Selected Publications

2021 Publications

  1. J. Chen, M. Huang, S. K. Lee and X. Wang, Equivalent norms of solutions to hyperbolic Poisson's equations, J. Geom. Anal., 31 (2021), no. 8, 8173–8201.
  2. Y. Abu-Muhanna, R. M. Ali and S. K. Lee, The Bohr operator on analytic functions and sections, J. Math. Anal. Appl., 496 (2021), no. 2, Paper No. 124837, 11 pp.
  3. Y. L. Chung, M. H. Mohd and S. Supramaniam, Radius estimates for some subclasses of analytic functions, Int. J. Math. Comput. Sci., 16 (2021), no. 3, 1017–1029.
  4. A. S. Ahmad El-Faqeer, Z. C. Ng and S. Supramaniam, On convolution and convex combination of harmonic mappings, J. Math., 2021, Art. ID 6553600, 12 pp.

2020 Publications

  1. S. K. Lee, K. Khatter and V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 43 (2020), No. 6, 4469–4493.
  2. S. Umar, M. Arif, M. Raza and S. K. Lee,On a subclass related to Bazilevič functions, AIMS Math., 5 (2020), No. 3,2040–2056
  3. R. M. Ali, S. K. Lee and M. Obradović, Sharp bounds for initial coefficients and the second Hankel determinant, Bull. Korean Math. Soc., 57 (2020), No. 4, 839–850.
  4. S. K. Lee, S. Ponnusamy and K. J. Wirths, On classes of meromorphic locally univalent functions defined by differential inequalities, Bull. Iranian Math. Soc., 46 (2020), no. 1, 149–158.
  5. R. Chandrashekar , S. K. Lee and P. Isawasan, On a subclass of harmonic mappings associated with hypergeometric functions, Academy of Sciences Malaysia Sc. J., 13 (2020). [PDF]

2019 Publications

  1. Ng Zhen Chuan and R. M. Ali, Bohr's inequality for harmonic mappings into a wedge domain, AIP Conference Proceedings MathTech, 2814 (2019).
  2. Y. Abu Muhanna, R. M. Ali, S. Ponnusamy, The spherical metric and univalent harmonic mappings, Monatsh. Math., 188 (2019), No. 4, 703–716.
  3. R. M. Ali, N. K. Jain, V. Ravichandran, Bohr radius for classes of analytic functions, Results Math, 74 (2019), No. 4, Art. 179, 13 pp.
  4. R. M. Ali, S. K. Lee and S. R. Mondal, Geometric Features of General Differential Solutions, Bulletin of the Belgian Mathematical Society–Simon Stevin, Vol. 26, No. 4 (2019), 551–570.
  5. R. M. Ali, M. Obradovic, and S. Ponnusamy, Differential inequalities and univalent functions, Lobachevskii Journal of Mathematics (Springer) 40 No. 9 (2019), 1242–1249.

2018 Publications

  1. Z. Abdulhadi, N. M. Alareefi, and R. M. Ali, Logharmonic mappings with typically real analytic components, Bull. Korean Math. Soc. 55 (2018), 1783–1789.
  2. R. M. Ali, S. K. Lee and S. R. Mondal, Inequalities on an extended Bessel function, Journal of Inequalities and Applications, Volume 2018 (2018) Article 66, 22 pages. [PDF]
  3. R. M. Ali, S. K. Lee and S. R. Mondal,Starlikeness of the generalized Bessel function, Bulletin of the Belgian Mathematical Society – Simon Stevin 25 (2018), no. 4, 527–540.
  4. R. M. Ali and Z. C. Ng, The Bohr inequality in the hyperbolic plane, Complex Var. Elliptic Equ.,Volume 63 (2018), No 11, 1539–1557. DOI:10.1080/17476933.2017.1385070
  5. Ali, Rosihan M.; Devi, Satwanti; Swaminathan, A. Inclusion properties for a class of analytic functions defined by a second-order differential inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 (2018), No. 1, 117–133.
  6. M. Arif, Z. G. Wang, R. Khan and S. K. Lee, Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions, Hacettepe Journal of Mathematics and Statistics, 47 (2) (2018), 261–271. [PDF]
  7. Y. L. Chung, M. H. Mohd, S. K. Lee, On a subclass of close–to–convex functions, Bulletin of the Iranian Mathematical Society, Vol 44 (2018), No 3, page 611 – 621.
  8. K. Khatter, S. K. Lee and S. Sivaprasad, Bounds for the second Hankel determinant of certain analytic functions, Bulletin of the Malaysian Mathematical Sciences Society, 2nd series, 44 (1) (2018), 455–490. [PDF]

