ≤

1/3. The inequality in Theorem 3.6 implies that

d
(
(M f (r))1/dae , | f (0)|1/dae

)
= (M f (r))1/dae−| f (0)|1/dae < | f (0)|1/dae.

On the other hand, since f ∈ H(U,U0), Theorem 3.3 gives M f (r) < 1 implying

(M f (r))1/dae < 1. Thus

d
(
(M f (r))1/dae , | f (0)|1/dae

)
= (M f (r))1/dae−| f (0)|1/dae < 1−| f (0)|1/dae.

Then the inclusion (3.24) follows from the two inequalities above since

d
(
( f (0))1/dae ,∂U0

)
= min{| f (0)|1/dae,1−| f (0)|1/dae}.

To show the value 1/3 is the best, consider the function ft ∈ H(U,U0) given by

(3.11) with 1/2≤ ft/dte(0)< 1. Then it suffices to show that

d((M ft(|z|))1/dte , ( ft(0))
1/dte)> d(( ft(0))

1/dte ,∂U0), |z|> 1/3. (3.25)
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Since

d
(
(M ft(|z|))1/dte , ( ft(0))

1/dte
)
= (M ft(|z|))1/dte− ( ft(0))

1/dte ,

and

d
(
( ft(0))

1/dte ,∂U0

)
= 1− ( ft(0))

1/dte ,

it follows that (3.25) can be reduced to

(M ft(|z|))1/dte > 1 or M ft(|z|)> 1, |z|> 1/3.

Indeed, the inequality holds as is shown in the proof of Theorem 3.3.
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CHAPTER 4

BOHR AND NON-EUCLIDEAN GEOMETRY

4.1 Bohr’s theorems in non-Euclidean distances

4.1.1 Classical Bohr’s theorem

We show that the classical Bohr radius 1/3 remains invariant after replacing the

Euclidean distance d with the spherical chordal distance λ :

λ (z1,z2) =
|z1− z2|√

1+ |z1|2
√

1+ |z2|2
, z1,z2 ∈U.

Theorem 4.1. If f ∈ H(U,U), then

λ (M f (|z|), | f (0)|)≤ λ ( f (0),∂U)

for |z| ≤ 1/3. The value 1/3 is the best.

Proof. Since f ∈H(U,U), the classical Bohr’s theorem implies that | f (0)| ≤M f (|z|)<

1 when |z| ≤ 1/3. Hence for |z| ≤ 1/3,

λ (| f (0)|,M f (|z|))< λ (| f (0)|,1) = λ ( f (0),∂U).

To show the sharpness, consider the Möbius transformation

ϕ(z) =
z+a

1+az
, 0 < a < 1, z ∈U.
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Then

ϕ(z) = a+
∞

∑
n=1

(1−a2)(−a)n−1zn

yields

Mϕ(z) = a+
∞

∑
n=1

(1−a2)an−1zn = 2a+
z−a

1−az
.

SinceMϕ(|z|) is increasing for |z|, it follows that for |z|> 1/3,

Mϕ(|z|)> 2a+
1−3a
3−a

=
1+3a−2a2

3−a
> a.

Thus, λ (Mϕ(|z|),a)> λ ((1+3a−2a2)/(3−a),a). Since

λ
(
(1+3a−2a2)/(3−a),a

)
λ (a,1)

=

√
2(1+a)√

(3−a)2 +(1+3a−2a2)2
,

it follows that

λ (Mϕ(|z|),a)> λ (a,1)

√
2(1+a)√

(3−a)2 +(1+3a−2a2)2
→ λ (a,1)

whenever a→ 1.

4.1.2 Punctured disk and non-Euclidean geometry

In this subsection, we show that it is possible to slightly improve the constraint in

Theorem 3.5 by replacing d with λ . Let U0 be the punctured unit disk and a ∈ U0.
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Then λ (a,∂U0) = min{λ (|a|,0),λ (|a|,1)}. Since

λ (|a|,0)
λ (|a|,1)

=

√
2|a|

1−|a|


> 1, if |a|>

√
2−1,

< 1, if |a|<
√

2−1,

= 1, if |a|=
√

2−1,

it follows that

λ (a,∂U0) =


λ (|a|,1), if |a|>

√
2−1,

λ (|a|,0), if |a|<
√

2−1,

λ (|a|,0) = λ (|a|,1), if |a|=
√

2−1.

Theorem 4.2. If f ∈ H(U,U0) with 1/
√

e3 ≤ | f (0)|< 1, then

λ (M f (|z|), | f (0)|)≤ λ ( f (0),∂U0)

for |z| ≤ 1/3. The value 1/3 is the best.

Proof. Consider f in the form (1.1) with a0 > 0 and assume that |z| ≤ 1/3. If 1/
√

e3 ≤

a0 ≤
√

2−1, then

λ (a0,∂U0) = λ (a0,0) =
a0√

1+a2
0

.

Thus

λ (a0,M f (|z|))≤ λ (a0,∂U0)

becomes

M f (|z|)−a0√
1+a2

0

√
1+(M f (|z|))2

≤ a0√
1+a2

0

,
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which is equivalent to

(1−a2
0)
(
(M f (|z|))2−2a0M f (|z|)

)
≤ 0.

Hence it suffices to prove that

M f (|z|)≤ 2a0

1−a2
0
.

Now, if f is of the form (3.17), then it follows from (3.16) and (3.18) that

M f (|z|)< 1
et +

2t
3et +

2t(1− t)
9et +

1
9

√
t
6
,

where t =− loga0. Let

y2(t) =
1
et +

2t
3et +

2t(1− t)
9et +

1
9

√
t
6
− 2e−t

1− e−2t .

Then y2(t0) = 0 for some t0 ≈ 1.532 and y2(t)< 0 for 0 < t ≤ 1.5, as shown in Figure

4.1. Hence for 0 < t ≤ 1.5,

M f (|z|)< y2(t)+
2e−t

1− e−2t <
2e−t

1− e−2t =
2a0

1−a2
0
.

On the other hand, if f is not of the form (3.17), then on the disk Uρ = {z : |z| ≤ ρ}

with 1/3 < ρ < 1, there exists a sequence of functions {gk} of the form (3.17) such
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Figure 4.1: Graph of function y2(t) over the interval [0,3]

that gk(0) = a0 for each k, and gk converges uniformly to f on Uρ . Since

λ (a0,Mgk(|z|))< λ (a0,0)

and Mgk converges uniformly to M f on U1/3 (see the proof of Theorem 3.4), it

follows that for |z| ≤ 1/3,

λ (a0,M f (|z|))≤ λ (a0,0).

Finally, if
√

2−1≤ a0 < 1, then

λ (a0,∂U0) = λ (a0,1).

Since f ∈H(U,U0)⊂H(U,U), the classical Bohr’s theorem implies that a0≤M f (|z|)<

1 when |z| ≤ 1/3. Hence for |z| ≤ 1/3,

λ (a0,M f (|z|))< λ (a0,1).
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To show the sharpness, consider the function ft given by (3.11) with
√

2−1≤ a0 =

e−t < 1. From (3.14), it is known that

M ft(|z|)≥ 2a0−a(1+|z|)/(1−|z|)0 ≥ a0, z ∈U.

Hence

λ (a0,M f (|z|))≥ λ (a0,2a0−a(1+|z|)/(1−|z|)0 ). (4.1)

Then, by applying L’Hospital’s rule,

λ (a0,2a0−a(1+|z|)/(1−|z|)0 )

λ (a0,1)
=

√
2a0√

1+
(

2a0−a(1+|z|)/(1−|z|)0

)2
·

1−a2|z|/(1−|z|)
0

1−a0

→ 2|z|
1−|z|

> 1 (4.2)

if and only if |z|> 1/3 as a0→ 1. Consequently, (4.1) and (4.2) give

λ (a0,M f (|z|))> λ (a0,1) = λ (a0,∂U0)

for |z|> 1/3 as a0→ 1. Thus the value 1/3 is best possible.

We end this subsection by presenting a Bohr-type inequality in hyperbolic distance

on U0. The density of the hyperbolic metric [31] on U0 is given by

λU0(z) =
1

|z| log(1/|z|)
.
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If dU0(a,b) denote the hyperbolic distance between a and b, then

dU0(a,b) =
∫ b

a

|dz|
|z| log(1/|z|)

= log
∣∣∣∣ log1/|b|
log1/|a|

∣∣∣∣ .
Theorem 4.3. Let f ∈ H(U,U0) with 1/e≤ | f (0)|< 1. Then

dU0(M f (|z|), | f (0)|)≤ log
1+3|z|
1−3|z|

for |z|< 1/3. In particular,

(a) when |z|< 1/9,

dU0(M f (|z|), | f (0)|)< log2 =
2

λU0(
1
2)

;

(b) when |z|< (e−1)/3(1+ e)≈ 0.15404,

dU0(M f (|z|), | f (0)|)< 1 =
e

λU0(
1
e )

;

(c) when |z|< (1−| f (0)|)/3(1+ | f (0)|),

dU0(M f (|z|), | f (0)|)< 1/| f (0)|
λU0(| f (0)|)

.

Proof. By Theorem 3.4,M f (U1/3)⊆U0. Define a covering map F : U →U0 by

F(z) = exp
(

log(| f (0)|)1+ z
1− z

)
.
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Also, the conformal map ψ(z) = 3z sends U1/3 onto U . Note that F ◦ ψ : U1/3→U0 is

also a covering map. Thus by [31, Theorem 10.5],

dU0(| f (0)|,M f (|z|))≤dU0

(
(F ◦ψ)(0),(F ◦ψ)(|z|)

)
=dU1/3(0, |z|) = dU(ψ(0),ψ(|z|))

=dU(0,3|z|) = log
1+3|z|
1−3|z|

in U1/3, where dU1/3 and dU denote the hyperbolic distance on U1/3 and U , respectively.

Parts (a) and (b) are evident. For part (c), an upper bound for |z| is obtained by solving

the inequality

log
1+3|z|
1−3|z|

<
1/| f (0)|

λU0(| f (0)|)
= log

(
1
| f (0)|

)
.

4.2 Bohr and Poincaré Disk Model

4.2.1 Hyperbolic Disk to Hyperbolic Disk

In [71], Fournier and Ruscheweyh studied the Bohr’s theorem for the class of ana-

lytic functions in the disk

Uγ =

{
z ∈ C :

∣∣∣∣z+ γ

1− γ

∣∣∣∣< 1
1− γ

}
, 0≤ γ < 1.

The Bohr radius is shown to be (1+γ)/(3+γ). Generally there is no assurance that the

Bohr phenomenon will occur for every given class of functions. For example, Aizen-

berg [18] showed that the Bohr phenomenon does not exist for the space of analytic

functions defined in the annulus {z ∈ C : t < |z|< 1},0 < t < 1.

The following result is an immediate extension of the classical Bohr’s inequality
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for arbitrary disks centered at the origin. We state it for the sake of completeness.

Theorem 4.4. If f ∈ H(Up,Uq), then

M f (|z|)≤ q

for |z| ≤ rUp,Uq = p/3. Equivalently,

d(M f (|z|), | f (0)|)≤ d( f (0),∂Uq)

for |z| ≤ rUp,Uq = p/3. The radius rUp,Uq is sharp.

Proof. For f (z)=∑
∞
n=0 anzn ∈H(Up,Uq), the function g(z)= (1/q) f (pz) lies in H(U,U).

The classical Bohr’s theorem gives

1
q

∞

∑
n=0
|an||pz|n ≤ 1 for |z| ≤ 1/3,

that is,

M f (|z|)≤ q for |z| ≤ p/3.

The sharpness is demonstrated by the Möbius transformation

φ(z) = q
z/p−a

1−az/p
= q

z−ap
p−az

, 0 < a < 1, z ∈Up.

Theorem 4.4 readily leads to the Bohr’s theorems in the Poincaré disk model. Con-
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sider now the hyperbolic unit disk

Uh := {z ∈U : dU(0,z)< 1}.

It is readily shown that Uh is the Euclidean disk Urh with

rh := tanh(1/2).

Theorem 4.5. If f ∈ H(Uh,Uq) with 0 < q < 1, then

dU(M f (|z|), | f (0)|)≤ dU( f (0),∂Uq) (4.3)

for |z| ≤ rUh,Uq
= tanh(1/2)/3≈ 0.15404. The radius rUh,Uq

is sharp.

Proof. Since dU is additive along the line (−1,1) [31, Theorem 2.2], it follows that

dU( f (0),∂Uq) = dU(| f (0)|,q) = dU(0,q)−dU(0, | f (0)|),

and

dU(M f (|z|), | f (0)|) = dU(0,M f (|z|))−dU(0, | f (0)|).

