|
|
|
|
|
Volume 37 • Number 1 • 2014 |
|
•
$L^p$ Estimates for Higher-Order Parabolic Schrödinger Operators with Certain Nonnegative Potentials
Yu Liu, Jizheng Huang and Jianfeng Dong
Abstract.
Let ${\partial}/{\partial t}+(-\Delta)^2 +V^2$ be a higher order parabolic Schrödinger operator on $\mathbb{R}^{n+1}$ $ (n\ge 5)$, where the nonnegative potential $V$ belongs to the reverse H\"{o}lder class $B_{q_{_1}}(\mathbb{R}^n)$ for some $q_{_1}>{n}/{2}$. In this paper we obtain the $L^p(\mathbb{R}^{n+1})$ estimates for the operator $∇^4({\partial}/{\partial t}+(-\Delta)^2 +V^2)^{-1} $.
2010 Mathematics Subject Classification: 35J10, 35K25
Full text: PDF
|
|
|
|
|
|
|
|
|