2017 Publications

  1. Y. Abu Muhanna, R. M. Ali, and Z. C. Ng, Bohr radius for the punctured disk, Math. Nachr. 290 (16) (2017), 2434 – 2443. DOI 10.1002/mana.201600094 [PDF]
  2. Y. Abu Muhanna, R. M. Ali, and S. Ponnusamy, On the Bohr inequality, Contributed chapter in: Progress in Approximation Theory and Applicable Complex Analysis – In the Memory of Q.I. Rahman; N. K. Govil et. al (eds.), Springer Optimization and Its Applications 117 (2017), 269–300. doi: 10.1007/978–3–319–49242–1_13
  3. Najla M. Alarifi, R. M. Ali, and V. Ravichandran, On the second Hankel determinant for the kth–root transform of analytic functions, Filomat 31:2 (2017), 227– 245. [PDF]
  4. R. Chandrashekar, S. K. Lee and K. G. Subramanian, Differential subordination and convexity criteria of integral operators, Open Mathematics, 15 (2) (2017), 1509–1516. Open Access
  5. R. M. Ali, V. Kumar, V. Ravichandran, and S. Sivaprasad Kumar, Radius of starlikeness for analytic functions with fixed second coefficient, Kyungpook Math. J. 57(2017), 473–492. https://doi.org/10.5666/KMJ.2017.57.3.473
  6. R. M. Ali, R. W. Barnard, and A. Yu. Solynin, A note on the Bohr's phenomenon for power series, J. Math. Anal. Appl. 449(1) (2017), 154–167. [PDF]
  7. R. M. Ali, S. R. Mondal, and K. S. Nisar, Monotonicity properties of the generalized Struve functions, J. Korean Math. Soc. 54 (2) (2017), 575–598. [PDF]
  8. Ezhilarasi, R.; Sudharsan, T. V.; Haji Mohd, Maisarah; Subramanian, K. G. Connections between certain subclasses of analytic univalent functions based on operators. J. Complex Anal. 2017, Art. ID 6104210, 5 pp. [PDF]
  9. S. Supramaniam, R. Chandrashekar, S. K. Lee and K. G. Subramanian, Convexity of functions defined by differential inequalities and integral operators, Rev. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 111 No. 1 (2017), 147–157. doi: 10.1007/s13398–016–0282–6 [PDF]

2016 Publications

  1. R. M. Ali, Z. Abdulhadi and Z.C. Ng, The Bohr radius for starlike logharmonic mappings, Complex Var. Elliptic Equ. 61:1 (2016), 1–14. doi: 10.1080/17476933.2015.1051477 [PDF]
  2. Z. C. Ng and R. M. Ali, A Bohr phenomenon on the punctured unit disk, AIP Conf. Proc. 1750, 050002 (2016). doi: 10.1063/1.4954590 [PDF]

2015 Publications

  1. Z. Abdulhadi and R. M. Ali, On rotationally starlike logharmonic mappings, Math. Nachr. 288 No. 7 (2015), 723 – 729. doi: 10.1002/mana.201400056 [PDF]
  2. R. M. Ali, Saiful R. Mondal, and V. Ravichandran, On the Janowski convexity and starlikeness of the confluent hypergeometric function, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 227 – 250. [PDF]
  3. H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29:8 (2015), 1839 – 1845. doi: 10.2298/FIL1508839S [PDF]
  4. R. M. Ali and N. M. Alarifi, The U-radius for classes of analytic functions, Bull. Malays. Math. Sci. Soc. 38 (2015), 1705–1721. doi: 10.1007/s40840–015–0115–3 [PDF]
  5. S. K. Lee, V. Ravichandran and S. Supramaniam, Close-to-convexity and starlikeness of snalytic sunctions, Tamkang Journal of Mathematics, Vol. 46, No. 2 (2015), 111 – 119. [PDF]