Thus inequality (4.3) holds when

dU(0,M f (|z|))≤ dU(0,q),

that is, for

M f (|z|)≤ q.
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So it suffices to find the radius r such that

d(M f (|z|), | f (0)|)≤ d( f (0),∂Uq)

for |z| ≤ r. This problem is a special case of Theorem 4.4 with p= rh. The sharp radius

rUh,Uq
= rh/3 is thus obtained.

The preceding theorem yields the hyperbolic Bohr’s theorem for analytic self-maps

of the hyperbolic unit disk.

Corollary 4.1. If f ∈ H(Uh,Uh), then

dU(M f (|z|), | f (0)|)≤ dU( f (0),∂Uh)

for |z| ≤ rUh,Uh = tanh(1/2)/3≈ 0.15404. The radius rUh,Uh is sharp.

4.2.2 Hyperbolic Disk to Hyperbolic Convex Set

In this subsection, a similar Bohr’s theorem as proved by Aizenberg (see Theorem

1.11) is obtained in the Poincaré disk model of the hyperbolic plane. Let

U+ := {z ∈U : Rez > 0}

be the semi-disk, which acts as the right half-plane in the Poincaré disk model. We

first obtain sharp coefficient bounds for functions in H(U,U+).
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Lemma 4.1. If f (z) = ∑
∞
n=0 anzn ∈ H(U,U+), then

|an| ≤
2(Rea0)(1−|a0|2)√
(1+ |a0|2)2−4(Ima0)2

for n = 1,2, . . ..

Proof. Let g(z) = (1+ z)/(1− z) be an analytic function mapping U conformally onto

the right half-plane H . Then for b > 0 and c real, the function i(bg+ ic) maps U

conformally onto the upper half-plane {z ∈ C : Imz > 0}, implying
√

i(bg+ ic) is

a conformal map of U onto the quadrant {z ∈H : argz > 0}. Thus, define a map

Fb,c : U →U+ by

Fb,c(z) :=−i

√
i
(
b1+z

1−z + ic
)
−1√

i
(
b1+z

1−z + ic
)
+1

, z ∈U. (4.4)

Then Fb,c = −ig−1 ◦ i(bg+ ic) maps U conformally onto U+. Write f (0) = a0. Note

that Rea0 > 0.

Now Fb,c(0) = f (0) provided

√
−c+ ib−1√
−c+ ib+1

= ia0,

that is,

√
−c+ ib =

1+ ia0

1− ia0
· 1+ ia0

1+ ia0
=

1−|a0|2 +2i(Rea0)

1+ |a0|2 +2(Ima0)
.

Thus

−c+ ib =
(1−|a0|2)2−4(Rea0)

2

(1+ |a0|2 +2(Ima0))2 + i
4(Rea0)(1−|a0|2)

(1+ |a0|2 +2(Ima0))2 ,
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and so

b =
4(Rea0)(1−|a0|2)

(1+ |a0|2 +2(Ima0))2 > 0, c =
4(Rea0)

2− (1−|a0|2)2

(1+ |a0|2 +2(Ima0))2 .

Hence f is subordinate to Fb,c. Since Fb,c is convex, it follows from [6, Lemma 3] (see

also [69, Theorem 6.4]) that

|an| ≤ |F ′b,c(0)|, n = 1,2, . . . .

Calculation shows that

F ′b,c(z) =
d
dz

−i

√
i
(
b1+z

1−z + ic
)
−1√

i
(
b1+z

1−z + ic
)
+1


=

2b

(1− z)2
√

i
(
b1+z

1−z + ic
)(√

i
(
b1+z

1−z + ic
)
+1
)2 .

Now

b =
4(Rea0)(1−|a0|2)

(1+ |a0|2 +2(Ima0))2 and
√

i(b+ ic) =
1+ ia0

1− ia0
,

and so

F ′b,c(0) =
2b√

i(b+ ic)
(√

i(b+ ic)+1
)2

=
8(Rea0)(1−|a0|2)

(1+ |a0|2 +2(Ima0))2 ·
1− ia0

1+ ia0
· (1− ia0)

2

4

=
2(Rea0)(1−|a0|2)(1− ia0)

(1+ ia0)2(1+ ia0)
.
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Thus

|F ′b,c(0)|2 =
2(Rea0)(1−|a0|2)(1− ia0)

(1+ ia0)2(1+ ia0)
· 2(Rea0)(1−|a0|2)(1+ ia0)

(1− ia0)2(1− ia0)

=
4(Rea0)

2(1−|a0|2)2

(1+ |a0|2 +2(Ima0))(1+ |a0|2−2(Ima0))

=
4(Rea0)

2(1−|a0|2)2

(1+ |a0|2)2−4(Ima0)2 , (4.5)

which establishes the result.

Another important result is that for every a∈U , there exists a w0 ∈ ∂U+ satisfying

dU(a,∂U+) = dU(a,w0). Since

∂U+ =
{

eit :−π

2
≤ t ≤ π

2

}
∪{iy :−1≤ y≤ 1} ,

it follows that

dU(a,∂U+) = inf
−1<y<1

dU(a, iy) = inf
−1<y<1

2tanh−1
∣∣∣∣ a− iy
1+ iay

∣∣∣∣,
where a = a1 + ia2 ∈U .

Since tanh−1 x is increasing on −1 < x < 1, it suffices to find the minimum point

of

h(y) :=
∣∣∣∣ a− iy
1+ iay

∣∣∣∣2 = ∣∣∣∣ a1 + i(a2− y)
1−a2y+ ia1y

∣∣∣∣2
=

a2
1 +(a2− y)2

(1−a2y)2 +a2
1y2 =

|a|2−2ya2 + y2

1−2ya2 + |a|2y2
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in (−1,1). Evidently

h′(y) = 2(|a|2−1)
(1+ y2)a2− (1+ |a|2)y
(1−2ya2 + |a|2y2)

2

=
2(y−a2)

(
(1−a2y)2 +a2

1y2)(
(1−a2y)2 +a2

1y2
)2

−
2
(
a2

1y−a2(1−a2y)
)(

a2
1 +(a2− y)2)(

(1−a2y)2 +a2
1y2
)2

=
2
(
a2

1 +a2
2−1

)(
a2(1+ y2)− (1+a2

1 +a2
2)y
)(

(1−a2y)2 +a2
1y2
)2 ,

and so h′(y) = 0 if and only if

g(y) =
(
a2

1 +a2
2−1

)(
a2(1+ y2)− (1+a2

1 +a2
2)y
)
= 0. (4.6)

If a2 = 0, then (4.6) gives g(y) = (1− a4
1)y, which vanishes when y = 0. Further

note that g(y)> 0 if y > 0, and g(y)< 0 if y < 0. Thus h(0) is the minimum point, and

dU(a,∂U+) = dU(a,0).

Assume now that a2 6= 0. It follows from (4.6) that

y1 =
1+a2

1 +a2
2 +
√

(1+a2
1 +a2

2)
2−4a2

2

2a2

and

y2 =
1+a2

1 +a2
2−
√

(1+a2
1 +a2

2)
2−4a2

2

2a2
(4.7)

are the critical points of h. Let y3 = (1+ a2
1 + a2

2)/2a2 be the midpoint of y1 and y2.
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Since

a2(1+ y2)− (1+a2
1 +a2

2)y = a2

[(
y−

1+a2
1 +a2

2
2a2

)2

+
4a2

2− (1+a2
1 +a2

2)
2

4a2
2

]
,

it follows from (4.6) that

g(y3) = (a2
1 +a2

2−1)
(
4a2

2− (1+a2
1 +a2

2)
2)/4a2

=
(
1− (a2

1 +a2
2)
)(

(1+a2
1 +a2

2)
2− (2a2)

2)/4a2

=
(
1− (a2

1 +a2
2)
)(

(1+a2
1 +a2

2)−2a2
)(

(1+a2
1 +a2

2)+2a2
)
/4a2

=
(
1− (a2

1 +a2
2)
)(

a2
1 +(a2−1)2)(a2

1 +(a2 +1)2)/4a2.

Therefore, if a2 > 0, then y2 < y1 and g(y3) > 0. Since h′(y3) > 0, the function h

increases on (y2,y1). Hence h(y2) is the minimum point, and

dU(a,∂U+) = dU(a, iy2).

On the other hand, if a2 < 0, then y1 < y2 and g(y3)< 0, and because h′(y3)< 0, h

decreases on (y1,y2). Hence h(y2) is the minimum point, and

dU(a,∂U+) = dU(a, iy2).

The following result is thus established.
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Lemma 4.2. If a ∈U, then dU (a,∂U+) = dU (a,w0) such that

w0 =


0 if Ima = 0;

iy2 if Ima 6= 0,

where y2 is given by (4.7).

For 0≤ t < 1, define a Möbius transformation φt : U →U by

φt(z) =
z+ t

1+ tz
, z ∈U.

Then φt (and its inverse φ−t) maps (−1,1) to (−1,1), and φt is an isometry of the

hyperbolic distance dU [31, Theorem 2.1]. The following is a generalization of the

previous lemma (Lemma 4.2).

Lemma 4.3. If a ∈U, then dU (a,∂φt(U+)) = dU (a,φt(w0)), where

w0 =


0 if Ima = 0;

iy2 if Ima 6= 0,

and y2 is given by (4.7).

A path γ joining z to w in U is called a hyperbolic geodesic (or h-geodesic) [97] if

dU(z,w) =
∫

γ

λU(z)|dz|,

where λU(z)|dz| is the hyperbolic metric given in section 1.7. Indeed, the h-geodesic

through z and w is C∩U where C is the unique Euclidean circle (or straight line) that
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Figure 4.2: Graphs of U+ (left) and φ1/3(U+) (right) on the complex plane.

passes through z and w and is orthogonal to the unit circle ∂U [31].

A set G ⊂U is called hyperbolic convex (or h-convex) [97] if for any pair z,w of

distinct points in G, every h-geodesic joining z and w also lies in G. Analogous to [25,

Defintion 2.29], a component of the complement of a h-geodesic in U is called an open

half-plane in U . It is readily seen that every open half-plane is h-convex.

Since φt(iy),−1< y< 1, is a h-geodesic, it follows that the open half-plane φt(U+)

is h-convex. The following result gives the Bohr radius for the h-convex domain

φt(U+).

Lemma 4.4. If f (z) = ∑
∞
n=0 anzn ∈ H(Uh,φt(U+)), then

dU(M f (|z|), | f (0)|)≤ dU( f (0),∂φt(U+)) (4.8)

for |z| ≤ rh/3≈ 0.15404, where rh = tanh(1/2).
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Proof. Recall that Uh =Urh . Define the function

ψ(w) := rhw = z ∈ H(U,Uh)

which maps U conformally onto Uh. Then the function f ◦ψ ∈ H(U,U+) is subordi-

nate to the function Fbh,ch of the form (4.4) for appropriate values bh,ch. So by Lemma

4.1,

M( f ◦ψ)(|w|) =|a0|+
∞

∑
n=1
|anrn

h||w
n|

≤|a0|+ |F ′bh,ch(0)|
|z|/rh

1−|z|/rh
:= F(|z|).

By Lemma 4.3, inequality (4.8) holds when

dU (|a0|,F(|z|))≤ dU(a0,φt(w0)).

Indeed, inequality above can be written as

dU (0,F(|z|))≤ dU(a0,φt(w0))+dU (0,a0)

which is reduced to

1+F(|z|)
1−F(|z|)

≤ 1+ pU(a0,φt(w0))

1− pU(a0,φt(w0))

(
1+ |a0|
1−|a0|

)
,

where

pU(a0,φt(w0)) =

∣∣∣∣ φt(w0)−a0

1−φt(w0)a0

∣∣∣∣ .

69



Note that for z,w ∈ C,

1+ z
1− z

(
1+w
1−w

)
=

1+ z+w
1+zw

1− z+w
1+zw

.

Further, the real function (1+ r)/(1− r) increases with r. It follows that

F(|z|)≤ |a0|+ pU(a0,φt(w0))

1+ |a0|pU(a0,φt(w0))
.

Equivalently,

∣∣F ′bh,ch(0)
∣∣ |z|/rh

1−|z|/rh
≤ |a0|+ pU(a0,φt(w0))

1+ |a0|pU(a0,φt(w0))
−|a0|

=
(1−|a0|2)pU(a0,φt(w0))

1+ |a0|pU(a0,φt(w0))

=
(1−|a0|)(1+ |a0|)pU(a0,φt(w0))

1+ |a0|pU(a0,φt(w0))

<1−|a0|

because 0≤ pU(a0,φt(w0))< 1. Since (4.5) gives

∣∣F ′b,c(0)∣∣= (1−|a0|)

√
4(Rea0)2(1+ |a0|)2

(1+ |a0|2)2−4(Ima0)2 ,

it follows that inequality (4.8) holds for

|z|/rh

1−|z|/rh
≤

√
inf

a0∈U+

{
(1+ |a0|2)2−4(Ima0)2

4(Rea0)2(1+ |a0|)2

}
.
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Thus the Bohr radius r̃ satisfies the equation

r̃/rh

1− r̃/rh
=
√

β ,

where β is given by

β = inf
a0∈U+

{
(1+ |a0|2)2−4(Ima0)

2

4(Rea0)2(1+ |a0|)2

}
=

1
4
.

