top library bulletin
bar home editorial guideline content
dot
 
Volume 34 • Number 1 • 2011
 
• On the Distance Paired-Domination of Circulant Graphs
Haoli Wang, Xirong Xu, Yuansheng Yang, Guoqing Wang and Kai Lü

Abstract.
Let \(G=(V,E)\) be a graph without isolated vertices. A set \(D\subseteq V\) is a \(d\)-distance paired-dominating set of \(G\) if \(D\) is a \(d\)-distance dominating set of \(G\) and the induced subgraph \(G=(V,E)\) has a perfect matching. The minimum cardinality of a \(d\)-distance paired-dominating set for graph \(G\) is the \(d\)-distance paired-domination number, denoted by \(\gamma_p^{d}(G)\). In this paper, we study the \(d\)-distance paired-domination number of circulant graphs \(C(n;\{1,k\})\) for \(2\leq k\leq 4\). We prove that for \(k=2\), \(n\geq 5\) and \(d\geq 1\),

\[\gamma_p^{d}(C(n;\{1,k\}))=2\left\lceil \frac{n}{2kd+3}\right\rceil,\]

for \(k=3\), \(n\geq 7\) and \(d\geq 1\),

\[\gamma_p^{d}(C(n;\{1,k\}))=2\left\lceil \frac{n}{2kd+2}\right\rceil,\]

and for \(k=4\) and \(n\geq 9\),

(i) if \(d=1\), then

\[\begin{array}{llll} \gamma_p(C(n;\{1,k\}))= \left\{\begin{array}{llll} 2\lceil \frac{3n}{23}\rceil+2, & \mbox{if } n\equiv 15,22 \mbox{ (mod } 23); \\ 2\lceil \frac{3n}{23}\rceil, & \mbox{otherwise } \\ \end{array} \right . \end{array}\]

(ii) if \(d\geq 2\), then

\[\begin{array}{llll} \gamma_p^{d}(C(n;\{1,k\}))= \left\{\begin{array}{llll} 2\lceil \frac{2n}{4kd+1}\rceil+2, & \mbox{if } n\equiv 2kd,4kd-1,4kd\\& \mbox{ (mod } 4kd+1)\\ 2\lceil \frac{2n}{4kd+1}\rceil, & \mbox{otherwise. } \\ \end{array} \right. \end{array}\]



2010 Mathematics Subject Classification: 05C69, 05C12.


Full text: PDF
 
dot