2014 Publications

  1. Z. Abdulhadi, N. M. Alareefi and R. M. Ali, On the convex-exponent product of logharmonic functions. J. Inequal. Appl. (2014), 2014:485. doi: 10.1186/1029–242X–2014–485 [PDF]
  2. Y. Abu-Muhanna, R. M. Ali, Z. C. Ng and S. F. M. Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Appl. 420 (2014), 124 – 136. [PDF]
  3. M. Acu, R. Ezhilarasi, T.V. Sudharsan and K.G. Subramanian, A new subclass of harmonic univalent functions of complex order based on convolution, Advances in Applied Mathematical Analysis, Vol. 9 No. 1 (2014), 1 – 9. [PDF]
  4. R. Chandrashekar, R. M. Ali, K. G. Subramanian and A. Swaminathan, Starlikeness of functions defined by third-order differential inequalities and integral operators, Abstr. Appl. Anal. Vol. 2014, Article ID 723097, 6 pages, 2014. doi:10.1155/2014/723097 [PDF]
  5. R. Chandrashekar, R. M. Ali and K. G. Subramanian, Dominant of functions satisfying a differential subordination and applications, AIP Conference Proceedings 1605, 580 – 585, (2014). doi: 10.1063/1.4887653 [PDF]
  6. R. Ezhilarasi, T.V. Sudharsan and K.G. Subramanian, A class of harmonic multivalent functions defined by an integral operator, General Mathematics Notes 22(1) (2014), 17 – 30. [PDF]
  7. R. Ezhilarasi, T. V. Sudharsan and K. G. Subramanian, Harmonic univalent functions based on a fractional differential operator, J. Fract. Calc. Appl., Vol. 5 No. 1 (2014), 105 – 113. [PDF]
  8. S. K. Lee, V. Ravichandran and S. Shamani, Initial Coefficients of bi-univalent functions, Abstract and Applied Analysis, Volume 2014 (2014) Article ID 640856, 6 pages. [PDF]
  9. S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Variables and Elliptic Equations,Volume 59 No. 2 (2014), 204 – 216.
  10. M. M. Nargesi, R. M. Ali and V. Ravichandran, Radius constants for analytic functions with fixed second coefficient, The Scientific World Journal, Vol. 2014, Article ID 898614, 6 pages, 2014. doi: 10.1155/2014/898614 [PDF]
  11. V. Ravichandran, Radii of starlikeness and convexity of analytic functions satisfying certain coefficient inequalities, Mathematica Slovaca, Volume 64 No. 1 (2014), 27 – 38.
  12. N. Salleh, R. M. Ali and V. Ravichandran, Admissible second-order differential subordinations for analytic functions with fixed initial coefficient, AIP Conference Proceedings 1605, 655 – 660 (2014). doi: 10.1063/1.4887667 [PDF]