Thus

r̃ = rh
1/2

1+1/2
=

rh

3
.

Denote by eiθ φt(U+) the rotation of the half-planes φt(U+) about the origin by

an angle θ , 0 ≤ θ < 2π . If G is a set in an open half-plane, define the h-convex

hull of G with respect to φt , denoted by G̃h, to be the intersection of all eiθ φt(U+)

containing G. Note that G̃h is also Euclidean convex and lie in the minor component

of the complement of some h-geodesic in U .

Theorem 4.6. Let G be an open connected set in an open half-plane such that G̃h is

not an empty set. If f ∈ H(Uh,G), then

dU(M f (|z|), | f (0)|)≤ dU( f (0),∂ G̃h) (4.9)

for |z| ≤ tanh(1/2)/3 ≈ 0.15404. The value tanh(1/2)/3 is the best if there exists a

point p ∈ C such that p ∈ ∂ G̃∩∂G∩∂D for some Euclidean disk D⊂ G.

Before proving the main theorem, we shall first prove its special case.
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Lemma 4.5. The function φ h
a,s,t(z) ∈ H(Uh,φt(U+)) given by

φ
h
a,s,t(z) = s

(
1+

z/rh−a
1−az/rh

)
+ t, 0≤ a < 1, 0≤ t < 1,

where 0 < s≤ (1− t)/2 satisfies

dU(Mφ
h
a,s,t(|z|), |φ h

a,s,t(0)|)≤ dU(φ
h
a,s,t(0),∂φ

h
a,s,t(U

h)) (4.10)

for |z| ≤ tanh(1/2)/3≈ 0.15404. The value tanh(1/2)/3 is the best.

Proof. It follows from Lemma 4.4 that

dU(Mφ
h
a,s,t(|z|), |φ h

a,s,t(0)|)≤ dU(φ
h
a,s,t(0),∂φt(U+))

for |z| ≤ tanh(1/2)/3. Since φ h
a,s,t(0) > 0, Lemma 4.3 shows that the preceding in-

equality is equivalent to

dU(Mφ
h
a,s,t(|z|), |φ h

a,s,t(0)|)≤ dU(φ
h
a,s,t(0), t).

Next, to obtain (4.10), it is sufficient to prove

dU(φ
h
a,s,t(0), t) = dU(φ

h
a,s,t(0),∂φ

h
a,s,t(U

h)). (4.11)

Let a0 = φ h
a,s,t(0) = s(1−a)+ t > 0. Now,

dU(a0,∂φ
h
a,s,t(U

h)) = inf
ζ∈∂Uh

dU(a0,φ
h
a,s,t(ζ ))
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= inf
0≤θ<2π

dU(a0,s(1+ eiθ )+ t)

= inf
0≤θ<2π

log
1+ pU(a0,s(1+ eiθ )+ t)
1− pU(a0,s(1+ eiθ )+ t),

where

pU(a0,s(1+ eiθ )+ t) =
∣∣∣∣ a0− s(1+ eiθ )− t
1−a0(s(1+ eiθ )+ t)

∣∣∣∣ .
Thus, it suffices to minimize pU(a0,s(1+ eiθ )+ t) with respect to θ , or equivalently,

minimizing

∣∣∣∣ a0− s(1+ eiθ )− t
1−a0(s(1+ eiθ )+ t)

∣∣∣∣2 = ∣∣∣∣ a0− t− s− seiθ

1−a0s−a0t−a0seiθ

∣∣∣∣2
=

(a0− t− s− scosθ)2 + s2 sin2
θ

(1−a0s−a0t−a0scosθ)2 +a2
0s2 sin2

θ

=
(a0− t− s)2−2s(a0− t− s)cosθ + s2

(1−a0s−a0t)2−2a0s(1−a0s−a0t)cosθ +a2
0s2 .

A critical point θ0 occurs when

−2s(1−a2
0)
(
s+ t +a2

0(s+ t)−a0(1+2st + t2)
)

sinθ0

((1−a0s−a0t)2−2a0s(1−a0s−a0t)cosθ0 +a2
0s2)2 = 0,

or (
s+ t +(s(1−a)+ t)2(s+ t)− (s(1−a)+ t)(1+2st + t2)

)
sinθ0 = 0.

Note that the coefficient s+ t +(s(1−a)+ t)2(s+ t)− (s(1−a)+ t)(1+2st + t2) 6= 0.

Indeed, if

s+ t +(s(1−a)+ t)2(s+ t)− (s(1−a)+ t)(1+2st + t2) = 0,
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then

a =
−1+2s2 +2st + t2±

√
(1− t2)(1−4s2−4st− t2)

2(s2 + st)
.

Since 1−4s2−4st− t2 ≥ 0 for 0 < s≤ (1− t)/2, it follows that a is real. Now,

1−2s2−2st− t2 ≥1−2
(

1− t
2

)2

−2t
(

1− t
2

)
− t2

=1− 1−2t + t2

2
− t + t2− t2

=
1− t2

2
> 0,

and by the fact that

(1− t2)(1−4s2−4st− t2) = (1−2s2−2st− t2)2−4(s2 + st)2,

it is evident that a < 0 and so contradicting the positivity of a.

Hence the critical point occurs when sinθ0 = 0, that is, at θ0 = 0 or θ0 = π , imply-

ing

dU(a0,∂φ
h
a,s,t(U

h)) = dU(a0,2s+ t) or dU(a0,∂φ
h
a,s,t(U

h)) = dU(a0, t).

It remains to check the changes of sign of

d
dθ

(
pU(a0,s(1+ eiθ )+ t)

)2
=
−2s(1−a2

0)
(
s+ t +a2

0(s+ t)−a0(1+2st + t2)
)

sinθ

((1−a0s−a0t)2−2a0s(1−a0s−a0t)cosθ +a2
0s2)2
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for a given range of θ . Indeed, it suffices to check the changes of sign of

−
(
s+ t +(s(1−a)+ t)2(s+ t)− (s(1−a)+ t)(1+2st + t2)

)
sinθ .

Earlier it has been shown that

s+ t +(s(1−a)+ t)2(s+ t)− (s(1−a)+ t)(1+2st + t2) (4.12)

is nonzero for all 0≤ a < 1 and 0 < s≤ (1− t)/2. In particular, if s = (1− t)/2, then

(4.12) becomes (1/8)(1+a)2(−1+ t)2(1+ t)> 0, which is always positive for all a, t.

Thus, it suffices to determine only the sign changes of −sinθ when θ varies, which

then gives

dU(a0,∂φ
h
a,s,t(U

h)) = dU(a0, t).

To show the sharpness, it suffices to show that for every |z| > rh/3 there exists a

corresponding 0 < a < 1 such that

dU(Mφ
h
a,s,t(|z|),a0)> dU(a0, t).

Since

φ
h
a,s,t(z) = s

(
1−a+(1−a2)

∞

∑
n=1

an−1
(

z
rh

)n
)
+ t,

it follows that

Mφ
h
a,s,t(z) =s

(
1−a+(1−a2)

∞

∑
n=1

an−1
(

z
rh

)n
)
+ t
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=s
(

1+
z/rh−a

1−az/rh

)
+ t

=φ
h
a,s,t(0)+ s

(
a+

z/rh−a
1−az/rh

)
.

Now

dU(Mφ
h
a,s,t(|z|),a0)> dU(a0, t)

gives

Mφ h
a,s,t(|z|)−a0

1−a0Mφ h
a,s,t(|z|)

>
a0− t

1−a0t
,

since a0 = φ h
a,s,t(0) = s(1−a)+ t > t, which holds if and only if

s(1−a0t)
(

a+
|z|/rh−a
1−a|z|/rh

)
> s(1−a)

[
1−a2

0− sa0

(
a+
|z|/rh−a

1−a|z|/rh

)]
.

The latter is equivalent to

(1−a0t + sa0(1−a))
(
(1−a2)|z|/rh

1−a|z|/rh

)
> (1−a)(1−a2

0)

which holds provided

(1+a)|z|/rh

1−a|z|/rh
>

1−a2
0

1−a0t +a0(a0− t)
=

1−a2
0

1+a2
0−2ta0

=
1− (s(1−a)+ t)2

1+(s(1−a)+ t)2−2t(s(1−a)+ t)

=
1− s2(1−a)2− t2−2st(1−a)

1+ s2(1−a)2− t2 .
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If |z|= rh/(3− ε) for some arbitrary small ε > 0, then

1+a
3− ε−a

>
1− s2(1−a)2− t2−2st(1−a)

1+ s2(1−a)2− t2

which reduces to

a2s((4− ε)s+2t)+2a(1+(−4+ ε)s2 +(−4+ ε)st− t2)

−e(−1+ s2 +2st + t2)+2(−1+2s2 +3st + t2)> 0.

Hence a < A1 or a > A2, where

A1 =
−1+(4− ε)s2 +(4− ε)st + t2−

√
−4εs2 + ε2s2 +(−1+2st + t2)2

(4− ε)s2 +2st
,

A2 =
−1+(4− ε)s2 +(4− ε)st + t2 +

√
−4εs2 + ε2s2 +(−1+2st + t2)2

(4− ε)s2 +2st
.

Since

−1+(4− ε)s2 +(4− ε)st + t2 ≤−ε(1− t2)/4,

it follows that a < A1 < 0, which contradicts a > 0. On the other hand, A2 < 1 if

and only if −εs((4− ε)s+ 2t)(1− t2) < 0, which always holds true. Hence for |z| =

rh/(3− ε) > rh/3, there exists a real a with A2 < a < 1, such that (4.9) fails to hold.

Hence the value rh/3 is best.

Proof of Theorem 4.6. Since rotation about the origin is an isometry of the hyperbolic

distance dU [31, Theorem 2.1], it follows that Lemma 4.4 remains valid for the class

H(Uh,eiθ φt(U+)) for all θ , which then implies (4.9).
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Write p in the form |p|eiθp for some θp ∈ [0,2π). Then

p ∈ ∂

(
eiθpφ

h
a,s,|p|(U

h)
)

for all 0 < s≤ (1−|p|)/2. Further, it is possible to choose some 0 < sp ≤ (1−|p|)/2

such that eiθpφ h
a,sp,|p| ∈ H(Uh,D)⊂ H(Uh,G) and so

p ∈ (∂ G̃∩∂G∩∂D)∩∂

(
eiθpφ

h
a,sp,|p|(U

h)
)
.

By equation (4.11),

dU

(
eiθpφ

h
a,sp,|p|(0),∂

(
eiθpφ

h
a,sp,|p|(U

h)
))

= dU

(
eiθpφ

h
a,sp,|p|(0), p

)
,

which then implies

dU

(
eiθpφ

h
a,sp,|p|(0),∂ G̃

)
= dU

(
eiθpφ

h
a,sp,|p|(0), p

)

because eiθpφ h
a,sp,|p|(U

h)⊂ G. Thus

dU

(
eiθpφ

h
a,sp,|p|(0),∂ G̃

)
= dU

(
eiθpφ

h
a,sp,|p|(0),∂

(
eiθpφ

h
a,sp,|p|(U

h)
))

implying the equivalence of (4.9) and (4.10) for the function eiθpφ h
a,sp,|p|. Hence the

radius rh/3 is sharp.

Theorem 4.6 is applied to obtain the Bohr-type theorem for other hyperbolic re-

gions. First, a region Ω is said to be a hyperbolic region if C∪{∞}\Ω contains at least
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three points. The Planar Uniformization Theorem [31, Theorem 10.2] states that each

hyperbolic region Ω corresponds to a universal covering map F ∈ H(U,Ω).

The hyperbolic metric λΩ in the hyperbolic region Ω satisfies the relation [31,

Theorem 10.5]

λΩ(F(z))|F ′(z)|= λU(z)

for all z ∈U . The hyperbolic distance dΩ is defined by

dΩ(w1,w2) = inf
γ

∫
γ

λΩ(w) |dw|

over all smooth curves γ in Ω joining w1 to w2. If Ω is simply connected, then

dΩ(F(z),F(w)) = dU(z,w), z,w ∈U.

On the other hand, if Ω is multiply connected, then F is not injective giving

dΩ(F(z),F(w))≤ dU(z,w), z,w ∈U.

