top library bulletin
bar home editorial guideline content
dot
 
Volume 36 • Number 3 • 2013
 
• On Oscillation of Second-Order Nonlinear Neutral Functional Differential Equations
Shurong Sun, Tongxing Li, Zhenlai Han and Chao Zhang

Abstract.
In this paper, some sufficient conditions are established for the oscillation of second-order neutral functional differential equation $$\left[r(t)[x(t)+p(t)x(\tau(t))]'\right]'+q(t)f(x(\sigma(t)))=0, \quad t\geq t_0,$$ where $\int_{t_0}^\infty \frac{{\rm d}t}{r(t)}=\infty,$ or $\int_{t_0}^\infty \frac{{\rm d}t}{r(t)}<\infty,\ 0\leq p(t)\leq p_0<\infty.$ The results obtained here complement and improve some known results in the literature.

2010 Mathematics Subject Classification: 39A21, 34C10, 34K11


Full text: PDF
 
dot