2013 Publications

  1. Y. Abu–Muhanna and R. M. Ali, Bohr's phenomenon for analytic functions and the hyperbolic metric, Math. Nachr. 286, No. 11 – 12 (2013), 1059 – 1065. [PDF]
  2. Y. Abu-Muhanna and R. M. Ali, Biharmonic maps and Laguerre minimal surfaces, Abstr. Appl. Anal. Vol. 2013, Article ID 843156, 9 pages, 2013. doi:10.1155/2013/843156 [PDF]
  3. R. M. Ali, N. K. Jain and V. Ravichandran, On the largest disc mapped by sum of convex and starlike functions, Abstr. Appl. Anal. Vol. 2013, Article ID 682413, 12 pages, 2013. [PDF]
  4. R. M. Ali, N. K. Jain and V. Ravichandran, On the Radius Constants for Classes of Analytic Functions, Bull. Malays. Math. Sci. Soc. (2) 36(1) (2013), 23 – 38. [PDF]
  5. R. M. Ali, M. M. Nargesi and V. Ravichandran, Convexity of integral transforms and duality, Complex Variables and Elliptic Equations 58 (11) (2013), 1569 – 1590. [PDF]
  6. R. M. Ali, M. M. Nargesi, V. Ravichandran and A. Swaminathan, Inclusion criteria for subclasses of functions and Gronwall's inequality, Tamsui Oxf. J. Inf. Math. Sci. 29(1) (2013) 61 – 75. [PDF]
  7. R. M. Ali, M. M. Nargesi and V. Ravichandran, Coefficient inequalities for starlikeness and convexity, Tamkang J. Math. 44 (2) (2013), 149 – 162. [PDF]
  8. R. M. Ali, M. Obradovic and S. Ponnusamy, Necessary and sufficient conditions for univalent functions, Complex Variables and Elliptic Equations 58(5) (2013), 611 – 620. [PDF]
  9. R. M. Ali, Saiful R. Mondal and V. Ravichandran, Zero-free approximants to derivatives of prestarlike functions, J. Inequal. Appl. (2013) 2013:401. [PDF]
  10. R. Ezhilarasi, T.V. Sudharsan, K.G. Subramanian and D. Breaz, On a new subclass of meromorphic harmonic functions with fixed residue α, Acta Univ. Apulensis Math. Inform. No. 36 (2013), 267 – 276. [PDF]
  11. M. Haji Mohd and M. Darus, On a class of spiral-like functions with respect to a boundary point related to subordination. J. Inequal. Appl. 2013,2013:274, 12 pp.
  12. S. K. Lee, V. Ravichandran and S. Supramaniam, Applications of differential subordination for functions with fixed second coefficient to geometric function theory, Tamsui Oxford Journal of Information and Mathematical Sciences 29(2), 2013, 267 – 284, Aletheia University. [PDF]
  13. S.K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. (2013), Art. 281, 17 pages, 2013. [PDF]
  14. S. Nagpal and V. Ravichandran, Fully starlike and convex harmonic mappings of order á, Annales Polonici Mathematici, Volume 108 (2013), 85 – 107.

2012 Publications

  1. Z. Abdulhadi, Y. Abu Muhanna and R. M. Ali, Landau's theorem for functions with logharmonic Laplacian, Appl. Math. and Comput. 218 (2012) 6798 – 6802. [PDF]
  2. Z. Abdulhadi and R. M. Ali, Univalent logharmonic mappings in the plane, Abstr. Appl. Anal. Vol. 2012, Article ID 721943, 32 pages, 2012. doi:10.1155/2012/721943 [PDF]
  3. R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness of integral transforms and duality, J. Math. Anal. Appl. 385 (2012) 808 – 822. [PDF]
  4. R. M. Ali, N. E. Cho, N. Jain and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat, Vol. 26 No 3 (2012), 553 – 561.
  5. R. M. Ali, N. E. Cho, O. S. Kwon and V. Ravichandran, A first-order differential double subordination with applications, Appl. Math. Lett. 25 (2012) 268 – 274. [PDF]
  6. R. M. Ali, N. E. Cho, V. Ravichandran and S. S. Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (3) (2012), 1017–1026. [PDF]
  7. R. M. Ali, N. K. Jain, and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012) 6557–6565. [PDF]
  8. R. M. Ali, S. K. Lee and S. R. Mondal, Coefficient conditions for starlikeness of nonnegative order, Abstr. Appl. Anal. Vol. 2012, Article ID 450318, 14 pages, 2012. doi:10.1155/2012/450318. [PDF]
  9. R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 25 (2012) 344 – 351. [PDF]
  10. R. M. Ali and S. Ponnusamy, Linear functionals and the duality principle for harmonic functions, Math. Nachr. 285 No. 13 (2012), 1565 – 1571. [PDF]
  11. R. Thirumalaisamy, T.V. Sudharsan, K.G. Subramanian and S.M. Khairnar, On certain subclass of analytic and univalent functions based on Ruscheweyh derivatives and Hadamard product, Int. J. Math. Sci. Eng. Appl. 6(5) (2012), 11 – 21. [PDF]
  12. R. Ezhilarasi, T.V. Sudharsan, K.G. Subramanian and S.B. Joshi, A subclass of harmonic univalent functions with positive coefficients defined by Dziok-Srivastava operator, General Mathematics Notes 20(2-3) (2012), 32 – 46. [PDF]
  13. S. R. Mondal and A. Swaminathan, Geometric properties of Generalized Bessel functions, Bull. Malays. Math. Sci. Soc. (2) 35(1) (2012), 179 – 194. [PDF]
  14. S. Nagpal and V. Ravichandran, Applications of theory of differential subordination for functions with fixed initial coefficient to univalent functions, Annales Polonici Mathematici, 105 (2012), 225 – 238.
  15. V. Ravichandran, Geometric properties of partial sums of univalent function, Mathematics Newsletter, Ramanujan Mathematical Society, Vol. 22 No 3 (2012), 208 – 221.
  16. K. G. Subramanian, B. A. Stephen and S. K. Lee, Subclasses of Multivalent Harmonic Mappings Defined by Convolution, Bull. Malays. Math. Sci. Soc. (2) 35(3) (2012), 717 – 726. [PDF]