For a set G in a hyperbolic region Ω with a corresponding covering map F ∈

H(U,Ω), define the h-convex hull of G with respect to φt , denoted by G̃h, to be the

intersection of all F(eiθ φt(U+)) containing G.

Theorem 4.7. Suppose f ∈ H(Uh,G) with f (0) ≥ 0 and G ⊆ Ω for some hyperbolic

region Ω ⊂ C∪{∞}. Let F ∈ H(U,Ω) be a universal covering map of Ω\{ f (0)} by

U\{0} with F(0) = f (0). If F(z) = ∑
∞
n=0 Anzn such that An ≥ 0 for all n ≥ 1 and
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F−1(G̃h) is non-empty in U, then

dΩ(M f (|z|), | f (0)|)≤ dΩ( f (0),∂ G̃h) (4.13)

for |z| ≤ rh/3 = tanh(1/2)/3≈ 0.15404.

Proof. Since F is a covering of Ω and f ∈ H(Uh,G) ⊂ H(Uh,Ω) with f (0) = F(0),

it follows that the function F−1 ◦ f has a branch at 0. The monodromy theorem now

shows that F−1 ◦ f can be continued holomorphically to all of Uh. Consequently,

Theorem 4.6 gives

dU(M(F−1 ◦ f )(|z|), |F−1( f (0))|)≤ dU(F−1( f (0)),∂F−1(G̃h)),

or because

dU(0,∂F−1(G̃h)) = dΩ( f (0),∂ G̃h),

that

dU(M(F−1 ◦ f )(|z|),0)≤ dΩ( f (0),∂ G̃h)

for |z| ≤ rh/3 = tanh(1/2)/3. Thus, inequality (4.13) holds for |z| ≤ rh/3 when

dΩ(M f (|z|), | f (0)|)≤ dU(M(F−1 ◦ f )(|z|),0).

Now by definition, F(0) = f (0)≥ 0 if and only if z = 0. It follows then that

dΩ(M f (|z|), | f (0)|) =dU(F−1(M f (|z|)),F−1(| f (0)|))
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=dU(F−1(M f (|z|)),0).

So it suffices to show

dU(F−1(M f (|z|)),0)≤ dU(M(F−1 ◦ f )(|z|),0),

which reduces to

F−1(M f (|z|))≤M(F−1 ◦ f )(|z|).

Since F is increasing on [0,1), the latter is equivalent to

M f (|z|)≤ F(M(F−1 ◦ f )(|z|)).

Finally with φ = F−1 ◦ f ∈ H(Uh,U), the above inequality becomes

M(F ◦φ)(|z|)≤ F(Mφ(|z|)),

which holds true by applying the triangle inequality.

Observe that the preceding theorem holds for Ω = C\{0,−1} where its corre-

sponding covering map is given by the modular function [98]

J(z) = 16z
∞

∏
n=1

(
1+ z2n

1− z2n−1

)8

, z ∈U.

The theorem also holds for Ω = H , where H = {z ∈ C : Rez > 0} is the right half-

plane in C and its covering map is given by φH(z) = (1+ z)/(1− z) ∈ H(U,H ).
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CHAPTER 5

BOHR AND TYPES OF FUNCTIONS

5.1 Harmonic Mappings

5.1.1 Harmonic mappings into a bounded domain

In this subsection, we shall find the Bohr radius for bounded harmonic functions

on the disk. Let D be a bounded set and denote by D the closure of D. Let Dmin be the

smallest closed disk containing the closure of D. Thus

D⊆ Dmin ⊆ E

for any closed disk E containing D. The following two lemmas are required to deduce

the main theorem in this section.

Lemma 5.1. (See [6]) If g(z) = ∑
∞
n=0 bnzn ∈ S( f ), and f (U) is a convex set, then

|bn| ≤ | f ′(0)| ≤ 2d( f (0),∂ f (U)).

Lemma 5.2. (See [6]) Let f (z) = h(z)+g(z) = ∑
∞
n=0 anzn +∑

∞
n=1 bnzn be a complex-

valued harmonic function on U. If f maps U into a bounded domain D, then

|an|+ |bn| ≤
4
π

ρ, (5.1)

|eiµan + e−iµbn| ≤ 2
(
ρ−|Reeiµ(a0−w0)|

)
, (5.2)

for any real µ and any n ≥ 1, where ρ and w0 are respectively the radius and center
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of Dmin.

Proof. Since f (U) is contained in a disk with radius ρ and center w0, it follows that

ρ = | f (z)−w0|+d( f (z),∂Dmin), or | f (z)−w0|= ρ−d( f (z),∂Dmin);

that is,

| f (z)−w0| ≤ ρ

for all z ∈U . Consequently

∣∣Re [eiµ [ f (z)−w0]]
∣∣≤ ∣∣eiµ [ f (z)−w0]

∣∣≤ ρ

for any real µ and any z ∈ D. Let

Wµ(z) = eiµ(h(z)−w0)+ e−iµg(z).

Then Wµ is analytic, Wµ(0) = eiµ(a0−w0) and
∣∣ReWµ(z)

∣∣= ∣∣Re [eiµ [ f (z)−w0]]
∣∣< ρ .

The function

F(z) =
2i
π

ρ log
1+ z
1− z

maps U conformally onto the strip S = {z ∈ C : |Rez| < ρ}. As eiµ(a0−w0) ∈S ,

choose b ∈U so that F(b) = eiµ(a0−w0) and let

ϕ(z) =
z+b
1+ b̄z

.
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Then F(ϕ(0)) = eiµ(a0−w0) =Wµ(0), and hence Wµ is subordinate to F ◦ϕ .

Simple calculations give

(F ◦ϕ)′(0) =
4i(1−|b|2)
π(1−b2)

ρ and so |(F ◦ϕ)′(0)| ≤ 4
π

ρ. (5.3)

As F ◦ϕ is convex and

d(F(ϕ(0)),∂P) = ρ−|ReWµ(0)|= ρ−|Reeiµ(a0−w0)|,

Lemma 5.1 implies (5.2). In addition, Lemma 5.1 and (5.3) imply

|eiµan + e−iµbn| ≤
4
π

ρ.

If an = 0, then inequality (5.1) is evident. If an 6= 0, then

|eiµan + e−iµbn|= |an|
∣∣∣∣1+ e−2iµ

(
bn

an

)∣∣∣∣ ,
and µ can be chosen so that e−2iµ(bn/an) = |bn/an|, which gives (5.1).

Remark 5.1. When D =U, Lemma 5.2 reduces to Lemma 4 in [6].

The following is the main result in this subsection.

Theorem 5.1. Let f (z) = h(z)+ g(z) = ∑
∞
n=0 anzn +∑

∞
n=1 bnzn be a complex-valued

harmonic function on U. If f : U→D for some bounded domain D, then, for |z| ≤ 1/3,

∞

∑
n=1
|anzn|+

∞

∑
n=1
|bnzn| ≤ 2

π
ρ (5.4)
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and
∞

∑
n=1
|eiµan + e−iµbn||z|n + |Reeiµ(a0−w0)| ≤ ρ, µ ∈ R, (5.5)

where ρ and w0 are respectively the radius and center of Dmin.

The bound 1/3 is sharp as demonstrated by an analytic univalent mapping f from

U onto D. In particular, if D is an open disk with radius ρ > 0 centered at ρw0, then

the sharpness is shown by the Möbius transformation

ϕ(z) = eiµ0ρ

(
z+a

1+az
+ |w0|

)
, z ∈U,

for some 0 < a < 1 and µ0 satisfying w0 = |w0|eiµ0 .

Proof. If |z|= 1/3, then it follows from (5.2) that

∞

∑
n=1
|eiµan + e−iµbn||zn| ≤ ρ−|Reeiµ(a0−w0)|,

and (5.5) is evident. On the other hand, (5.1) yields

|an|+ |bn| ≤
4
π

ρ,

and with |z|= 1/3 gives

∞

∑
n=1
|anzn|+

∞

∑
n=1
|bnzn| ≤ 1

2

(
4
π

ρ

)
=

2
π

ρ,

which is (5.4).
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For the sharpness, consider the Möbius transformation

ϕ(z) = eiµ0ρ

(
z+a

1+az
+ |w0|

)
, 0 < a < 1, z ∈U.

Then

ϕ(z) = eiµ0ρ(a+ |w0|)+ eiµ0ρ(1−a2)
∞

∑
n=1

(−a)n−1zn

yields

Mϕ(z) = ρ(a+ |w0|)+
∞

∑
n=1

ρ(1−a2)an−1zn = ρ(2a+ |w0|)+ρ

(
z−a

1−az

)
.

For any fixed r0, a brief computation shows that

1
ρ
Mϕ(r0)−|w0|=

a+(1−2a2)r0

1−ar0
≥ 1

provided r0≥ 1/(1+2a), or equivalently a≥ (1/2)(1/r0−1). Hence for any r0 > 1/3,

there exists an a satisfying 1 > a ≥ (1/2)(1/r0− 1), where (5.5) does not hold in

the open disk D with radius ρ > 0 centered at ρw0. Hence the bound 1/3 is best

possible.

Remark 5.2. In the case D is the unit disk U, Theorem 5.1 reduces to Theorem 2 in

[6].
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5.1.2 Harmonic mappings into a wedge domain

Denote by SW the set of all univalent, harmonic, orientation-preserving mappings

f of the unit disk U into the wedge domain

W = {w : |argw|< π/4},

with normalization f (0) = 1. Let SW denote the closure of SW in the topology of

uniform convergence on compact sets. In [12], the authors described the extreme points

for the closed convex hull of SW . As an application, they obtained coefficient bounds

for functions on SW . Here in the sequel, we shall adopt the notations used in [12]. Thus

let P denote the Poisson kernel

P(z, t) :=
1

2π
Re
[

eit + z
eit− z

]
.

Choose α,β and γ so that α < β < γ < 2π +α , and let

I1 = {eit : α < t < β} and I2 = {eit : γ < t < 2π +α}.

The lengths of these arcs are |I1| = β −α and |I2| = 2π +α − γ . Next, consider the

harmonic functions

U1(z) =
π

|I1|

∫
β

α

P(z, t)dt =−1
2
+

1
|I1|

arg
eiβ − z
eiα − z

and

U2(z) =
π

|I2|

∫
α+2π

γ

P(z, t)dt =−1
2
+

1
|I2|

arg
eiα − z
eiγ − z

,
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where the branches of the arguments are chosen so that

U1(0) =U2(0) =
1
2
.

Note that the boundary values of U j are π/|I j| on |I j| and zero on ∂U\I j.

Define

T(α,β ,γ) = (1+ i)U1 +(1− i)U2. (5.6)

Then T(α,β ,γ)(0) = 1 and

T̂(α,β ,γ)(e
it) = lim

r→1
T(α,β ,γ)(reit) =



(1+i)π
|I1| if eit ∈ I1;

(1−i)π
|I2| if eit ∈ I2;

0 if eit ∈ ∂U\[I1∪ I2].

In [12],T(α,β ,γ) is shown to be a univalent, harmonic, orientation-preserving mapping

of U onto the open triangle with vertices at the origin and the points

(1+ i)π
|I1|

and
(1− i)π
|I2|

.

The cluster sets [47, p. 1] of T(α,β ,γ) at the points eiα ,eiβ and eiγ are the respective sides

of the triangle. We refer to [12] for additional details on U1,U2 and T(α,β ,γ). Finally,

let

s(x) :=
sinx

x
for x > 0, and s(0) = 1.

The following result will be required.
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Theorem 5.2. [12, Theorem 3.8] Let

f (z) = 1+
∞

∑
n=1

anzn +
∞

∑
n=1

bnzn

belong to SW . Then

|an| ≤
√

s(x0)2(1+ sin2x0)≈ 1.3082, n≥ 1,

where x0 ≈ 0.5875 ∈ [π/8,π/4] is the unique root of

s′(x)(1+ sin2x)+ s(x)cos2x = 0.

Equality for any n is possible only for the function T(α,β ,γ) with

β = α +
2x0

n
and γ = α +2π− 2x0

n
.

In addition, |bn| ≤ 1 for all n ≥ 1. Equality in this case for any n is possible for the

functions 2πP( · ,α).

The following lemma is also required to infer the main theorem in this section.

Lemma 5.3. Let f (z) = h(z)+g(z) = 1+∑
∞
n=1 anzn +∑

∞
n=1 bnzn ∈ SW . Then

|an|+ |bn| ≤
(√

s(x0)2(1+ sin2x0)+1
)
≈ 2.3082, (5.7)

|eiµan + e−iµbn| ≤ 2d(eiµ ,∂H ) = 2cos µ, (5.8)

for all −π/4 < µ < π/4 and n ≥ 1 where H is the right half-plane, and x0 is given
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by Theorem 5.2.

Proof. Inequality (5.7) is a direct consequence of Theorem 5.2. To show (5.8), let

Wµ(z)= eiµh(z)+e−iµg(z). Then Wµ is analytic, Wµ(0)= eiµ , and ReWµ(z)=Re [eiµ f (z)]>

0 for −π/4 < µ < π/4.

The function

F(z) =
1+ z
1− z

maps U conformally onto the right half-plane H . As eiµ ∈H , choose b ∈U so that

F(b) = eiµ and let

ϕ(z) =
z+b
1+ b̄z

.

Then F(ϕ(0)) = eiµ =Wµ(0), and hence Wµ is subordinate to F ◦ϕ . As (F ◦ϕ)(U) =

H is convex, Lemma 5.1 implies (5.8).

Theorem 5.3. Let f (z) = h(z)+g(z) = 1+∑
∞
n=1 anzn +∑

∞
n=1 bnzn ∈ SW . If |z| ≤ 1/3,

then
∞

∑
n=1
|anzn|+

∞

∑
n=1
|bnzn| ≤ 1

2

(√
s(x0)2(1+ sin2x0)+1

)
≈ 1.1541, (5.9)

and
∞

∑
n=1
|eiµan + e−iµbn||z|n ≤ d(eiµ ,∂H ) = cos µ (5.10)

for any−π/4 < µ < π/4, where H is the right half-plane and x0 is given by Theorem

5.2. The value 1/3 is best possible for inequality (5.10) to hold.

Proof. Since |z| ≤ 1/3, it follows that (5.7) implies (5.9), and (5.8) implies (5.10). To
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show 1/3 is best, consider the harmonic function

T(α,β ,γ)(z) =(1+ i)U1(z)+(1− i)U2(z)

=−1+
1+ i
|I1|

arg
eiβ − z
eiα − z

+
1− i
|I2|

arg
eiα − z
eiγ − z

as given by formula (5.6). Let

T(α,β ,γ)(z) = 1+
∞

∑
n=1

Anzn +
∞

∑
n=1

Bnzn.

Comparing the coefficients gives

An =
(1− i)(e−inα − e−inβ )

2n|I1|
− (1+ i)(e−inγ − e−inα)

2n|I2|

and

Bn =
−(1+ i)(e−inα − e−inβ )

2n|I1|
+

(1− i)(e−inγ − e−inα)

2n|I2|
.

Let xn = n|I1|/2 and yn = n|I2|/2. Note that

(1− i)(e−inα − e−inβ )

2n|I1|
= e−inα (1− i)(1− e−in(β−α))

2n|I1|

=
e−inα

4xn
(1− i)(1− e−2ixn)

=
e−inα

2xn
(sin2 xn− isin2 xn

+ cosxn sinxn + icosxn sinxn)

=
e−inαs(xn)

2
(1+ i)(cosxn− isinxn)

= e−inα (1+ i)
2

e−ixns(xn).
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Applying the same technique to the other three terms gives

An = e−inα

[
(1+ i)

2
e−ixns(xn)+

(1− i)
2

e−iyns(yn)

]

and

Bn = e−inα

[
(1− i)

2
e−ixns(xn)+

(1+ i)
2

e−iyns(yn)

]
.

Therefore

eiµAn + e−iµBn =eiµe−inα

[
(1+ i)

2
e−ixns(xn)+

(1− i)
2

e−iyns(yn)

]
+ e−iµe−inα

[
(1− i)

2
e−ixns(xn)+

(1+ i)
2

e−iyns(yn)

]
=

e−inαe−ixns(xn)

2
[
eiµ(1+ i)+ e−iµ(1− i)

]
+

e−inαe−iyns(yn)

2
[
eiµ(1− i)+ e−iµ(1+ i)

]
.

If β + γ = 2(π +α), then xn = yn. Hence

∣∣eiµAn + e−iµBn
∣∣= |eiµ + e−iµ ||s(xn)|= 2|s(xn)|cos µ

for any −π/4 < µ < π/4. Thus for |z|> 1/3,

∞

∑
n=1
|eiµAn + e−iµBn||z|n > 2cos µ

∞

∑
n=1
|s(xn)|

(
1
3

)n

−→ 2cos µ

∞

∑
n=1

(
1
3

)n

= cos µ

as |I1|= |I2| −→ 0. Hence the value 1/3 is best possible.
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5.2 Logharmonic Mappings

Denote by SLh the class consisting of univalent logharmonic maps f defined on U

and of the form

f (z) = zh(z)g(z)

with the normalization h(0) = g(0) = 1. This section gives emphasis to the subclass

ST 0
Lh consisting of functions f ∈ SLh which maps U onto a starlike domain (with re-

spect to the origin). Thus the linear segment joining the origin to every point f (z) lies

entirely in f (U). Starlike logharmonic mappings is an active subject of investigation,

and several recent works include those of [27, 26, 107].

5.2.1 Distortion Theorem

We first establish an integral representation for starlike logharmonic mappings.

Theorem A. [76, Corollary 3.6] Let p ∈ H(U) with p(0) = 1. Then Re p(z)> 0 in U

if and only if there is a probability measure µ on ∂U such that

p(z) =
∫
|x|=1

1+ xz
1− xz

dµ(x) (|z|< 1).

Theorem B. [76, Theorem 3.9] Let f ∈ S . Then f ∈ S∗ if and only if there is a

probability measure µ on ∂U so that

z f ′(z)
f (z)

=
∫
|x|=1

1+ xz
1− xz

dµ(x) (|z|< 1),

or equivalently,

f (z) = zexp
(∫
|x|=1
−2log(1− xz)dµ(x)

)
.
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If a ∈ H(U,U), then (1+a(z))/(1−a(z)) has positive real part for z ∈U, and the

following result follows from Theorem A.

Lemma 5.4. If a ∈ H(U,U) with a(0) = 0, then

a(z)
1−a(z)

=
∫

∂U

xz
1− xz

dµ(x) (|z|< 1)

for some probability measure µ on ∂U.

The following lemma establishes a link between starlike logharmonic functions

and starlike analytic functions.

Lemma 5.5. [4] Let f (z) = zh(z)g(z) be logharmonic in U. Then f ∈ ST 0
Lh if and only

if ϕ(z) = zh(z)/g(z) ∈ S∗.

Theorem 5.4. A logharmonic function f (z) = zh(z)g(z) belongs to ST 0
Lh if and only if

there are two probability measures µ and ν on ∂U such that

h(z) =exp
(∫

∂U

∫
∂U

(
η +ξ

η−ξ
log

1−ξ z
1−ηz

− log(1−ηz)
)

dµ(η)dν(ξ )

)
,

g(z) =exp
(∫

∂U

∫
∂U

(
η +ξ

η−ξ
log

1−ξ z
1−ηz

+ log(1−ηz)
)

dµ(η)dν(ξ )

)
,

(5.11)

where η 6= ξ and |η |= |ξ |= 1; or

h(z) =exp
(∫

∂U

∫
∂U

(
2ηz

1−ηz
− log(1−ηz)

)
dµ(η)dν(η)

)
,

g(z) =exp
(∫

∂U

∫
∂U

(
2ηz

1−ηz
+ log(1−ηz)

)
dµ(η)dν(η)

)
,

(5.12)

where |η |= 1.
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Proof. Let ϕ(z) = zh(z)/g(z). Since the second dilatation function (Section 1.5)

a(z) =
zg′(z)/g(z)

1+ zh′(z)/h(z)
,

it follows that

zϕ ′(z)
ϕ(z)

=1+
zh′(z)
h(z)

− zg′(z)
g(z)

=
zg′(z)
g(z)

(
1−a(z)

a(z)

)
.

Thus

g(z) = exp
(∫ z

0

a(s)
1−a(s)

· ϕ
′(s)

ϕ(s)
ds
)

(5.13)

and

h(z) =
ϕ(z)

z
g(z). (5.14)

By Lemma 5.5 and Theorem B,

zϕ ′(z)
ϕ(z)

=
∫
|η |=1

1+ηz
1−ηz

dµ(η) (|z|< 1), (5.15)

or equivalently,

ϕ(z) = zexp
(∫
|η |=1

−2log(1−ηz)dµ(η)

)
. (5.16)

Then (5.13), (5.15) and Lemma 5.4 imply that g can be written as

g(z) = exp
(∫ z

0

∫
∂U

∫
∂U

ξ

1−ξ s
· 1+ηs

1−ηs
dµ(η)dν(ξ )ds

)
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for some probability measures µ and ν on U .

If η 6= ξ , then

g(z) =exp
(∫

∂U

∫
∂U

ξ

∫ z

0

(
2η

(η−ξ )(1−ηs)
− η +ξ

(η−ξ )(1−ξ s)

)
dsdµ(η)dν(ξ )

)
=exp

(∫
∂U

∫
∂U

(
− 2ξ

η−ξ
log(1−ηz)+

η +ξ

η−ξ
log(1−ξ z)

)
dµ(η)dν(ξ )

)
=exp

(∫
∂U

∫
∂U

(
η +ξ

η−ξ
log

1−ξ z
1−ηz

+ log(1−ηz)
)

dµ(η)dν(ξ )

)
.

On the other hand, if η = ξ , then

g(z) =exp
(∫

∂U

∫
∂U

∫ z

0

η +η2s
(1−ηs)2 dsdµ(η)dν(η)

)
=exp

(∫
∂U

∫
∂U

∫ z

0

(
2η

(1−ηs)2 +
η2s−η

(1−ηs)2

)
dsdµ(η)dν(η)

)
=exp

(∫
∂U

∫
∂U

(
2ηz

1−ηz
+ log(1−ηz)

)
dµ(η)dν(η)

)
.

The representation for h follow from g by applying (5.14) and (5.16).

Let

h0(z) =
1

1− z
exp
(

2z
1− z

)
= exp

(
∞

∑
n=1

(
2+

1
n

)
zn

)
,

and

g0(z) = (1− z)exp
(

2z
1− z

)
= exp

(
∞

∑
n=1

(
2− 1

n

)
zn

)
.

Then

f0(z) = zh0(z)g0(z) =
z(1− z)

1− z
exp
(

Re
[

4z
1− z

])

is the logharmonic Koebe function.
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Theorem 5.5. Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Then

1
1+ |z|

exp
(
−2|z|
1+ |z|

)
≤ |h(z)| ≤ 1

1−|z|
exp
(

2|z|
1−|z|

)
, (5.17)

(1+ |z|)exp
(
−2|z|
1+ |z|

)
≤ |g(z)| ≤ (1−|z|)exp

(
2|z|

1−|z|

)
, (5.18)

|z|exp
(
−4|z|
1+ |z|

)
≤ | f (z)| ≤ |z|exp

(
4|z|

1−|z|

)
. (5.19)

Equalities occur if and only if h,g, and f are respectively appropriate rotations of

h0,g0 and f0.

Proof. Since ϕ(z) = zh(z)/g(z) ∈ S∗, it follows from (5.13) that

g(z) = exp
(∫ z

0

a(s)
1−a(s)

· ϕ
′(s)

ϕ(s)
ds
)
,

and thus

h(z) =
ϕ(z)

z
g(z), and f (z) = ϕ(z)|g(z)|2.

For |z|= r, the known estimates

∣∣∣∣zϕ ′(z)
ϕ(z)

∣∣∣∣≤ 1+ r
1− r

,

∣∣∣∣ a(z)
z(1−a(z))

∣∣∣∣≤ 1
1− r

,

and

|ϕ(z)| ≤ r
(1− r)2
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yield

|g(z)| ≤ exp
(∫ r

0

1
1− s

· 1+ s
1− s

ds
)
= (1− r)exp

(
2r

1− r

)
,

|h(z)|=
∣∣∣∣ϕ(z)z

g(z)
∣∣∣∣≤ 1

(1− r)2 · (1− r)exp
(

2r
1− r

)
=

1
1− r

exp
(

2r
1− r

)
,

and

| f (z)|= |ϕ(z)| |g(z)|2 ≤ r
(1− r)2 · (1− r)2 exp

(
4r

1− r

)
= r exp

(
4r

1− r

)
.

For the left estimates, (5.11) gives

log |h(z)|= Re
[∫

∂U

∫
∂U

K(z,ξ ,η)dµ(ξ )dν(η)

]
, |η |= |ξ |= 1,

where

K(z,ξ ,η) =


η+ξ

η−ξ
log 1−ξ z

1−ηz − log(1−ηz), if η 6= ξ ;

2ηz
1−ηz − log(1−ηz), if η = ξ .