2011 Publications

  1. R. M. Ali and Y. Abu-Muhanna, Bohr's phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl. 379 (2011) 512 – 517. [PDF]
  2. R. M. Ali, R. Chandrashekar, S. K. Lee, V. Ravichandran and A. Swaminathan, Differential sandwich theorem for multivalent analytic functions associated with the Dziok-Srivastava operator, Tamsui Oxf. J. Math. Sci. 27(3) (2011) 327 – 350. [PDF]
  3. R. M. Ali, R. Chandrashekar, S. K. Lee, A. Swaminathan and V. Ravichandran, Differential sandwich theorem for multivalent meromorphic functions associated with the Liu-Srivastava operator, Kyungpook Math. J. 51 (2011), 217 – 232. [PDF]
  4. R. M. Ali, R. Chandrashekar and V. Ravichandran, Janowski starlikeness for a class of analytic functions, Appl. Math. Lett. 24 (2011), 501 – 505. [PDF]
  5. R. M. Ali, S. K. Lee, K. G. Subramanian and A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal. Vol. 2011, Article ID 901235, 10 pages, 2011. doi:10.1155/2011/901235[PDF]
  6. R. M. Ali, M. H. Mohd, S. K. Lee and V. Ravichandran, Radii of starlikeness, parabolic starlikeness and strong starlikeness for Janowski starlike functions with complex parameters, Tamsui Oxf. J. Math. Sci. 27(3) (2011) 253 – 267. [PDF]
  7. R. M. Ali, S. Nagpal and V. Ravichandran, Second-order differential subordination for analytic functions with fixed initial coefficient, Bull. Malays. Math. Sci. Soc. (2) 34(3) (2011), 611 – 629. [PDF]
    Conferred Merit Award, Best Research Paper Category, by the Malaysian Mathematical Sciences Society, December 18, 2012.
  8. R. M. Ali, M. M. Nargesi and V. Ravichandran, On Differential subordination of linear operators satisfying a recurrence relation, Journal of Analysis, Vol 19 (2011), 61 – 70.
  9. R. M. Ali and V. Ravichandran, Integral operators on Ma-Minda type starlike and convex functions, Math. Comput. Modelling 53 (2011), 581 – 586. [PDF]
  10. R. M. Ali and V. Ravichandran, Uniformly convex and uniformly starlike functions, Mathematics Newsletter 21 (2011), 16 – 30.
  11. R. M. Ali, V. Ravichandran and N. K. Jain, Convolutions of certain analytic functions, Proc. ICM2010 Satellite Conference: Intl. Workshop on Harmonic & Quasiconformal Mappings, Editors: D. Minda, S. Ponnusamy and N. Shanmugalingam, J. Analysis 18 (2010), 1 – 8.
  12. R. M. Ali, B. A. Stephen, K. G. Subramanian and S. K. Lee, Convolution of harmonic mappings on the exterior unit disk and the generalized hypergeometric functions, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 239 – 251. [PDF]
  13. A. O. Badghaish, R. M. Ali and V. Ravichandran, Closure properties of operators on the Ma-Minda-type starlike and convex functions, Appl. Math. Comput., 218 (2011), 667 – 672. [PDF]
  14. R. Chandrashekar, R. M. Ali, S. K. Lee and V. Ravichandran, Convolutions of meromorphic multivalent functions with respect to n-ply points and symmetric conjugate points, Appl. Math. Comput., 218 (2011), 723 – 728. [PDF]
  15. S. R. Mondal and A. Swaminathan, On the positivity of certain trigonometric sums and their applications, Computers and Mathematics with Applications, Volume 62, Issue 10, November 2011, Pages 3871 – 3883
  16. N. E. Cho, O. S. Kwon, R. M. Ali and V. Ravichandran, Subordination and superordination for multivalent functions associated with the Dziok-Srivastava operator, J. Inequal. Appl. (2011), Article ID 486595, 17 pages. doi:10.1155/2011/486595 [PDF]
  17. N. E. Cho, O. S. Kwon and V. Ravichandran, Coefficient, distortion and growth inequalities for certain close-to-convex functions, Journal of Inequalities and Applications, Volume 201, Article 100, 2011.
  18. V. Ravichandran and S. S. Kumar, Argument estimate for starlike functions of reciprocal order, The Southeast Asian Bulletin of Mathematics, Volume 35, (2011) pages 837 – 843.