Then for |z|= r,

log |h(z)|=Re
[∫

∂U

∫
∂U

K(z,ξ ,η)dµ(ξ )dν(η)

]
≥min

µ,ν

{
min
|z|=r

Re
[∫

∂U

∫
∂U

K(z,ξ ,η)dµ(ξ )dν(η)

]}
=min

{
min
|z|=r

inf
0<|l|≤π/2

[
− Im

[
1+ e2il

1− e2il

]
arg
(

1− e2il(ηz)
1− (ηz)

)]
− log(1+ r),

−2r
1+ r

− log(1+ r)
}

=min
{

inf
0<|l|≤π/2

min
|z|=r

[
− Im

[
1+ e2il

1− e2il

]
arg
(

1− e2ilz
1− z

)]
− log(1+ r),

−2r
1+ r

− log(1+ r)
}
,
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where e2il = ηξ .

Let

Φr(l) =


min
|z|=r

[
− Im

[
1+e2il

1−e2il

]
arg
(

1−e2ilz
1−z

)]
− log(1+ r), if 0 < |l| ≤ π/2;

−2r
1+r − log(1+ r), if l = 0.

Since

min
|z|=r

[
− Im

[
1+ e2il

1− e2il

]
arg
(

1− e2ilz
1− z

)]
= min
|z|=r

Re
[

1+ e2il

1− e2il log
(

1+
(1− e2il)z

1− z

)]
,

evidently

lim
l→0

min
|z|=r

Re

[
1+ e2il

1− e2il

∞

∑
k=1

(−1)k+1

k

(
(1− e2il)z

1− z

)k]

=min
|z|=r

Re

[
2z

1− z
+ lim

l→0

{
2

∞

∑
k=2

(−1)k+1

k
(1− e2il)k−1

(
z

1− z

)k
}]

=min
|z|=r

Re
[

2z
1− z

]
=− 2r

1+ r
.

Thus Φr(l) is continuous in |l| ≤ π/2.

Moreover,

min
|z|=r

[
− Im

[
1+ e−2il

1− e−2il

]
arg
(

1− e−2ilz
1− z

)]
= min
|z|=r

[
− Im

[
1+ e2il

1− e2il

]
arg
(

1− z
1− e−2ilz

)]
=min
|z|=r

[
− Im

[
1+ e2il

1− e2il

]
arg
(

1− e2il(e−2ilz)
1− (e−2ilz)

)]
=min
|w|=r

[
− Im

[
1+ e2il

1− e2il

]
arg
(

1− e2ilw
1−w

)]
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implies that Φr(l) is an even function on |l| ≤ π/2. Hence

log |h(z)| ≥ inf
0≤l≤π/2

Φr(l).

Since

max
|z|=r

arg
(

1− e2ilz
1− z

)
= 2tan−1

(
r sin(l)

1+ r cos(l)

)
,

this implies that

log |h(z)| ≥ inf
0≤l≤π/2

−2cot(l) tan−1
(

r sin(l)
1+ r cos(l)

)
− log(1+ r).

Evidently tan−1(x)≤ x for all x≥ 0, and so

log |h(z)| ≥ inf
0≤l≤π/2

(
−2r cos(l)
1+ r cos(l)

− log(1+ r)
)

≥ −2r
1+ r

− log(1+ r).

For the lower bound of |g(z)| in (5.18), a similar argument is applied to (5.12)

which yields

log |g(z)| ≥ inf
0≤l≤π/2

(
−2r cos(l)
1+ r cos(l)

+ log(1+ r)
)

≥ −2r
1+ r

+ log(1+ r).

100



Finally, it follows that

| f (z)|= |z||h(z)||g(z)| ≥ r
1+ r

exp
(
−2r
1+ r

)
· (1+ r)exp

(
−2r
1+ r

)
=r exp

(
−4r
1+ r

)
,

which establishes (5.19).

Remark 5.3. The upper bounds for |h(z)| and |g(z)| in Theorem 5.5 were also obtained

by Duman [65]. Here we not only establish the sharp lower bounds, but also exhibit

the extremal functions.

Corollary 5.1. Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Also, let H(z) = zh(z) and G(z) = zg(z).

Then

1
2e
≤ d(0,∂H(U))≤ 1,

2
e
≤ d(0,∂G(U))≤ 1,

and

1
e2 ≤ d(0,∂ f (U))≤ 1.

Equalities occur if and only if h,g and f are respectively suitable rotations of h0,g0

and f0.

Proof. By (5.17),

d(0,∂H(U)) = liminf
|z|→1

|H(z)−H(0)|= liminf
|z|→1

|H(z)−H(0)|
|z|

≥ 1
2e

.
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On the other hand, the minimum modulus principle shows that

d(0,∂H(U)) = liminf
|z|→1

|H(z)−H(0)|= liminf
|z|→1

|H(z)−H(0)|
|z|

≤ 1

since |h(0)| = 1. The same technique is applied to G and f to find the remaining

inequalities.

5.2.2 The Bohr radius for logharmonic mappings

Consider now logharmonic mappings f (z) = zh(z)g(z) with

h(z) = exp

(
∞

∑
k=1

akzk

)
and g(z) = exp

(
∞

∑
k=1

bkzk

)
.

Theorem C. [5, Theorem 3.3] Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Then

|an| ≤ 2+
1
n

and |bn| ≤ 2− 1
n

for all n≥ 1. Equalities hold for f a rotation of the function f0.

Our main results are the following theorems.

Theorem 5.6. Let f (z) = zh(z)g(z) ∈ ST 0
Lh, H(z) = zh(z) and G(z) = zg(z). Then

(a)

|z|exp

(
∞

∑
n=1
|an||z|n

)
≤ d(0,∂H(U))
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for |z| ≤ rH ≈ 0.1222, where rH is the unique root in (0,1) of

r
1− r

exp
(

2r
1− r

)
=

1
2e

,

(b)

|z|exp

(
∞

∑
n=1
|bn||z|n

)
≤ d(0,∂G(U))

for |z| ≤ rG ≈ 0.3659, where rG is the unique root in (0,1) of

r(1− r)exp
(

2r
1− r

)
=

2
e
.

Both radii are sharp and are attained respectively by appropriate rotations of H0(z) =

zh0(z) and G0(z) = zg0(z).

Proof. Note that

H(z) = zexp

(
∞

∑
k=1

akzk

)
and G(z) = zexp

(
∞

∑
k=1

bkzk

)
.

By Theorem C,

|an| ≤ 2+
1
n

and |bn| ≤ 2− 1
n

which are sharp bounds and Corollary 5.1 gives

d(0,∂H(U))≥ 1
2e

and d(0,∂G(U))≥ 2
e
.
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Hence

r exp

(
∞

∑
n=1
|an|rn

)
≤r exp

(
∞

∑
n=1

(
2+

1
n

)
rn

)

=r exp
(

2r
1− r

− log(1− r)
)

≤d(0,∂H(U))

if and only if

r
1− r

exp
2r

1− r
≤ 1

2e
.

The Bohr radius, rH ≈ 0.1222 is therefore the positive solution of

r
1− r

exp
2r

1− r
=

1
2e

.

Likewise,

r exp

(
∞

∑
n=1
|bn|rn

)
≤r exp

(
∞

∑
n=1

(
2− 1

n

)
rn

)

=r exp
(

2r
1− r

+ log(1− r)
)

≤d(0,∂G(U))

if and only if

r(1− r)exp
2r

1− r
≤ 2

e
.

Hence the Bohr radius, rG is the positive solution of

r(1− r)exp
2r

1− r
=

2
e
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which gives rG ≈ 0.3659. Finally, it is evident that both radii are attained by suitable

rotations of H0(z) and G0(z), respectively.

Theorem 5.7. Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Then, for any real t,

|z|exp

(
∞

∑
n=1

∣∣an + eitbn
∣∣ |z|n)≤ d(0,∂ f (U))

for |z| ≤ r0 ≈ 0.09078, where r0 is the unique root in (0,1) of

r exp
(

4r
1− r

)
=

1
e2 .

The bound is sharp and is attained by a suitable rotation of the logharmonic Koebe

function f0.

Proof. By Theorem C,

|an| ≤ 2+
1
n

and |bn| ≤ 2− 1
n
.

which are sharp bounds and Corollary 5.1 gives

d(0,∂ f (U))≥ 1
e2

which is also sharp. Thus

r exp

(
∞

∑
n=1
|an|rn +

∞

∑
n=1
|bn|rn

)
≤r exp

(
4

∞

∑
n=1

rn

)

=r exp
(

4r
1− r

)
≤ d(0,∂ f (U))
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if and only if

r exp
(

4r
1− r

)
≤ 1

e2 .

Hence the Bohr radius, r0 is the solution of

r exp
(

4r
1− r

)
=

1
e2

which gives r0 ≈ 0.09078. Finally, it is evident that r0 is attained by suitable rotations

of the logharmonic Koebe function, f0.
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CHAPTER 6

BOHR RESEARCH AND CONCLUSION

6.1 The three famous multidimensional Bohr radii

Let Cn be the n-fold Cartesian product of the complex plane C and Un := {z =

(z1, . . . ,zn) ∈ Cn : |zk| < 1} be the unit polydisk. Then by using the standard multi-

index notation, an n-variable complex power series defined on a domain G can be

written as

∑
α

cαzα , cα ∈ C, z ∈ G, (6.1)

where α = (α1, . . . ,αn) denotes an n-tuple of nonnegative integers, |α| denotes the

sum α1 + · · ·+αn, α! denotes the product α1!α2! · · ·αn!, and zα denotes the product

zα1
1 · · ·zαn

n . In 1989, the n-dimensional Bohr’s theorem was first introduced by Dineen

and Timoney [61]. They remarked that the n-dimensional Bohr radius estimation can

be used to prove the connection between the existence of absolute basis and nuclearity

of the underlying space.

Several years later, the n-dimensional Bohr radius K(G) (also known as the first

Bohr radius) was formulated by Boas and Khavinson [37] on a bounded complete

Reinhardt domain G ⊂Cn. Denote by K(G) the largest r > 0 such that if the series

(6.1) converges in G with ∣∣∣∣∑
α

cαzα

∣∣∣∣< 1, (6.2)
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then

∑
α

|cαzα |< 1,

holds in the scaled domain (or homothetic domain) r ·G. In particular, if G is the unit

polydisk Un, then r ·Un = {z = (z1, . . . ,zn)∈Cn : |zk|< r}. They proved that for n > 1,

K(G) satisfies

1
3
√

n
< K(G)<

2
√

logn√
n

.

It is interesting to note that the Bohr radius K(Dn
1) for the unit hypercone Dn

1 = {z ∈

Cn : |z1|+ · · ·+ |zn|< 1}, satisfies [15, Theorem 9]

1
3e1/3 < K(Dn

1)≤ 1/3,

which is independent of n and has the sharp upper bound 1/3. For two bounded com-

plete Reinhardt domains G1 and G2 in Cn, the relation between the Bohr radii K(G1)

and K(G2) is given by [54, Lemma 2.5]

1
S(G1,G2)S(G2,G1)

K(G2)≤ K(G1)≤ S(G1,G2)S(G2,G1)K(G2),

where

S(G1,G2) := inf{b > 0 : G1 ⊂ bG2}.

The relation was then applied to prove the lower and upper bounds for K(G) [54,

Theorem 2.7 and 2.8].

Next, let X = (Cn,‖ · ‖) be a Banach space. Note that the unit ball BX in X is

a bounded complete Reinhardt domain (see [54, Remark 3.9]). The application of
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Banach space theory into the Bohr radii study was indeed initiated by Defant, García

and Maestre. In 2003, they proved a basic link between Bohr radii K(BX) and radii of

unconditionality [53, Theorem 2.2], and also expressed the bounds of K(BX) in terms

of Banach-Mazur distance [53, Corollary 5.1, 5.2 and 5.3]. More detailed discussions

on the relation of Bohr radii and modern Banach space theory can be found in the

survey papers [51] and [52].

In 2011, Defant et al. showed that the Bohnenblust-Hille inequality [38] is in fact

hypercontrative [57, Theorem 1], that is, for integers m,n > 1, the inequality

(
∑
|α|=m

|aα |
2m

m+1

)m+1
2m

≤
(

1+
1

m−1

)m−1√
m
(√

2
)m−1

sup
z∈Un

∣∣∣∣∣ ∑
|α|=m

aαzα

∣∣∣∣∣
holds for every m-homogeneous polynomial ∑|α|=m aαzα on Cn. They took advantage

of this inequality and obtained new bound for K(G) with G⊂ Cn a bounded complete

Reinhardt domain [57, Theorem 2]:

K(G) = b(n)

√
logn

n
,

with 1/
√

2+o(1)≤ b(n)≤ 2. The lower bound for b(n) was then improved to 1+o(1)

by Bayart, Pellegrino and Seoane-Sepúlveda [30], indicating K(G) behaves asymptot-

ically as
√

logn/n. More precisely, they proved that

lim
n→∞

K(G)√
logn

n

= 1.