2010 Publications

  1. R. M. Ali, A. O. Badghaish and V. Ravichandran, Multivalent functions with respect to n-ply points and symmetric conjugate points, Comput. Math. Appl. 60 (2010), 2926–2935. [PDF]
  2. R. M. Ali, M. Mahnaz, V. Ravichandran and K. G. Subramanian, Convolution properties of classes of analytic and meromorphic functions, J. Inequal. Appl. (2010) Article ID 385728, 14 pages. doi:10.1155/2010/385728 [PDF]
  3. R. M. Ali and V. Ravichandran, Classes of meromorphic α-convex functions, Taiwanese J. Math. 14(4) (2010), 1479 – 1490. [PDF]
  4. R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions defined by the Dziok-Srivastava linear operator, J. Franklin Inst. 347 (2010), 1762 – 1781. [PDF]
  5. R. M. Ali, V. Ravichandran and N. Seenivasagan, On subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 33(2) (2010), 311 – 324. [PDF]
    Best Research Paper in the Category of Science, Technology and Medicine 2010. Prize awarded by the Malaysian Council of Scholarly Publications (Majlis Penerbitan Ilmiah Malaysia MAPIM), April 24, 2011.
  6. R. M. Ali, B. A. Stephen and K. G. Subramanian, Subclasses of harmonic mappings defined by convolution, Appl. Math. Lett. 23 (2010) 1243 – 1247. [PDF]
  7. R.Chandrashekar, S. K. Lee and K. G. Subramanian, Hypergeometric functions and subclasses of harmonic mappings, Proceeding of the International Conference on Mathematical Analysis 2010, Bangkok, 2010, pp. 95 – 102. [PDF]
  8. K. G. Subramanian, L. Pan, S. K. Lee and A. K. Nagar, A P System Model with Pure Context-free Rules for Picture Array Generation, Mathematical and Computer Modelling, Volume 52 (2010), page 1901 – 1909
  9. K. G. Subramanian, T. V. Sudharsan, N. Seenivasagan and A. O. Badgaish, A Class of Harmonic Univalent Functions, Int. J. Computing and Mathematical Applications, 4(1) (2010) 11–16.
  10. T. V. Sudharsan, R. Thirumalaisamy, K. G. Subramanian and M. Acu, A class of analytic functions based on an extension of Al-Oboudi operator, Acta Univ. Apulensis Math. Inform. No. 21 (2010) 79 – 88.