The second Bohr radius B(G) was introduced by Aizenberg [15] by incorporating
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the supremum function. Let G⊆Cn be a bounded complete Reinhardt domain. Denote

by B(G) the largest number r > 0 such that if the series (6.1) converges in a bounded

complete Reinhardt domain G⊂ Cn and (6.2) holds in it, then

∑
α

sup
r·G
|cαzα |< 1.

By definition, it is clear that B(G)≤K(G). In particular, if G=Un, then B(G) =K(G).

In the same paper, Aizenberg proved that [15, Theorem 4]

1− n

√
2
3
< B(G)

for any bounded complete Reinhardt domain G. Similarly, there was a relation between

the second Bohr radii for two bounded complete Reinhardt domains G1 and G2 in Cn

[54, Lemma 3.1],

B(G1)≤ S(G1,G2)S(G2,G1)B(G2),

which is essential in proving the lower and upper bounds for the second Bohr radius

B(G) [54, Corollary 3.4].

Another possible way of extending the single variable result is to consider the com-

plex Banach space `n
p ⊂ Cn with norm ‖z‖`n

p
:= (∑n

k=1 |zk|p)1/p. Let B`n
p
= {z ∈ Cn :

‖z‖`n
p
< 1} denote the unit ball of `n

p. Note that B`n
2

is the usual Euclidean unit ball Dn
2

and B`n
∞

is the unit polydisk Un. When n > 1, Boas [36, Theorem 3 and Theorem 5]
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proved that for 1≤ p≤ ∞,

1
c

(
1
n

)1−1/min{p,2}
≤K(B`n

p
)< c

(
logn

n

)1−1/min{p,2}
,

1
C

(
1
n

)1/2+1/max{p,2}
≤B(B`n

p
)<C

(
logn

n

)1/2+1/max{p,2}
,

(6.3)

where c and C are positive constants independent of n. Here, the unconditional basis

constant and the Banach-Mazur distance serve as important tools to obtain [49, The-

orem 1.1] which is an improvement for the lower estimate of K(B`n
p
) in (6.3). Much

later, Defant and Frerick study Bohr radii using invariants from local Banach space

theory to further improve the lower estimate [50, Theorem 1.1].

The third n-dimensional Bohr radius, known as the arithmetic Bohr radius was

introduced by Defant, Maestre and Prengel [55] due to its application in [56]. Let

G⊂Cn be a bounded complete Reinhardt domain and H∞(G) the class of all bounded

analytic functions f : G→ C and λ ≥ 1. Note that each f ∈ H∞(G) can be written in

its monomial series expansion f (z) = ∑α cα( f )zα . Then the λ -arithmetic Bohr radius

of G with respect to H∞(G) is denoted by

A(H∞(G),λ ) := sup

{
1
n

n

∑
k=1

rk : ∑
α

|cα( f )|rα ≤ λ‖ f‖G, ∀ f ∈ H∞(G)

}
,

where r =(r1, . . . ,rn) denotes an n-tuple of nonnegative real numbers, α =(α1, . . . ,αn)

denotes an n-tuple of nonnegative integers, rα denotes the product rα1
1 · · ·rαn

n , and

‖ f‖G = supz∈G | f (z)|. In particular, the 1-arithmetic Bohr radius is simply known

as the arithmetic Bohr radius. In the case 1≤ λ ≤
√

2 and n≥ 2 [55, Theorem 3.1],

A(H∞(B`n
1
),λ ) =

1

n(3λ −2
√

2(λ 2−1))
,
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where B`n
1
= {(z1, . . . ,zn) ∈ Cn : |z1|+ · · ·+ |zn| < 1}. This result distinguishes the

arithmetic radius from the first and second Bohr radius because the exact values of

K(G) and B(G) are not known for any bounded complete Reinhardt domain G of di-

mension n ≥ 2. A more general result is given in [55, Theorem 4.1]. Finally, the

relation between first and third Bohr radius is given by [55, Theorem 4.7]

max

{
1
3n

1
S(B`n

1
,G)

,
S(G,B`n

1
)

n
K(G)

}
≤ A(G,λ )≤ c

logn
n

S(G,B`n
2
),

where c > 0 is a uniform constant.

6.2 Bohr and bases in spaces of holomorphic functions

Let M be a complex manifold and H(M) the space of holomorphic functions on

M with basis (φn)
∞
n=0. A basis (φn)

∞
n=0 in H(M) is said to have Bohr Property (BP) if

there exist subsets G⊂ K ⊂M, where G is open and K is compact, such that

∞

∑
n=0
|an( f )|sup

G
|φn(z)| ≤ | f |K = sup

z∈K
| f (z)|

holds for any f =∑
∞
n=0 an( f )φn ∈H(M). Aizenberg, Aytuna and Djakov [21, Theorem

3.3] showed that if

(a) φ0 ≡ 1, and

(b) there is a z0 ∈M such that φn(z0) = 0 for n≥ 1,

then (φn)
∞
n has BP, where the open subset G is now a neighborhood of z0. In fact, [21,

Theorem 3.3] implies the existence of a Bohr phenomenon in H(M). A generalization
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of [21, Theorem 3.3] was given in [20, Theorem 4] which considered manifold M with

a one-parameter family of continuous seminorms in H(M). In 2013, inspired by the

work of Lassère and Mazzilli [89], Aytuna and Djakov [28] introduced the term Global

Bohr Property. They [28, Theorem 3] proved that a basis (φn)
∞
n=0 has GBP if and only

if one of the functions φn is a constant. A generalization of [28, Theorem 3] to Stein

manifold was given in [28, Theorem 9].

Let G⊂ Cn be a domain with λG⊂ G for all 0 < λ < 1. Note that, if f ∈ H(G) is

a holomorphic function on G, then f has homogeneous polynomials expansion given

by

f (z) =
∞

∑
k=0

Pk(z), z ∈ G,

where Pk is a homogenous polynomial of degree k. In particular, Aizenberg [16,

Lemma 1.1] proved that if Re f (z)> 0 for all z ∈ G, then

|Pk(z)| ≤ 2ReP0(z), z ∈ G,k = 1,2, . . . .

This inequality is an important tool to prove the following result [17, Theorem 2.1]:

Let f be an analytic function from U into a domain G⊂C. Further suppose the convex

hull G̃ of G satisfies G̃ 6= C. Then

d(M f (|z|), | f (0)|)≤ d( f (0),∂ G̃)

for |z| ≤ 1/3. The value 1/3 is best provided there exists a point p ∈ C satisfying

p ∈ ∂ G̃∩ ∂G∩ ∂D for some disk D ⊂ G. The result shows the extension of Bohr’s

theorem from the class H(U,U) to the class H(U, G̃).
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Let Ur := {z ∈ C : |z|< r}. Also, let H(Ur) be the space of holomorphic functions

on Ur. Then the classical Bohr’s theorem [91] can be reformulated as:

The value 3 is the smallest radius r > 1 such that the inequality

∞

∑
n=0
|anzn|< 1, z ∈U,

holds for all functions f (z) =∑
∞
n=0 anzn ∈H(Ur) where | f (z)|< 1 on Ur. Let K ⊂C be

a continuum (that is a compact set in C containing at least two points such that C\K is

simply connected). By the Riemann mapping theorem, there exists a unique function

ΦK which maps C\K conformally onto C\U such that

(a) ΦK(∞) = ∞, and

(b) Φ′K(∞) = limz→∞ ΦK(z)/z > 0.

The principal part of the Laurent series of Φn
K at ∞ is a polynomial of degree n and is

known as the n-th Faber polynomial FK,n. It is a well known fact [113] that (FK,n)n≥0

is a Schauder basis for all the spaces H(ΩK,r) where

ΩK,r := {z ∈ C\K : |ΦK(z)|< r}∪K.

The definition of Bohr radius was given in the following [89, Theorem 3.1]:

For any continuum K ⊂ C, there exists a constant rK > 1 such that for all r > rk and

f = ∑n anFK,n ∈ H(ΩK,r), if | f (z)|< 1 on ΩK,r, then

∑
n
|an|‖FK,n‖K < 1,
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where ‖FK,n‖K = supz∈K |FK,n(z)|. The Bohr radius of (K,(ΩK,r)r>1,(FK,n)n≥0) is then

defined to be the infimum of all such rK > 1. A generalization of this Bohr radius be

found in [91]. In particular, if K is the domain bounded by a nondegenerate ellipse with

foci±1, then the bounds for the Bohr radius were found by Kaptanoğlu and Sadık [84,

Theorem 7 and 8]. Later on, the exact value of the radius was given by Lassère and

Mazzill [90, Theorem 4.4], which is the unique solution in [0,1] of

∞

∑
n

4R2n

1+R4n +
∞

∑
m

4R2m+1

1+R4m+2 = 1.

6.3 Bohr and norms

Recall that for f ∈H(U,U) of the form (1.1), the classical Bohr’s theorem can also

be written in terms of its supremum norm (1.7). In 2002, Paulsen, Popescu and Singh

[105, Corollary 2.8] obtained the following inequality

∞

∑
n=0
|an|rn ≤ m(r)‖ f‖∞, 0≤ r < 1,

where m(r) = inf{M(r),(1− r2)−1/2} and

M(r) = sup
{

t +(1− t2)
r

1− r
: 0≤ t ≤ 1

}
.

In the same paper, the Bohr radius was shown to be 1/2 if a0 in (1.7) was replaced

by a2
0 [105, Corollary 2.7], and 1/

√
2 if the a0 = 0 [105, Corollary 2.8] (see also [22,

Theorem 3]). Meanwhile, the research on finding an exact description of m(r) was
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conducted by Bombieri [41]. He showed that

m(r) =
3−
√

8(1− r2)

r

for r ∈ [1/3,1/
√

2], and together with Bourgain, they [42, Theorem 1.1] found that

m(r)< 1/
√

1− r2 for r > 1
√

2.

On the other hand, Bénéteau, Dahlner and Khavinson [32] showed that there is no

Bohr phenomenon for the Hardy spaces Hs, 0 < s < ∞ equipped with the usual norm

‖ f‖Hs . Then for f ∈ H(U) of the form (1.1), they conducted their study on finding

sup{‖ f‖p,r : f ∈ Hs,‖ f‖Hs ≤ 1}, where

‖ f‖p,r =

(
∞

∑
n=0
|an|prn

)1/p

and obtained some relations between ‖ f‖p,r and ‖ f‖Hs given in [32, Theorem 2.5].

The authors also showed the effect of renorming a space on the Bohr radius [32, The-

orem 3.1 and Theorem 4.2]. Djakov and Ramanujan in [63], studied the best constant

rp, 1≤ p < ∞ such that

(
∞

∑
n=0
|an|p(rp)

np

)1/p

≤ ‖ f‖∞.

For p= 1, r1 = 1/3 is exactly the classical Bohr radius and Hausdorff-Young inequality

implies that rp = 1 for p≥ 2. The best known estimate for rp with 1 < p < 2 was given

in [63, Theorem 3].

Let X be a complex Banach space. Denote by H∞(U,X) the Hardy space of X-
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valued bounded holomorphic functions on the unit disk U . Blasco introduced and

studied the Bohr radius

R(X) = sup
f∈H∞(U,X),‖ f‖∞≤1

{
r ≥ 0 :

∞

∑
n=0
‖xn‖rn ≤ ‖ f‖∞, f (z) =

∞

∑
n=0

xnzn

}
.

The classical Bohr radius implies R(X)≤ 1/3 for any Banach space X but R(Cm
p ) = 0

for 1 ≤ p ≤ ∞ whenever m ≥ 2 and, where Cm
p is the space Cm endowed with the

p-norm (see [34, Theorem 1.2]). He then defined the radius

Rp,q(X)= sup
f∈H∞(U,X),‖ f‖∞≤1

{
r ≥ 0 : ‖x0‖p +

(
∞

∑
n=1
‖xn‖rn

)q

≤ 1, f (z) =
∞

∑
n=0

xnzn

}
.

In this case, for any m ≥ 2, Blaco obtained Rp,q(Cm
∞) = 0 for all 1 ≤ p,q < ∞ [34,

Proposition 2.1] and Rp,p(Cm
2 )> 0 for p≥ 2 [34, Theorem 2.2]. Further, he extended

the Bohr’s inequality in [105, Corollary 2.7] to the case 1≤ p≤ 2 [34, Proposition 1.4]

where Rp,q(C) = p/(2+ p). In his latest paper, Blasco defined the p-Bohr radius of X

rp(X) = sup
f∈H∞(U,X),‖ f‖∞≤1

{
r ≥ 0 :

∞

∑
n=0
‖xn‖prnp ≤ ‖ f‖p

∞, f (z) =
∞

∑
n=0

xnzn

}

and has the relation Rp,p(X)≤ rp(X)≤ 21−1/pRp,p(X). Further rp(X)> 0 if and only

if X is a p-uniformly C-convex complex Banach space (see [35, Theorem 1.10]).

By replacing scalar valued holomorphic functions by Banach space, Defant, Maestre

and Schwarting defined a new Bohr radius in [58]. Let v : X → Y be a bounded opera-

tor between complex Banach spaces X and Y , n ∈ N and λ ≥ ‖v‖. The λ -Bohr radius

of v Kn(v,λ ) is the supremum of all r ≥ 0 such that for all holomorphic functions
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f (z) = ∑α∈Nn
0
cαzα on Un ⊂ Cn,

sup
z∈rUn

∑
α∈Nn

0

‖v(cα)zα‖Y ≤ λ sup
z∈Un

∥∥∥∥∥ ∑
α∈Nn

0

cαzα

∥∥∥∥∥
X

.

If v is the identity on X , then write Kn(X ,λ ). Further if X =C and λ = 1, then write Kn.

Note that Kn is exactly the first Bohr radius as defined earlier by Boas and Khavinson.

They proved that [58, Theorem 4.1] if X is a finite dimensional Banach space and

λ > 1, then there exist constants C, B > 0 such that for each n

C
λ −1
2λ −1

√
logn

n
≤ Kn(X ,λ )≤ Bλ

2

√
logn

n
;

here B is a universal constant and C is a constant that depends only on X .

6.4 More extensions of Bohr’s theorem

There are still many possible directions of extending Bohr’s theorem. For example,

in [83], Kaptanoǧlu studied the Bohr phenomenon for elliptic equations by considering

the case of harmonic functions for the Laplace-Beltrami operator. The Bohr radii for

classes of harmonic, separately harmonic and pluriharmonic functions were evaluated

in [19]. Extension of Bohr’s theorem to uniform algebra can also be found in [103].

The Dirichlet-Bohr radius was defined in [43] which relates the Bohr radius to the

Dirichlet series while earlier work in this direction can be found in [29]. The interested

reader may also refer to a recent survey paper on Bohr’s inequality [13].

A paper by Dixon [62] gave a great impetus to the development of Bohr’s inequal-

ity in operator theory. In the paper, he used the classical Bohr’s theorem to construct a
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non-unital Banach algebra which is not an operator algebra but satisfies the non-unital

von Neumann’s inequality. The construction was later expanded by Paulsen, Popescu

and Singh [105, Theorem 2.10]. To be precise, if (A,‖ · ‖) is a Banach algebra and let-

ting |||a|||r = r−1‖a‖, for 0 < r ≤ 1/3, then (A, ||| · |||r) is a Banach algebra that satisfies

the non-unital von Neumann inequality. Popescu [108] wrote a good paper on operator

theoretic multivariable Bohr study. In the paper, the operator-valued coefficients ver-

sion of Bohr’s theorem [108, Theorem 2.6] extended some results of [104, Theorem

2.1] which considered the single variable case.

A sharp Bohr’s theorem can also be found in the study of skew field of quaternions.

Let H denote the skew field of quaternions. Then each q∈H can be written in the form

q = q0 +q1i+q2 j+q3k, q0,q1,q2,q3 ∈ R,

where {1, i, j,k} is a basis of H satisfying

i2 = j2 = k2 =−1,

i j = k =− ji, jk = i =−k j, ki = j =−ik.

Indeed, every q ∈ H can be written as q = x+ yI, for x,y ∈ R and I ∈ S where S is

given by

S=
{

q ∈H : q2 =−1
}
.

For each I ∈ S, denote by LI the plane R+ IR (isomorphic to C) and by ΩI the inter-

section Ω∩LI whenever Ω is a domain in H. Then a function f : Ω→H is called slice

regular if, for all I ∈ S, its restriction fI to ΩI has continuous partial derivatives and
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satisfies (
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) = 0

for all x+ yI ∈ ΩI . The following result [59, Theorem 4.1] was proved by Rocchetta,

Gentil and Sarfatt:

Let B= {q ∈H : |q|< 1} be the unit ball of H. Also, let f (q) = ∑n≥0 qnan be a slice

regular function on B, continuous on the closure B such that | f (q)|< 1 for all |q| ≤ 1.

Then

∑
n≥0
|qnan|< 1

for all |q| ≤ 1/3. Moreover 1/3 is the largest value for which the statement is true. For

related works in this area, one can refer to [74, 75].

The connection between Hadamard real part theorem and Bohr’s theorem can be

seen in [87], in which Kresin and Maz’ya introduced the Bohr-type real part estimates

and proved the following theorem by applying `p norm on the remainder of power

series expansion [87, Corollary 1]:

Let f (z) = ∑
∞
n=0 anzn ∈ H(U) such that

sup
|ζ |<1

Re [e−iarg f (0) f (ζ )]< ∞,

where arg f (0) is replaced by zero if f (0)=0. Then for any q ∈ (0,∞], integer m ≥ 1,

and |z| ≤ rm,q, the inequality

(
∞

∑
n=m
|anzn|q

)1/q

≤ sup
|ζ |<1

Re [e−iarg f (0) f (ζ )]−| f (0)|
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holds, where rm,q ∈ (0,1) is the root of the equation 2qrmq + rq−1 = 0 if 0 < q < ∞,

and rm,∞ := 2−1/m. The radius rm,q is best possible. With (q,m) = (1,1), the result

becomes the sharp inequality obtained by Sidon [112] and it contains the classical

Bohr’s inequality. For more discussion on Bohr type real part estimates, refer to [88,

Chapter 6].

On the other hand, Guadarrama [73] considered the polynomial Bohr radius de-

fined by

Rn = sup
p∈CPn

{
r ∈ (0,1) :

n

∑
k=0
|ak|rk ≤ ‖p‖∞, p(z) =

n

∑
k=0

akzk

}

where CPn consists of all the complex polynomials of degree at most n. She showed

that

C1
1

3n/2 ≤ Rn−1/3≤C2
logn

n

for some positive constants C1 and C2. Few years later, Fournier [70] computed and

obtained an explicit formula for Rn by applying the notion of bounded-preserving op-

erators. The following result concerning the asymptotic behaviour of Rn was proved

only recently in [45]:

lim
n→∞

n2
(

Rn−
1
3

)
=

π2

3
.

Consider polynomials in the setting of weighted Hardy spaces. Fix weights βn > 0

with β0 = 1 and define the weighted Hardy space

H2(β ) =:

{
∞

∑
n=0

anzn ∈ H(U) :
∞

∑
n=0
|an|2β

2
n < ∞

}
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with inner product 〈∑∞
n=0 anzn,∑∞

n=0 bnzn〉=∑
∞
n=0 anbnβ 2

n . Note that the functions en =

β−1
n zn will form an orthonormal basis of H2(β ). If H2(β ) has Bohr phenomenon, then

for all n large enough (see [9, Theorem 5.2])

1√
2
< Rn <

1√
2
+

1√
2(22n+2−2n−2)

.

A discussion on the multivariable weighted Hardy spaces can be found in Section 3 of

[105].

Finally, let X ,Y be complex Banach spaces and let BY be the unit ball in Y . For

domains G⊂X , D⊂Y , let H(G,D) be the set of holomorphic mappings from G into D.

For f ∈H(G,D), let Dk f (x) denote the k-th Fréchet derivative of f at x∈G. A complex

Banach space X is called a JB∗-triple if there exists a triple product {· , · , ·} : X3→ X

which is conjugate linear in the middle variable but linear and symmetric in the other

variables and satisfies

(i) {a,b,{x,y,z}}= {{a,b,x},y,z}−{x,{b,a,y},z}+{x,y,{a,b,z}},

(ii) the map a�a : X → X defined by a�a(x) = {a,a,x} is Hermitian with non-

negative spectrum,

(iii) ‖{a,a,a}‖= ‖a‖3

for a,b,x,y,z ∈ X . Hamada and Honda proved the following result [77, Theorem 3.2]

which is a refinement of [78, Theorem 3.1]:

Let X be a complex Banach space and Y be a JB∗-triple. Let G be a bounded balanced

domain in X , that is, zG ⊆ G for all z ∈ U , and let BY be the unit ball in Y . Let
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f : G→ BY be a holomorphic mapping. If a = f (0), then

∞

∑
n=0

‖Dφa(a)[Dk f (0)(zk)]‖
k!‖Dφa(a)‖

< 1

for z ∈ (1/3)G, where φa ∈ Aut(BY ) such that φa(a) = 0. Moreover, the constant 1/3

is best possible. Note that [77, Remark 3.3] if BY is one of the four classical domains

in the sense of Hua [82], then BY is the unit ball of a J∗-algebra. Since J∗-algebra is a

JB∗-triple, it follows that [77, Theorem 3.2] is a generalization of the result obtained

by Liu and Wang [93]. Another generalization was given by Roos [109] who extended

the result in [93] to bounded circled symmetric domains.

6.5 Conclusion

The purpose of this thesis is to further generalize the Bohr’s theorem in distance

form which might serve as a platform to solve the n-dimensional Bohr problem, n≥ 2.

Till this day, the exact n-dimensional Bohr radius remains unknown even though its

asymptotic value is known to be
√

logn/n.

Bohr radius for the subordination class R(α,γ,h) is obtained. If h is a convex

function, then the radius r is the smallest positive root of the equation

∞

∑
n=1

1
(1+µn)(1+νn)

rn =
1
2
.

Let α = γ = 0 (implying µ = ν = 0) and h be the half-plane function z/(1− z). Then

the Bohr radius for this case is 1/3. Now, if h is a starlike function with respect to
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h(0), then the radius r is the smallest positive root of the equation

∞

∑
n=1

1
(1+µn)(1+νn)

rn =
1
4
.

Putting α = γ = 0 and taking h to be the Koebe function z/(1− z)2, it follows that the

Bohr radius is 3−2
√

2. Both Bohr radii 1/3 and 3−2
√

2 are in fact known Bohr radii.

Earlier Bohr’s theorems on the convex sets and the subordination classes of a uni-

valent function inspires to investigate the Bohr’s theorem for the class of analytic func-

tions from U to concave-wedge domains Wα . For each domain Wα , there corresponds

a Bohr radius (2
1
α − 1)/(2

1
α + 1). The Bohr radii 1/3 and 3− 2

√
2 corresponds to

cases W1 and W2 respectively. In this thesis, the result requires the constant term to be

positive but later it is shown that the theorem holds true for any constant in [24].

As the counterpart of the result by Abu-Muhanna and Ali on the class of analytic

functions from U to the exterior of the closed unit disk, Bohr’s theorem for the class of

analytic functions from U to the punctured unit disk U0 is obtained with Bohr radius

1/3. Although a condition is imposed on the constant term, the constraint can be im-

proved with better coefficient estimates or even be discarded once the Krzyż conjecture

is proved. Indeed, the constraint is improved by replacing the Euclidean distance with

the spherical chordal distance.

The classical Bohr’s theorem makes its appearance in the spherical geometry with

respect to the spherical chordal distance and the Bohr radius again has the value 1/3.

On the other hand, the Bohr’s theorem for the class of analytic self-maps of Uh exists

in the Poincaré disk model with respect to the hyperbolic distance. Furthermore, the
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Bohr result obtained by Aizenberg is shown to be true in this model. The Bohr radii

for both cases are shown to be tanh(1/2)/3 implying the invariance of Bohr radius in

the hyperbolic geometry.

The thesis also presents the Bohr’s theorem for the class of complex-valued har-

monic functions from U into a bounded domain in C. The class has the Bohr radius 1/3

and the result is a generalization of earlier Bohr’s theorem for the class of complex-

valued harmonic self-map of U . The same Bohr radius 1/3 is obtained for the class

of complex-valued harmonic functions from U into a fixed convex wedge. Finally, the

Bohr-type inequality with sharp radius is established for a certain class of univalent

logharmonic functions from U onto a starlike domain with respect to origin.

The Bohr radius tanh(1/2)/3 in hyperbolic geometry is due to Uh which is the disk

centered at the origin of radius tanh(1/2). Thus with a slight modification, the theorem

remains true for the class of analytic self-maps of U and the Bohr radius value is again

1/3. Hence this implies the Bohr radius 1/3 for this class of functions is unaffected by

the choice of geometry. Future research can be embarked to show that the invariance

of Bohr radius 1/3 in any geometry with constant Gaussian curvature.

It is also interesting to introduce the n-dimensional distance form Bohr’s theorems

which might have an exact Bohr radius. From there, it is possible to search for classes

of analytic function with several variables which have the Bohr phenomenon and show

the invariance of the Bohr radius among those classes. Lastly, distance form Bohr’s

theorems should be related to the existing n-dimensional Bohr results as well as other

fields of researches to further enrich the field of study.
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