2009 Publications

  1. R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szego coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2) (2009), 109 – 132. [PDF]
  2. R. M. Ali, V. Ravichandran and S. K. Lee, Subclasses of multivalent starlike and convex functions, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 385 – 394. MR 2010j : 30014. [PDF]
  3. R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions defined by the multiplier transformation, Math. Inequal. Appl. 12 (1) (2009), 123 – 139. MR 2010c : 30037. [PDF]
  4. R. Chandrashekar, G. Murugusundaramoorthy, S. K. Lee and K. G. Subramanian, A Class of Complex-valued Harmonic Functions Defined by Dziok-Srivastava Operator, Chamchuri Journal of Mathematics, 1(2) (2009), 31 – 42. [PDF]
  5. S. K. Lee, S. Shamani and V. Ravichandran, Coefficient Bounds for Meromorphic Starlike and Convex Functions, Journal of Inequalities in Pure and Applied Mathematics, Vol. 10 (2009), Issue 3, Article 71, 6 pp. [PDF]
  6. S. K. Lee, T. V. Sudharsan, R. Thirumalaisamy and K. G. Subramanian, Harmonic Univalent Functions Based on Generalized Ruscheweyh Derivative Operator, Proceedings of the International Symposium on Geometric Function Theory and its Applications, UKM, Malaysia, (2009).
  7. M. H. Mohd, R. M. Ali, S. K. Lee and V. Ravichandran, Subclasses of meromorphic functions associated with convolution, J. Inequal. Appl. (2009) Article ID 190291, 9 pp. doi:10.1155/2009/190291. MR 2010k : 30009. [PDF]
  8. B. A. Stephen, P. Nirmaladevi, T. V. Sudharsan and K. G. Subramanian, A Class of Harmonic Meromorphic Functions with Negative Coefficients, Chamchuri Journal of Mathematics, 1(1) (2009), 87 – 94.
  9. B. A. Stephen, K. G. Subramanian, P. Nirmaladevi, T. V. Sudharsan and G. Murugusundaramoorthy, Harmonic Parabolic Starlike Functions of Complex Order, International J. of Math. Sci. & Engg. Appls., 3(2) (2009), 59 – 66.
  10. T. V. Sudharsan, R. Thirumalaisamy, K. G. Subramanian and B. A. Stephen, A Class of Analytic Functions based on Rusheweyh Derivative, International J. of Math. Sci. & Engg. Appls., 3(2) (2009), 103 – 108.
  11. S. Supramaniam, R. M. Ali, S. K. Lee and V. Ravichandran, Convolution and differential subordination for multivalent functions, Bull. Malays. Math. Sci. Soc. (2) 32(3) (2009), 351 – 360. MR 2010k : 30025. [PDF]
    Best Research Paper in the Category of Science, Technology and Medicine 2009. Prize awarded by the Malaysian Council of Scholarly Publications (Majlis Penerbitan Ilmiah Malaysia MAPIM), March 21, 2010.
    Best Research Paper, awarded by the Malaysian Mathematical Sciences Society, December 8, 2010.

2008 Publications

  1. R. M. Ali, A. O. Badghaish and V. Ravichandran, Subordination for higher-order derivatives of multivalent functions, J. Inequal. Appl. (2008) Article ID 830138, 12 pp. doi:10.1155/2008/830138. MR 2010a : 30016. [PDF]
  2. R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 31(2) (2008), 193 – 207. MR 2009j : 30051. [PDF]
    Best Research Paper in the Category of Science, Technology and Medicine 2008. Prize awarded by the Malaysian Council of Scholarly Publications (Majlis Penerbitan Ilmiah Malaysia MAPIM), April 18, 2009.
  3. R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination on Schwarzian derivatives, J. Inequal. Appl. (2008), Article ID 712328, 18 pp. doi:10.1155/2008/712328. MR 2010a : 30015. [PDF]
  4. R. M. Ali, K. G. Subramanian, V. Ravichandran and O. P. Ahuja, Neighborhoods of starlike and convex functions associated with parabola, J. Inequal. Appl. (2008), Article ID 346279, 9 pp. doi:10.1155/2008/346279. MR 2009j : 30015. [PDF]
  5. S. K. Lee, T. V. Sudharsan and K. G. Subramanian, A Note on a Class of Analytic Functions Related to Quasi-convex Functions,to appear in the Proceedings of the 16th National Symposium in Mathematical Sciences, UMT, Malaysia, 2008
  6. K. G. Subramanian, T. V. Sudharsan, B. A. Stephen and J. M. Jahangiri, A Note on Salagean-type Harmonic Univalent Functions, General Mathematics, Vol. 16, No. 3 (2008) 29-40.

2007 Publications

  1. R. Aghalary, S. B. Joshi, R. N. Mohapatra and V. Ravichandran, Subordinations for analytic functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput. 187 (2007), no. 1, 13 – 19.
  2. R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35 – 46. [PDF]
  3. R. M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci. (2007), Article ID 62925, 7 pp.
  4. S. K. Lee, On Moment Conditions for the Girsanov Theorem, Adv. Theor. Appl. Math. 2(1) (2007), 83 – 98.

2006 Publications

  1. R. M. Ali, M. H. Khan, V. Ravichandran and K. G. Subramanian, A class of multivalent functions with negative coefficients defined by convolution, Bull. Korean Math. Soc. 43 (2006), no. 1, 179 – 188.
  2. R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, Applications of first order differential superordinations to certain linear operators, Southeast Asian Bulletin of Mathematics 30 (2006), 799 – 810. [PDF]
  3. R. M. Ali, V. Ravichandran, and N. Seenivasagan, On Bernardi's integral operator and the Briot-Bouquet differential subordination, J. Math. Anal. Appl. 324 (2006), 663–668. [PDF]
  4. R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination by convex functions, Int. J. Math. Math. Sci. (2006). Art. ID 62548.
  5. V. Ravichandran, M. H. Khan, H. Silverman and K. G. Subramanian, Radius problems for a class of analytic functions, Demonstratio Math. 39 (2006), no. 1, 67 – 74.
  6. T. N. Shanmugam, C. Ramachandran and V. Ravichandran, Fekete-Szego" problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43 (2006), no. 3, 589 – 598.
  7. S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes of multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation, Kyungpook Math. J. 46 (2006), no. 1, 97 – 109.

2005 Publications

  1. R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operators, Int. Journal of Mathematical Sciences (IJMS), 4 (2005), 267 – 274. [PDF]
  2. R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci. (2005), no.4, 561 – 570.
  3. R. M. Ali, M. H. Khan, V. Ravichandran and K. G. Subramanian, A class of multivalent functions with positive coefficients defined by convolution, JIPAM – J. Inequal. Pure Appl. Math. 6(1) (2005), no. 1, Article 22. [PDF]
  4. M. Darus, N. Marikkannan and V. Ravichandran, On a class of analytic functions with positive coefficients defined by convolution, Mathematica 47(70) (2005), no. 1, 53 – 60. [PDF]
  5. S. S. Kumar, V. Ravichandran and H. C. Taneja, Meromorphic functions with positive coefficients defined using convolution, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 2, Article 58, 9 pp. (electronic). 30C45 (30C80) [PDF]
  6. V. Ravichandran, M. Darus, M. H. Khan and K. G. Subramanian, Differential subordination associated with linear operators defined for multivalent functions, Acta Mathematica Vietnamica, 2005, 30(2), 113 – 121. [PDF]
  7. V. Ravichandran, M. Darus and N. Seenivasagan, On a criteria for strong starlikeness, Aust. J. Math. Anal. Appl. 2 (2005), no. 1, Art. 6, 12 pp. (electronic). [PDF]
  8. V Ravichandran, N. Magesh and , and R. Rajalakshmi, on certain applications of differential subordinations for ∅–like functions, Tamkang J. Math. 35 (2015), 137 – 142. [PDF]
  9. V Ravichandran, Y. Polatogluy, M. Bolcaly, and A. Seny, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. Vol 35 (2005), 9 – 15. [PDF]
  10. V. Ravichandran and S. S. Kumar, On a class of analytic functions involving Carlson-Shaffer linear operator, Riv. Mat. Univ. Parma (7) 3 (2004), 35 – 48 (2005).
  11. V. Ravichandran and S. S. Kumar, On sufficient conditions for starlikeness, Southeast Asian Bull. Math. 29 (2005), no. 4, 773 – 783. [PDF]
  12. S. S. Kumar, V. Ravichandran and G. Murugusundaramoorthy, classes of meromorphic p–valent parabolic starlike functions with positive coefficients, Aust. J. Math. Anal. Appl. 2 (2005), no. 2, Art. 3, 1 – 9. [PDF]

2004 Publications

  1. R. M. Ali and V. Ravichandran, Differential subordination for meromorphic functions defined by a linear operator, J. Anal. Appl. 2 (2004), no. 3, 149 – 158. [PDF]
  2. R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. (FJMS) 15 (2004), no. 1, 87 – 94. [PDF]